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Analysis of the Motion and Stability of 
the Holonomic Mechanical System in 
the Arbitrary Force Field 
 
In order to give an insight into the work of the machine before the 
production and assembly and to obtain good analysis, this paper presents 
detailed solutions to the specific problem occured in the field of analytical 
mechanics. In addition to numerical procedures in the paper, a review of 
the theoretical foundations was made.Various types of analysis are very 
common in mechanical engineering, due to the possibility of an 
approximation of complex machines. For the proposed system, Lagrange’s 
equations of the first kind, covariant and contravariant equations, 
Hamiltons equations and the generalized coordinates, as well as insight in 
Coulumb friction force are provided.Also, the conditions of static 
equilibrium are solved numerically and using intersection of the two 
curves. Finally, stability of motion for the disturbed and undisturbed 
system was investigated. 
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1. INTRODUCTION 
 

Extent analysis of the mechanical systemhas been one of 
the most fundamental and challenging tasks, that has been 
largely studied for decades. Analytical mechanic proved 
particularly significant and useful to engineers, although 
it took another century after Lagrange for this to be fully 
realized [1]. Many studies have been done to model and 
examine real objects and their behaviour.A detailed 
review of literature related to the problems of analytical 
mechanic can be found in [2] and [3]. The problems 
considered in the present paper involve a review of 
references on the specific types of systems - holonomic 
systems. The initial motions of holonomic and nonholo-
nomic system are investigated in [4]. Our paper suggests 
a different approach for modelling a specific multi-body 
system, including the special investigation of modelling 
Coulomb friction force, the problem that so far has hardly 
been considered. In addition to the ordinary Lagrange 
method, used in a traditional way, Lagrange’s equations 
of second kind in the covariant and contravariant form are 
introduced. In [5-7], Lagrange’s equations of second kind 
of rigid bodies system in a covariant form were deve-
loped. Moreover, stability of the specific mechanical sys-
tem was discussed using different approaches. Namely, 
unlike the papers [8] and [9], where the relative advan-
tages and disadvantages of various analytical methods of 
nonholonomic systems are briefly presented, the problem 
of the instability of the equilibrium state of a scleronomic 
mechanical system with linear homogeneous constraints 
are considered in [10], and the problem of the stability of 
the equilibrium state in the case with holonomic 
mechanical systems in [11].  

From a dynamical point of view any material system 
can be regarded as a collection of particles [12]. The 
mechanical system shown in Figure 1 consists of slider-
crank mechanisms M1 and M2, as well as the point M3; 
they are tied with light rigid rods articulated to each 
other. Fixed plane Oxy coincides with the vertical plane 
of motion of the mechanical system, where the axis Oy 
is directed vertically down. The M1 and M2 sliders move 
along Oy and Ox axes, respectively. Slider-crank M2 is 
connected by a damper, while the other end of the 
damper is attached to a fixed wall. All necessary 
numerical data are given in the Appendix. 

 
Figure 1. Mechanical system 

2. CONSTRAINTS AND LAGRANGE EQUATIONS 
OF THE FIRST KIND 

 
The state of a mechanical system of N points, Mv (v = 
1,2,...,N), is determined in each moment t  by the 
position and velocities of all its points in the inertial 
reference system (IRS). If a fixed Cartesian system is 
introduced into an IRS, the state of the system is 
determined by variable scalar quantities: coordinates xv, 
yv, zv and velocity projections , ,v vx y z , which must 
satisfy the relations: 
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( )1 1 1 1 1 1, , ,..., , , , , , ,..., , , ;
1, 2,..., 3

u N N N N N Nf x y z x y z x y z x y z t
m Nμ = <

(1) 

The motion of the considered system is limited by 
the following stationary holonomic constraints (1)-(5): 

1
1 0f x= =    (2) 

2
2 0f y= =    (3) 

3 2 2 2
2 1 (2 ) 0,f x y l= + − =   (4) 

