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1 School of Electrical and Computer Engineering, Academy of Technical and Art Applied Studies,
Belgrade, Serbia
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1. Introduction and preliminaries

In 2018, M. Abbas et al., ( [4], Remark 16.) formulated and proved the following:

Remark 1.1. Let P ⊆ E be a solid cone in Banach space E and A : E → E a linear operator with
‖A‖ < 1 andA (P) ⊂ P. If

(a) for any u in P, we have
u � A (u) , (1)

then u = θ.
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(b) for any u, v in P, we have

u � A
(u + v

2

)
=

1
2
A (u) +

1
2
A (v) , (2)

then u � A (v) .
To prove (b), the authors assume on the contrary that u � A (v) . However, this is wrong. It is

possible only in a totally ordered vector space. The only such possibility is (R,≤) . In that case, the
cone metric space (X, d) in [4] becomes an ordinary metric space. Since E , R then the incomparable
elements exist. For example, if E = R2 with the cone P = {(u, v) : u, v ≥ 0} , then the pairs (1, 2) and
(2, 1) are such elements. Therefore, the claim that (2) yields u � A (v) is in doubt. It is clear that the
condition (2) implies the next relation:

u �
(
I −

1
2
A

)−1 1
2
A (v) . (3)

This is true because
∥∥∥ 1

2A
∥∥∥ = 1

2 ‖A‖ <
1
2 · 1 = 1

2 < 1, i.e.,
(
I − 1

2A
)−1

exists.
Also, it is worth mentioning that the negation of u � A (v) is not u � A (v) , in general. That is, the

negation of u � A (v) implies that either u � A (v) or that u andA (v) are incomparable.
Other than that, the paper [4] has several weaknesses which are listed in the following:

• The authors do not faithfully convey the formulation of the famous Perov’s theorem [21]. They
even add and make up some points of the theorem not present in the original text. It is not clear
why they did such a thing.
• Many proofs either look dubious or are long, while it is well known there are shorter, simpler

and more elegant proofs (pages 13 and 14, [4]). Those proofs stem from the so-called method of
c–sequences introduced by the fifth author (S. Radenović) in the last years. Briefly, the sequence
xn in the cone P of ordered Banach space E is called a c–sequence if for any internal point
c ∈ intP there exists a natural number k such that xn � c when n > k. For further details
see [1, 5, 6, 11–17, 20, 22, 23, 26, 27].
• The authors used the following statement: Let the linear map A be positive and the cone P be

solid. According to [6] it follows that the mapA is automatically continuous (bounded) and has a
defined spectral radius. The authors, beyond the hypothesis of a solid cone, assume that r(A) < 1.
• In their Theorem 2.3. authors make an assumption that A4(v) � A5(v) for any v ∈ P. In our

approach this assumption is not necessary. We must also add that the Theorem 2.3 is actually the
famous Hardy–Rogers contraction [10] in the context of cone metric spaces.
• The authors have used the symbol ≤ in place of � in a few instances. This practice cannot be

considered a trivial typo.

Remark 1.2. According to the observations above, it follows that several results in [4] (Theorem 2.1.,
Theorem 2.3.) are in fact incorrect. Indeed, the authors use the incorrect implication: (2) yields
u � A (v) in all proofs, which is evidently wrong. In this paper we will use the implication: (2) yields
(3) to obtain correct results.

As it is mentioned already, the correct parts of the proofs in [4] can be made simpler and shorter. It
is useful to point readers to the recent survey [5], where the authors describe in detail all known papers
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on cone metric spaces with a new approach: by means of the Minkowski functional the problems can
usually be reduced to the case of a solid normal cone with normality constant K = 1. This is the most
recent result in this field, and allows the relaxation of most of the results and considerations given in
the last years.