4 2 2 2
3 2 3 1

3 1( ) ( ) 0,
4 4

f x x y y l= − + − − =   (5) 
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The coordinates of point B, which must be determined 

when forming the (5) are: 2
3
4Bx x= and 1

1
4By y= . Since 

the motion of the observed system is limited only by (2)-
(5), there are fourgeometric constrains (p = 4), with zero 
differential equations (q = 0). The values of the Jacobian 
matrix (6) are given as:  
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also rank J = p + q = 4. Due to the fact that all trajec-
tories of the points are parallel to the vertical fixed Oxy 
plane matrix J is full rank, so all the active constraints 
are independent. Second derivative of the (2)-(5) gives 
four equations with six unknown variables: 

1
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 (7) 

The system of differential equations, which repre-
sents Lagrange’s equations of the first kind and which 
takes into account that  is equal to zero, is given as (8): 
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where λi areLagrange multipliers and v = 1, ..., N. App-
lying (7) on the considered system, using D’Alambert 
principle to calculate N2, by including projection of sli-
ding friction force using the dynamic coefficient μd as: 
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Lagrange’s equations of the first kindcan be written as: 
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Incorporating: λ1, λ2, λ3, and λ4 as four new unk-
nowns, (7) and (9) give ten equations with ten variables. 
Solving these equations, the expressions for Lagrange 
multipliers and equations of motion, i.e. explicit expre-
ssions for: x1, x2, x3, y1, y2, y3, λ1, λ2, and λ3, are obtained. 

The entire code, for the given initial conditions 
defined in the Appendix, was done in Wolfram Mathe-
matica. The system of equations describes the motion in 
two cases. First, where the projection of the normal 
reaction N2, is not a negative value, and the second 
when it is.Bearing in mind that normal force,as part of 
the friction force, figures in the explicit expressions for 
the  vx  and  vy , v = 1,2,3, whereby it is the function of  

vx  and  vy , v = 1,2,3,  by itself, it is necessary  to de-
termine its sign at the initial time.By solving differential 
equations of motion on a small time interval,for two 
separate cases, for the N2 mutually close values of the 
same sign have been gotten. The sign that tells which 
system of equations to use at the initial moment.The 
motion of the slider M2 will stop in the case when the 
absolute value of the resultant of the active forces acting 
on the slider M2 is less than the force of the Coulomb 
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friction force of the slider and also at rest.Using an 
example of a simple system models, papers [13] and 
[14] provide calculation of the minimum value of the 
coefficient of friction using the Coulomb laws of 
friction sliding. In [15] and [16] a deeper look into the 
necessary dynamic conditions, for the realization of 
motion in accordance with the system constraints, can 
be found. In case when 2 0x =  the friction force of the 
slider is equal to the limit value of the friction force at 
rest, whose intensity is determined by: *

0 2Nμ , where 

*
2N  is the value of the normal reaction at the moment of 

stopping, and μ0 is  the static coefficient of sliding 
friction, μ0 > μd. After the condition:  * *

2 0 2X Nμ> has 

been examined, the graphs of the system points over 
time can be seen in Figures 2-7.  

 
Figure 2. Graph of coordinate x1 over time 

 
Figure 3. Graph of coordinate y1 over time 

 
Figure 4. Graph of coordinate x2 over time 

 
Figure 5. Graph of coordinate y2 over time 

 
Figure 6. Graph of coordinate x3 over time 

 
Figure 7. Graph of coordinate y3 over time 

3. VIRTUAL DISPLACEMENTS AND STATIC 
EQUILIBRIUM IN GENERALIZED COORDINATES 

 
Instead of independent Cartesian coordinates, ξ, inde-
pendent generalized coordinates are introduced, which 
also determine the position of the mechanical system. 
Independent generalized coordinates represent a mini-
mum number of independent geometric parametersthat 
can unambiguously describe the motion of the consi-
dered mechanical system in space. Selected geometric 
parameters will be markedas q(t). Position of the mec-
hanical system from Figure 1 is defined by the set of 
Lagrange coordinates (q1,q2) where q1 = φ and q1 = θ are 
the absolute angles. By introducing generalized coordi-
nates all independent Cartesian coordinates can be 
expressed as: 

( )1 2, , , ; ,  

1,2, ,

n
p q j p q j q q q t

j n

ξ ξ+ + + += …

= …
  (10) 

where n is the number of degrees of freedom, n = 3N - 
(p + q) and qj, j = 1,2,...,n generalized coordinates. If 
independent Cartesian coordinates are y1 and x3, it can 
be written: 

1

3

2 sin
3 cos sin .
2

y l

x l l

ϕ

ϕ θ

=

= −
   (11) 

The coordinates of all points can be expressed via 
generalized coordinates: 

( )1 2, , , ; ,  

1, 2, 3 ,

n
i i q q q t

i N

ξ ξ= …

= …
  (12) 

but only under the condition that the determinant of the 
Jacobian matrix J1, of transformation of independent 
coordinatesthatare expressed over generalized coordina-
tes is not equal to 0: 



198 ▪ VOL. 49, No 1, 2021 FME Transactions
 

1 1 1
1 2

2 2 2
1 2 11

3 3 3
1 2

 0.

p q p q p q
n

p q p q p q

N N N
n

q q q

q q q

q q q

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

+ + + + + +

+ + + + + +

∂ ∂ ∂
…

∂ ∂ ∂
∂ ∂ ∂

…
= ≠∂ ∂ ∂

∂ ∂ ∂
…

∂ ∂ ∂

J   (13) 

The Jacobian matrix of transformation (13) becomes: 

1 1

1
3 3

2 cos 0
,3 sin cos

2

y y
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ϕϕ θ
ϕ ϕ
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and the determinant has the value: 

2
1 2 cos cos .l θ ϕ= −J    (15) 

Dependent Cartesian coordinates are expressed 
through generalized (16) and (2)–(5) become (17)-(20). 
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Vector of the virtual displacement δrv of the point Mv 
is the difference of the position vector, that determine 
the position of the considered point Mv of the system, at 
two infinitely close time moments. Vectors of the vir-
tual displacements are: 

1

2

3

2 cos ,
2 sin ,
3( sin cos ) ( cos lsin ) .
2 2

l
l
l ll

δ ϕδϕ
δ ϕδϕ
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The velocities of the points are determined by:  
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andsystem accelerations are: 
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Some other equations that describe the system are: 
kinetic energyT and generalized Lagrange – d’Alam-

bert’sprinciple: ( )
1

· 0
N

Q mα ν ν ν α
ν =

− =∑ a g , α = 1,2,...,n, 

where  ( )
1

· 0
N

Qα ν ν α
ν =

= =∑F g are called the generalized 

forces associated with the virtual displacement δr. 
Kinetic energy is: 

1 ,     , 1, 2
2

T a q q nα β
αβ α β= = …   (24) 

where ( )
1

N
a m gαβ ν ν αβ

ν =
= ∑ , ( ) ( ) ( ) ·g ν αβ ν α ν β= g g   and  

( ) ,  1, 2,s s s n
q
ν

ν
∂

= = …
∂

r
g  is the basis vector of the cur-

vilinear coordinate system. For the given system: 

( )(
( ) ( )( ) )

2 2
3 3

2 2 2
1 3 2 3

0.5 0.5cos sin 1.5cos sin

2 0.125 cos 2 1.125 sin

T l m m

m m m m

θ ϕ θ θ ϕ θϕ

ϕ ϕ ϕ

= + + +

+ + +
  (25) 

From the Lagrange – d’Alambert’s principle, it is 
possible to derive the general equation of statics. The 
total work of all ideal constraint reactions for any virtual 
displacements is equal to zero, so the sufficient and 
necessary condition is given with: 

0Q qααδ =    (26) 

Since the variations of the generalized coordinates 
are mutually independent and different from zero, for 
the last equality to be fulfilled, it must be valid: Qα = 0. 
The considered mechanical system from the task has 
two degrees of freedom,so the conditions of static equ-
ilibrium are given by the following two equations: 

0;  0Q Qϕ θ= =    (27) 

Obtained solutions form (27) represent static equi-
librium positions. When determining static equilibrium 
positions three cases should be considered. In the first 
case, when the slider-crank M2 tends to start moving in a 
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direction that coincides with the positive direction of the 
Qx axis, the projection of the static friction force to the 
axis is a negative value. In the second opposite  case, 
the projection of the static friction force is positive. 
Third case considers ideally smooth surfaces. Further 
extension to the special cases of mechanical systems 
with non-ideal constraintsare presented in [17]. In the 
first case, after calculating the generalized forces corres-
ponding to the elected general coordinates, a system of 
equations is obtained: 