Similarly as in [2, 3, 19, 25] for ordinary metric spaces, authors in [4] (Definition 1.17. (I), (II))
introduced the so-called cone graphic P1−contraction pairs and cone graphic P2−contraction pair in
the setting of cone metric spaces as follows:

Definition 1.1. Let T1,T2 : X → Pcl (X) be two multivalued mappings. Suppose that for every vertex
x in G and for every ux ∈ Ti (x) , i ∈ {1, 2} we have (x, ux) ∈ E (G) . A pair (T1,T2) is said to form:

(I) a cone graphic P1−contraction pair if there exists a linear bounded operator A : E → E with
‖A‖ < 1 and A (P) ⊆ P such that for any x, y ∈ X with (x, y) ∈ E (G) and ux ∈ Ti (x) , there exists
uy ∈ Ti (y) for i, j ∈ {1, 2} with i , j such that

(
ux, uy

)
∈ E (G) and

d
(
ux, uy

)
� A

(
M1

(
x, y; ux, uy

))
, (4)

hold, where

M1

(
x, y; ux, uy

)
∈

d (x, y) , d (x, ux) , d
(
y, uy

)
,

d (x, ux) + d
(
y, uy

)
2

,

d
(
x, uy

)
+ d (y, ux)

2

 .
(II) a cone graphic P2−contraction pair if there exist linear bounded operators Ak : E → E for

k = 1, 2, 3, 4, 5 with
5∑

k=1
‖Ak‖ < 1, Ak (P) ⊆ P for k = 1, 2, 3, 4, 5 and A4 (v) � A5 (v) for all v ∈ P

such that for any x, y ∈ X with (x, y) ∈ E (G) and ux ∈ Ti (x) , there exists uy ∈ T j (y) for i, j ∈ {1, 2}
with i , j such that

(
ux, uy

)
∈ E (G) and

d
(
ux, uy

)
� M2

(
x, y; ux, uy

)
(5)

hold, where
M2

(
x, y; ux, uy

)
= A1 (d (x, y)) +A2 (d (x, ux)) +A3

(
d
(
y, uy

))
+A4

(
d
(
x, uy

))
+A5 (d (y, ux)) .

Further, authors in [4] proved the following two results:

Theorem 1.1. ( [4], Theorem 2.1.) Let (X, d) be a complete cone metric space endowed with a directed
graph G such that V (G) = X and E (G) ⊇ 4. If mappings T1,T2 : X → Pcl (X) form a cone graphical
P1−contraction pair, then following statements hold:

(i) Fix (T1) , ∅ or Fix (T2) , ∅ if and only if Fix (T1) = Fix (T2) , ∅.
(ii) XT1,T2 , ∅ provided that Fix (T1) ∩ Fix (T2) , ∅.
(iii) If XT1,T2 , ∅ and G is a weakly connected, then Fix (T1) = Fix (T2) , ∅ provided that graph G

has property (P) .
(iv) Fix (T1) ∩ Fix (T2) is a clique of G̃ if and only if Fix (T1) ∩ Fix (T2) is a singleton.

AIMS Mathematics Volume 7, Issue 1, 187–198.



190

Theorem 1.2. ( [4], Theorem 2.3.) Let (X, d) be a complete cone metric space endowed with a directed
graph G such that V (G) = X and E (G) ⊇ 4. If mappings T1,T2 : X → Pcl (X) form a cone graphical
P2−contraction pair, then following statements hold:

(i) Fix (T1) , ∅ or Fix (T2) , ∅ if and only if Fix (T1) = Fix (T2) , ∅.
(ii) XT1,T2 , ∅ provided that Fix (T1) ∩ Fix (T2) , ∅.
(iii) If XT1,T2 , ∅ and G is a weakly connected, then Fix (T1) = Fix (T2) , ∅ provided that graph G

has property (P) .
(iv) Fix (T1) ∩ Fix (T2) is a clique of G̃ if and only if Fix (T1) ∩ Fix (T2) is a singleton.
It is worth noticing that the authors suppose that (X, d) is a cone metric space with solid cone P

throughout the paper [4]. Also, the following remark is significant.

Remark 1.3. Let us notice that an operator A in Definition 1.1 (I), (II) is automatically continuous,
and its spectral radius r(A) is well-defined. Indeed, by ( [8], Proposition 19.1) every solid cone in E
is generating, i.e., P − P = E, so by ( [6], Theorem 2.32), every linear positive operator A from E to
E is continuous. This further means that the assumption ‖A‖ < 1 in whole paper [4] is superfluous.