( )15264.2 820.06cos cos

(0.38 4725.1872 11 2460.18sin )sin
6355.21sin 2 0,

θ ϕ

θ ϕ
ϕ

+ +

+ + − −

− =

  (28) 

( )
2460.18cos cos

sin 645.663 820.062sin 0
θ ϕ

θ ϕ
−

− + =
  (29) 

( )15264.2 820.06cos cos

(0.38 4725.1872 11 2460.18sin )sin
6355.21sin 2 0

θ ϕ

θ ϕ
ϕ

+ −

− + − −

− =

  (30) 

( )
2460.18cos cos

sin 645.663 820.062sin 0
θ ϕ

θ ϕ
−

− + =
  (31) 

The number of solutions, as well as the approximate 
values of the solutions - which can be used as an initial 
iteration to find the exact values, can be determined 
graphically. The solutions of the system are at the 
intersection of the curves whose implicit equations are 
the system equations. As an alternative to numerical cal-
culation this graphical method was also proposed in [18] 
and [19]. The solution of the considered system of 
algebraic equations could be geometrically represented 
in the form of intersection of the corresponding surfaces 
[19]. The implementation of the method of crossing of 
the curves is achieved, same as in [20], by using the 
built-in ContourPlot Mathematica function. 

 
Figure 8. Graphical representation of solutions as cross 
sections and the points of intersection of the curves Qφ and 
Qθ in the first case 

Figure 8 shows the solutions of the system, which 
determine static equilibrium positions, Table 1.  

In the second case, after calculating the generalized 
forces, a system of equations is obtained in the form of 
(30) and (31), so the static equilibrium positions are 
shown in Table 2. 

Finally, when it is assumed that the contact surfaces 
are ideally smooth, i.e. when there is no static friction 
force, so a system of equations is obtained as: 

( )15264.2 820.06cos cos
2460.18sin sin 6355.21sin 2 0,

θ ϕ
θ ϕ ϕ

+ −

− − =
  (32) 

( )
2460.18cos cos

sin 645.663 820.062sin 0
θ ϕ

θ ϕ
+

+ − − − =
  (33) 

 
Figure 9. Intersection of the curves Qφ and Qθ in the second 
case 

Table 1. Static equilibrium positions in case of negative 
projection of the static friction force 

φst1 = -1.49727 θst1 = 2.33199 

φst2 = -1.34075 θst2 = -1.30487 

φst3 = 1.33171 θst3 = 0.383874 

φst4 = 1.48822 θst4 = 0.0.137823  

φst5 = 1.71841 θst5 = 2.89814 

φst6 = 1.83931 θst6 = 0.426515 

Table 2. Static equilibrium positions in case of positive 
projection of the static friction force 

φst1 = -1.80084 θst1 = 1.30487 

φst2 = -1.64432 θst2 = -2.33199 

φst3 = 1.30228 θst3 = 0.426515 

φst4 = 1.42319 θst4 = -2.89814  

φst5 = 1.65337 θst5 = -0.137823 

φst6 = 1.80988 θst6 = -0.383874 

 
Figure 10. Graphical representation of solutions as cross 
sections and the points of intersection of the curves of the 
curves Qφ and Qθ in the third case 

There are ten solutions that determine the positions 
of static equilibrium. Considering the fact that the result 
is in the domain: -π ≤ φ ≤ π and -π ≤ θ ≤ π , a conclusion 
is reached: two solutions physically represent the same 
position, so they are excluded from consideration. Eight 
different static equilibrium positions are determined by 
Table 3. 
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Table 3. Static equilibrium positions in case without static 
friction force 