2. The improved results

In this section we discuss, complement and improve some results given in [4]. By using the method
of c-sequences we get much simpler and shorter proofs than the ones presented in the paper of Abbas
et al. in [4]. The main motivation behind the present effort is setting the proper level of mathematical
rigour, not attained in the mentioned paper, as seen in several previous remarks. We will, therefore, try
to give new and correct proofs of both theorems from [4] stated above.

First of all we will give the proof of (iii) of ( [4], Theorem 2.1.).
Let x0, as in [4], be any point in X. If x0 ∈ T1 (x0) or x0 ∈ T2 (x0) , then by (i) the result follows.

Therefore, assume that x0 < Ti (x0) for both i = 1 and i = 2. Further, for i, j ∈ {1, 2} with i , j, if
x1 ∈ Ti (x0) , then there exists x2 ∈ T j (x1) with (x1, x2) ∈ E (G) such that

d (x1, x2) � A (M1 (x0, x1; x1, x2)) , (6)

where
M1 (x0, x1; x1, x2) ∈ {d (x0, x1) , d (x0, x1) , d (x1, x2) ,

d (x0, x1) + d (x1, x2)
2

,
d (x0, x2) + d (x1, x1)

2

}

=

{
d (x0, x1) , d (x1, x2) ,

d (x0, x1) + d (x1, x2)
2

,
d (x0, x2)

2

}
.

Now, we have the following four possibilities:
1. M1 (x0, x1; x1, x2) = d (x0, x1) ;
2. M1 (x0, x1; x1, x2) = d (x1, x2) ;
3. M1 (x0, x1; x1, x2) =

d(x0,x1)+d(x1,x2)
2 ;

4. M1 (x0, x1; x1, x2) =
d(x0,x2)

2 .
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In the case 1, we get d (x1, x2) � A (d (x0, x1)) . The second case obviously yields that x1 = x2, that
is, by (i) the proof is finished. If M1 (x0, x1; x1, x2) =

d(x0,x1)+d(x1,x2)
2 we get

d (x1, x2) �
d (x0, x1) + d (x1, x2)

2
, (7)

or
(
I − 1

2A
)

(d (x1, x2)) � 1
2A (d (x0, x1)) . That is, d (x1, x2) � B (d (x0, x1)), where B =(

I − 1
2A

)−1 1
2A. It is evident that ‖B‖ < 1. In case 4 we get the same as in case 3 because

d (x0, x2) � d (x0, x1) + d (x1, x2) . Hence, according to the above we can prove that for each n ∈ N

d (xn, xn+1) � C (d (xn−1, xn)) � Cn (d (x0, x1)) , (8)

where C = A or C = B.

The condition (8) yields by routine method that the sequence {xn} is a Cauchy sequence. Indeed, if
n < m we have

d (xn, xm) � d (xn, xn+1) + d (xn+1, xn+2) + · · · + d (xm−1, xm)

�
(
Cn + Cn+1 + · · · + Cm−1

)
(d (x0, x1))

≺ Cn (I − C)−1 (d (x0, x1)) . (9)

Since, Cn (I − C)−1 (d (x0, x1)) → θ as n → +∞, we conclude that d (xn, xm) is a c-sequence (for more
details on application of c-sequences see [5, 9, 18, 23]). This means that the sequence {xn} is a Cauchy
sequence in complete cone metric space (X, d) . By completeness of X, there exists an element x∗ ∈ X
such that d (xn, x∗) is a c-sequence in an ordered Banach space E. Since d (x2n, x∗) is also a c-sequence in
E and (x2n, x2n+1) ∈ E (G) , we have that (x2n, x∗) ∈ E (G) . For x2n ∈ T j (x2n−1) , there exists un ∈ Ti (x∗)
such that (x2n, un) ∈ E (G) . Because (T1,T2) form a graphic P1−contraction, then

d (x2n, un) � A (M1 (x2n−1, x∗; x2n, un)) , (10)

where
M1 (x2n−1, x∗; x2n, un) ∈ {d (x2n−1, x∗) , d (x2n−1, x2n) , d (x∗, un) ,

d (x2n−1, x2n) + d (x∗, un)
2

,
d (x2n−1, un) + d (x∗, x2n)

2

}
.

In the next part we will prove that d (un, x∗) is a c-sequence in E. To prove this we use the relation:

d (un, x∗) � d (un, x2n) + d (x2n, x∗)

� A (M1 (x2n, x∗; x2n+1, un)) + d (x2n, x∗) . (11)

Now for M1 (x2n, x∗; x2n+1, un) there are following five possibilities:
1. M1 (x2n, x∗; x2n+1, un) = d (x2n−1, x∗) .
2. M1 (x2n, x∗; x2n+1, un) = d (x2n−1, x2n) .
3. M1 (x2n, x∗; x2n+1, un) = d (x∗, un) .
4. M1 (x2n, x∗; x2n+1, un) =

d(x2n−1,x2n)+d(x∗,un)
2 .

5. M1 (x2n, x∗; x2n+1, un) =
d(x2n−1,un)+d(x∗,x2n)

2 .
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For the first two cases (11) becomes

d (un, x∗) � A (d (x2n−1, x∗)) + d (x2n, x∗) (12)

i.e., d (un, x∗) � A (d (x2n−1, x2n)) + d (x2n, x∗) . (13)

Since the continuous image of a c-sequence is a c-sequence (A is a continuous linear operator) we get
that in both cases d (un, x∗) is also a c-sequence. For the case 3 we get

(I −A) (d (un, x∗)) � d (x2n, x∗) or d (un, x∗) � (I −A)−1 (d (x2n, x∗)) . (14)

Since (I −A)−1 is a positive linear operator on E, it is continuous (by Remark 1.3). Hence,
(I −A)−1 (d (x2n, x∗)) is a c-sequence, i.e., d (un, x∗) is a c-sequence, i.e., un → x∗ as n→ +∞. For the
case 4 we get,

d (un, x∗) � A
(
d (x2n−1, x2n) + d (x∗, un)

2

)
+ d (x2n, x∗)

=
1
2
A (d (x2n−1, x2n)) +

1
2
A (d (x∗, un)) + d (x2n, x∗) ,

or further, (
I −

1
2
A

)
(d (un, x∗)) � vn, (15)

where vn = 1
2A (d (x2n−1, x2n)) + d (x2n, x∗) is obviously a c-sequence. Since,

(
I − 1

2A
)−1

exists and it

is a continuous linear operator we get d (un, x∗) �
(
I − 1

2A
)−1

(vn) , that is, d (un, x∗) is a c-sequence.
Finally, for the last case, case 5, (11) becomes:

d (un, x∗) � A
(
d (x2n−1, un) + d (x∗, x2n)

2

)
+ d (x2n, x∗)

�
1
2
A (d (x2n−1, x∗)) +

1
2

A (x∗, un) +
1
2
A (x∗, x2n) + d (x2n, x∗) ,

that is, (
I −

1
2

A
)

(d (un, x∗)) � wn, (16)

where wn = 1
2A (d (x2n−1, x∗)) + 1

2A (x∗, x2n) + d (x2n, x∗) is an obvious c-sequence. In a similar way as
in the case 4, we get that d (un, x∗) is a c-sequence. The rest of the proof is as in [4].�

Next follows the complete and correct proof for (iii) of ( [4], Theorem 2.3.). Our approach goes
without the assumption A4 (v) � A5 (v) for all v ∈ P. For the case of usual metric spaces see [10], [24].

Let x0 ∈ X be an arbitrary element. For i, j ∈ {1, 2} , with i , j, take x1 ∈ Ti (x0) , there exists
x2 ∈ T j (x1) with (x1, x2) ∈ E (G) such that

d (x1, x2) � M2 (x0, x1; x1, x2) , (17)

where
M2 (x0, x1; x1, x2) = {A1 (d (x0, x1)) +A2 (d (x0, x1)) +A3 (d (x1, x2))
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+ A4 (d (x0, x2)) +A5 (d (x1, x1))} .