1 2st
πϕ =  1stθ π=  

2 1.31236stϕ =  2 0.412071stθ =  

3 2st
πϕ =  3 0stθ =  

4 1.82924stϕ =  4 0.412071stθ = −  

5 2st
πϕ =  5stθ π= −  

6 1.61977stϕ = −  6 0.606987stθ =  

7 2st
πϕ = −  7 0stθ =  

8 2st
πϕ = −  6 0.606987stθ = −  

 
4. FORMATION OF LAGRANGE’S EQUATION OF 

THE SECOND KIND 
 
4.1 Covariant formulation 
 
Using (24) the coefficients of metric tensors aαβ are 
obtained: 

2
 ,   , 1, ,a

Ta a n
q q

αβ β α β α β∂
= = = …

∂ ∂
  (34) 

( )(
( ) )

(
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2 2
11 1 3

2
2 3

2
12 21 3

2
22 3
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2 1.125 sin ,
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1 .5cos sin ,

.

a l m m

m m

a a m l

a m l

ϕ

ϕ

ϕ θ

θ ϕ

= + +

+ +

= = +

+

=

  (35) 

On the other hand, Christoffel symbols of the first 
kind are acquired as: 

( )
( ),

1

N
m

q
ν γ

βγ α ν ν αβ
ν =

∂
Γ =

∂
∑

g
g   (36) 

andcovariant form of equations is given as: 

, ,

, , 1,...,

q

n

a q q Qβ β γ
αβ βγ α α

α β γ =

+ Γ =
  (37) 

 
Figure 11. Graph ofgeneralized coordinate q1(t) = φ(t) over 
time 

 
Figure 12. Graph of generalized coordinate q1(t) = φ(t) over 
time 

The obtained results agree completely with the resu-
lts obtained by Lagrange equations of the first kind - 
Figures 2-7. Also, two additional Figures 11 and 12, 
representing qi = qi(t), are shown. 
 
4.2 Contravariant formulation 
 
When equation (37) is multiplied by the contravariant 
matrix tensor aδα , Lagrangian equations of the second 
kind can be derived in the contravariant form (38). If  

,,  a a aq qδα β δ δα δ
αβ βγ α βγ= Γ = Γ  and  a Q Qδα δ

α =  
for α, β, γ, δ= 1, ... ,n ,the contravariant equations of 
motion of the system are obtained: 

,

, , 1, ,

a a a q aq q Q

n

δα β δα β γ δα
αβ βγ α α

α β γ

+ Γ =

= …
  (38) 

,   , , 1, ,q q Qq nδ δ β γ δ
βγ β γ δ+ Γ = = …   (39) 

where the expression denoted by  δ
βγΓ  represents Chris-

toffel symbols of the second kind and Qδ represents the 
contravariant coordinates of the generalized forces. 

The positions of the points obtained on the basis of 
the contravariant Lagrange’s equations of the second 
kind are confirmed graphically and are the same as in 
Figures 2-7 and 11-12. 
 
5. LAGRANGE FUNCTION AND HAMILTON EQUA-

TION 
 
Differential equations of motion can be represented in 
the form of Lagrange equations of the second kind 
(expressed only as a function of independent 
generalized coordinates, q1, q2, ..., qn, and their first and 
second derivatives in time), i.e. in the form of:  

,    1, ,d T T Q n
dt q q

αα α α
⎛ ⎞∂ ∂

− = = …⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
  (40) 

where Qα is the generalized force of the system of active 
forces acting on the considered system, which corres-
ponds to the independent generalized coordinate qα. 
Generalized forces can be givenas the sum of potential  

ν
ΠF and nonpotential νF  forces: 

( )
1

1, 2, , 

N
Q Q

qq
n

ν
α ν ν αα

ν
α

Π

=

∂ ∂Π
= + = − +

∂∂
= …

∑
r

F F
  (41) 
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In the considered system, the following potential 
forces act on the observed mechanical system: the 
weight forces of the sliders M1, M2 and point M3, the 
forces exerted by a springs, stiffness c1 and c2. 
Nonpotential forces acting on the considered mechani-
cal system are: viscous damping force, force of friction 
and externalforce F. Potential energy takes the shape: 

( )
1 1 2 2 3 3

2 2 2
1 3 3 2 1 0

1 1 (2 )
2 2

m gy m gy m gy

c x y c l y C

= + + +

+ + + − +
  (42) 

or: 

( )(
( )

( )( )

2
2

1 3

1 0

0.5 4 1 sin

4  sin sin 2cos

0.25 9 4cos2 12cos sin 4cos sin

l c l

m g m g

c l C

ϕ

ϕ ϕ θ

ϕ ϕ θ θ ϕ

= − + +

+ + − +

+ + − −− +

  (43) 

Components of generalized forces due to the action of 
non-potential forces, in the notation, Qα , in (41) are 
obtained by determining the work of non-potential 
forces on virtual displacements. Virtual work of force 

on virtual displacement is: 

( )'
3

1( cos  sin  )
2

A F l lδ δ ϕδϕ θ δθ= = − +F F r   (44) 

so it is true. 
For the dynamics friction force Ftrd generalized 

forces are obtained as: 

( )

( )

1  cos ,
2

 sin

Q Fl

Q Fl

ϕ

θ

ϕ

θ

= −

= −

F

F
  (45) 

The Lagrange function is introduced as the diffe-
rence between kinetic and potential energy: L = T - Π. 
By transforming the expression starting from Lagrange 
equations of the second kind and including potential and 
non-potential forces, it was obtained that: 

( )

( ) ( )

( )

( )

1 2 3

2 1
2 2

1 3

2

2

2 2 sin cos 0.5 sin

2 sin ( ( cos sinθ )

0.5 ( sin )) sign( sin )sin

0

trd

d

trd

Q

l gm gm gm F

c l l c l l

lm cos m l

l cos l

Q

ϕ

θ

μ

ϕ ϕ ϕ

ϕϕ ϕϕ θθ

ϕϕ ϕϕ ϕϕ ϕ

θ

= − + + +

− − + − +

+ − + + − − −

+ − +

=

F

F

 (46) 

,    1, ,d L L Q n
dt q q

αα α α
⎛ ⎞∂ ∂

− = = …⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
  (47) 

Observing (47), it is noticed that the motion of the 
system in the configuration space of generalized coordi-
nates is described through scalar functions, kinetic and 
potential energy. Kinetic and potential energies of the 
system are already given (25) and (43). Using Rayleigh 
function, where the relative velocitybetween the piston 
and the cylinder is , equations and laws of motion of 
the system can be easily obtained.It has been proved 

that the figures are the same as Figures 2-7 and 11-
12.Unlike Lagrange's way of describing the system 
defined as a function of time, position and velocity of 
material points, the Hamiltonian system use time, 

position and generalized impulses: Tp
q

α α
∂

=
∂

, α = 1, ... 

,n. Canonical (Hamilton's) differential equations of 
motion are given as follows: 

˙
 ,   H Hq p Q

p p
α

ααα α
∂ ∂

= = − +
∂ ∂

 (48) 

In order to determine the motion of a given system, 
it is first necessary to define the Hamiltonian function 
H, which, for the scleronomic system whose kinetic 
energy does not explicitly depend on time, has the form: 

1 
2

H a p pαβ
α β= +Π    (49) 

 

where Tpϕ ϕ
∂

=
∂

 and Tpθ θ
∂

=
∂

 are generalized momenta. 

For the proposed system Hamiltonian function is given by 
(50). When a mechanical system is described by Hamil-
tonian equations (variables), it is necessary to solve 2n 
differential equations of the first order, which can 
determine 2n functions, which describe the system: 

( )t ; (t)q q p pα α
α α= = . 

( ( )
( )
( )

( ( )

( ) ( )( ))
( )

2
2 1

3

1
2

3 3

2 2 2
1 3 2 3

2 2 2
3 1 3 3

2
2 3 3

0.5 4 1 sin 4 sin

2cos sin

0.25 9 4cos2 12cos sin 4cos sin

2 2cos sin 6cos sin

8 0.5 cos 8 4.5 sin

/( (cos 16 sin

16 9 9 cos

H l c l gm

gm

c l

m p m p p

p m m m m

l m m m m

m m m

ϕ ϕ θ

θ

ϕ ϕ

θ ϕ

ϕ ϕ θ θ ϕ

ϕ θ θ ϕ

ϕ ϕ

ϕ θ

= − + + +

+ − + +

+ + − −− +

+ − ++ + +

+ − − + − −

− −− +

− + +( ) 2
3sin 1.5 sin2 sin2 )).mθ ϕ ϕ θ+

 (50) 

Graphs in generalized coordinates, as well as the 
positions of material points were obtained.  It can be 
concluded that the Hamiltonian equations also obtained 
the same solutions as by applying Lagrange equations of 
the second kind in the covariant and contravariant form, 
in Figures 2-7 and 11-12. 
 