Then (17) becomes

(I − (A3 +A4)) (d (x1, x2)) � (A1 +A2 +A4) (d (x0, x1)) , (18)

because
d (x2, x1) � M2 (x1, x0; x2, x1) , (19)

where
M2 (x1, x0; x2, x1) = {A1 (d (x1, x0)) +A2 (d (x1, x2)) +A3 (d (x0, x1))

+ A4 (d (x0, x0)) +A5 (d (x0, x1))} .

Hence, (18) becomes

(I − (A2 +A5)) (d (x1, x2)) � (A1 +A3 +A5) (d (x0, x1)) . (20)

Adding (18) and (20) we get

(2I − (A2 +A3 +A4 +A5)) (d (x1, x2)) � (2A1 +A2 +A3 +A4 +A5) (d (x0, x1)) ,

i.e.,
d (x1, x2) � C (d (x0, x1)) , (21)

where C = (2I − (A2 +A3 +A4 +A5))−1 (2A1 +A2 +A3 +A4 +A5) . For the norm ‖C‖ we have:

‖C‖ ≤
1
2
·

1

1 −
∥∥∥A2+A3+A4+A5

2

∥∥∥ · (2 ‖A1‖ + ‖A2‖ + ‖A3‖ + ‖A4‖ + ‖A5‖)

=
1

2 − ‖A2 +A3 +A4 +A5‖
· (2 ‖A1‖ + ‖A2‖ + ‖A3‖ + ‖A4‖ + ‖A5‖)

=
2 ‖A1‖ + ‖A2‖ + ‖A3‖ + ‖A4‖ + ‖A5‖

2 − (‖A2‖ + ‖A3‖ + ‖A4‖ + ‖A5‖)
< 1, · (22)

because ‖A1‖ + ‖A2‖ + ‖A3‖ + ‖A4‖ + ‖A5‖ < 1. In the same way one can obtain the next relation:

d (xn, xn+1) � C (d (xn−1, xn)) , (23)

for all n ∈ N. By routine (and well-known) method (23) implies that the sequence {xn} is a Cauchy
sequence in a cone complete metric space (X, d) . Since (X, d) is cone complete, there exists a point
x∗ ∈ X in it such that the sequence d (xn, x∗) is a c-sequence, i.e., xn → x∗ as n → +∞. In the sequel
we will prove also that un → x∗ as n→ +∞, that is the sequence d (x∗, un) is a c-sequence. For this we
have

d (x∗, un) � d (x∗, x2n) + d (x2n, un)

� d (x∗, x2n) + M2 (x2n−1, x∗; x2n, un)

= {d (x∗, x2n) +A1 (d (x2n−1, x∗)) +A2 (d (x2n−1, x2n))

+ A3 (d (x∗, un)) +A4 (d (x2n−1, un)) +A5 (d (x∗, x2n))} . (24)
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Further, it yields that

(I −A3) (d (x∗, un)) � {d (x∗, x2n) + +A1 (d (x2n−1, x∗)) +A2 (d (x2n−1, x2n))

+ A4 (d (x2n−1, un)) +A5 (d (x∗, x2n))} = zn, (25)

where zn is, obviously, a c-sequence. Since, also obviously, (I −A3)−1 exists then (25) becomes

d (x∗, un) � (I −A3)−1 (zn) , (26)

and d (x∗, un) is a c-sequence. The proof of (iii) is complete. �

3. Some remarks on Perov’s type results

Throughout this section we denote byMm,m the set of all m × m matrices, and byMm,m(R+) the set
of all m×m matrices with non-negative elements. It is well known that if M ∈ Mm,m then M(P) ⊆ P if
and only if M ∈ Mm,m(R+). We write Θ for the zero m×m matrix and Im,m for the identity m×m matrix.
For the sake of simplicity we will identify row and column vector in Rm. A matrix M ∈ Mm,m(R+) is
said to be convergent to Θ if Mn → Θ as n→ +∞.

In 1964 A.I. Perov formulated his main result as follows:

Theorem 3.1. ( [21], Theorem 3). Let the operator U : F → F where F is a closed subset of a
generalized metric space (R, p) with p (Ux,Uy) < +∞, for x, y ∈ F. Suppose further that the following
contractive condition holds:

p (Ux,Uy) ≤ S p (x, y) , (x, y ∈ UF) , (27)

where matrix S ∈ Mm,m(R+) is an a−matrix. Then the operator U has a unique fixed point x∗ ∈ F
that can be obtained by method of successive approximation given with the sequence x(m+1) = Ux(m),

(m = 0, 1, . . . ) where the beginning point x(0) ∈ F. In this case the next estimate holds:

p
(
x(m+1), x∗

)
≤ (I − S )−1 S m p

(
x(1), x(2)

)
, (m = 0, 1, . . . ) . (28)

In this section we will prove Perov’s type theorem in the framework of complete cone metric spaces
over solid cone. Our approach is much simpler and shorter than ones in recently announced papers.
We use only the property that the linear operator A is continuous with the spectral radius r(A) < 1.
Because of this it follows that mapping T : X → X is continuous. Firstly, we give the formulation of
A.I. Perov’s result in a new way:

Theorem 3.2. Let (X, d) be a complete cone metric space over solid coneP and let T be a self-mapping
on X. Suppose that there exists a linear continuous operatorA on Banach space E such that r(A) < 1
and for all x, y ∈ X, d(T (x) ,T (y)) � A(d(x, y)) holds true. Then T has a unique fixed point in X
say x∗and for each x from X the corresponding Picard sequence T n(x) tends to point x∗. Further,
d(xn, x∗) � An(I −A)−1(d(x0, x1)).

Proof. IfA is a continuous linear operator then it also implies that T is continuous mapping from X to
X. Indeed, if xn belongs to X and xn tends to x in X, then from the contractive condition it follows that
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d(T (xn) ,T (x)) � A(d(xn, x). From this, we get that d(T (xn) ,T (x)) is a c-sequence, i.e., T (xn) tends
to T (x) or T is continuous. We used the fact that a continuous image of a c-sequence is a c-sequence.
Also, if x, y are two different fixed points of T we have: d(x, y) = d(T (x),T (y)) � A(d(x, y)) or
(I−A) (d(x, y)) � θ. Since r(A) < 1 then there exists (I−A)−1 and then we get d(x, y) � (I−A)−1(θ) =

θ, that is x = y.
Now, we prove the existence of a fixed point of T .
Let x0 be an arbitrary point in X. Consider a Picard sequence: xn = T (xn−1), n = 1, 2, . . . . If

xk = xk−1 for some k from N then xk−1 is a unique fixed point of T . Suppose that xn is different from
xn−1 for each n from N. For d(xn, xn+1) we have:

d(xn, xn+1) = d(T (xn−1),T (xn)) � A(d(xn−1, xn)) � An(d(x0, x1)).

Now for n < m we get

d(xn, xm) � (An +An+1 + · · · +Am−1 +Am)(d(x0, x1)) � (An(I −A)−1)(d(x0, x1)).

Because r(A) < 1 we obtain that (An(I − A)−1)(d(x0, x1)) → θ as n → +∞. This further means
that d(xn, xm) is a c-sequence, i.e., {xn} is a Cauchy sequence in complete cone metric space (X, d).
Therefore, xn tends to some point in X say x∗. Since T is a continuous self-mapping we get that T (xn)
tends to T (x∗). Since a sequence in cone metric space has a unique limit, we get that T (x∗) = x∗, that is
x∗ is a unique fixed point of T .

If x is some given point in X then by previous method we obtain that the corresponding Picard
sequence T n(x) converges to the already obtained fixed point x∗ (because of uniqueness of fixed point).

Now, we will estimate d(xn, x∗). Firstly we have:

d(xn, x∗) � d(xn, xm) + d(xm, x∗) � (An(I −A)−1))(d(x0, x1)) + d(xm, x∗).

Since, d(xm, x∗) is a c-sequence the result follows, i.e., d(xn, x∗) � (An(I −A)−1)(d(x0, x1)).
The proof of theorem is complete. �

Remark 3.1. If a � b + xn then a � b whenever xn is a c-sequence. Indeed, by the definition of c-
sequence we get that for any c from intP there is n0 in N such that xn � c for n > n0. Hence, for n > n0

we have that a � b + c. Putting further 1
n · c instead of c and taking the limit as n→ +∞ we obtain that

a � b. Indeed, since θ � b − a + 1
n · c we have that limn→+∞

(
b − a + 1

n · c
)

= b − a + 0 · c = b − a ∈ P
because P is closed.

Hence (X, d) is a complete generalized metric space over normal (and clearly) solid cone P =

{(u1, . . . , um) : ui ≥ 0 for i = 1, 2, . . . ,m}, with the coefficient of normality K = 1. This further means
that there is an ordinary metric D on X such that (X,D) is complete metric space where D(x, y) =

||d(x, y)|| (for more details see for example [5], [14]). Since Mn tends to Θ as n → +∞ then there
exists n0 in N such that ||Mn0 || < 1. Putting ||Mn0 || = k we get that the given contractive condition
d(T (x),T (y)) � M · d(x, y) becomes D(T n0(x),T n0(y)) ≤ kD(x, y). The last contractive condition yields
that T n0 has a unique fixed point x∗ in X (by Banach contraction principle [7]), i.e., T has a unique
fixed point x∗. The Perov’s theorem is proved.

Corollary 3.1. Perov’s mapping T has a property (P), that is, T and any of its iterations T n have the
same set of fixed points (Fix(T ) = Fix(T n)). For more details see [15, 16].
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Proof. Let x∗ be a fixed point of T . Then it is a fixed point for T n0 where n0 is a given natural number.
The given contractive condition d(T (x),T (y)) � Md(x, y) implies d(T n0(x),T n0(y)) � Mn0 · d(x, y).
Putting T n0 = S , Mn0 = B we get Perov’s type contractive condition in the form: d(S (x), S (y)) �
B · d(x, y). Estimate ‖Bn‖ : || (Mn0)n

|| = ||(Mn)n0 || ≤ | ‖Mn‖
n0 < 1n0 = 1. This means that according to

the previous Theorem S = T n0 has a unique fixed point as T , i.e., Fix(T ) = Fix(T n0) = {x∗}. �

Remark 3.2. Our proof is completely different from the one in A.I. Perov’s paper from 1964. We did
not use the fact that the cone P is solid. The same method can be used if (X, d) is any complete cone
metric space over normal non-solid cone P.

The following result generalizes A.I. Perov’s theorem:

Theorem 3.3. Let (X, d) be a complete cone metric space over solid cone P in Banach space E.
Further, let T be a self-mapping on X such that there exists a continuous linear operatorA on E with
r(A) < 1. Then T has a unique fixed point (say x∗) in X and for each x from X the corresponding
Picard sequence T n(x) converges to x∗. Further, for n < m we get d(xn, x∗) � An(I −A)−1(d(x0, x1)).

Proof. First of all, the given contractive condition yields that T is a continuous mapping. Indeed, if xn

tends to x from X under the cone metric d, we get: d(T (xn),T (x)) � A(d(xn, x)). SinceA is continuous
then A(d(xn, x)) is a c-sequence and therefore d(T (xn),T (x)) is also a c-sequence, which means that
T (xn) tends to T (x) under the cone metric d. Hence, T is a continuous self-mapping. The rest it similar
to previous proofs. �

4. Conclusions

In this paper we gave much simpler and shorter proofs of multivalued Perov’s type results with
respect to the ones presented in the recently published paper by M. Abbas et al. [4], by using the ap-
proach of so-called c-sequences. Further, in the last section of this paper, we corrected and generalized
the well-known Perov’s fixed point result. We showed that this result is in fact equivalent to Banach’s
contraction principle.
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