6. STABILITY OF MOTION 
 
One of the important requirements that are named in 
terms of the functioning of technical system is the sta-
bility of their work [21]. If it is necessary to determine 
the position of static equilibrium, it is possible to start 
considering it based on Lagrange’s equations of the 
second kind.As the system is static, generalized velo-
cities and accelerations must be equal to zero. Based on 
the previous statement, Lagrange's equations of the 
second kind (40) are equal to zero. The conservative 
mechanical system is scleronomic and exposed exclu-
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sively to the action of conservative forces (potential for-
ces whose potential energy does not depend explicitly 
on time). In this case, the required equilibrium condi-
tions (54), due to the absence of nonconservative forces, 
take the form: 

0,     1, , n
qα

α∂Π
= = …

∂
   (51) 

so the equilibrium stability test comes down to consi-
dering the potential energy of the mechanical system. 
The analysis can also be approached through a Lag-
range-Dirichlet theorem: 

2

0
, 1,.

1 , with :

.,

2

.

c q q c
q

n

q
α β

αβ αβ α β

α β

⎛ ⎞∂ Π
Π ≈ = ⎜ ⎟⎜ ⎟∂

=

∂⎝ ⎠   (52) 

where ()0 indicates that the value of the expression in 
parentheses is calculated in the equilibrium position. 
The behaviour of the potential energy in the 
environment of the equilibrium position corresponds to 
the behaviour of a homogeneous quadratic form with 
constant coefficients cαβ. If the equilibrium position is 
stable, the quadratic form (52) is positive definite.  

 
Figure 13. Spatial arrangement of equilibrium positions 

This is examined with the help of Sylvestercriteria. 
Generalized coordinates, prescribed by the task, are 
included in the (41), so the obtained equations are the 
same as (32)-(33). In both ways, the previously obtained 
result given in Table 3 is obtained. Thus, there are eight 
static equilibrium positions (bearing in mind that there 
are two physically identical positions), whose plane 
arrangement φ-θ  is shown in Figure 13, and the spatial 
arrangement is given in the following Figure 14. 
Using Lagrange-Dirichlet theorem potential energy is 
obtained as: 

( )

2

2

12840.64 2996.06 cos
2365.31 cos  sin
cos 651.10 788.44 sin

14385.86 sin 2996.06 sin .

ϕ
ϕ θ

θ ϕ

ϕ ϕ

Π = − −
− +

+ − − −

− +

  (54) 

The following Figure 14 shows the law of change of 
potential energy Π = Π(φ,θ) according to (53), where -π  
≤ φ ≤ π, -π ≤ θ ≤ π, while the points represent nume-
rically determined equilibrium positions. 

According to Lagrage-Dirichlet’s theory, in order 
that the equilibrium position of a mechanical system is 

stable, a necessary and sufficient condition is that the 
potential energy around the equilibrium position has a 
positive value. This condition is met if the potential 
energy is defined as a positive definite quadrature form. 
According to Sylvester's criterion, for the Hermit matrix 
to be positively definite, it is necessary and sufficient 
for all its major minors to be positive.  

 
Figure 14. Potential energy 

Table 4. Equilibrium positions of the system 

C cαβ=  Equlibrium position of the 
system 

1733.71 2460.18
2460.18 1465.72

−⎛ ⎞
⎜ ⎟− −⎝ ⎠

 unstable 

4685.56 2263.33
2263.33 1569.90
⎛ ⎞
⎜ ⎟
⎝ ⎠

 stable 

3373.83 2460.18
2460.18 1465.72
⎛ ⎞
⎜ ⎟
⎝ ⎠

 unstable 

4685.56 2263.33
2263.33 1569.90
⎛ ⎞
⎜ ⎟
⎝ ⎠

 stable 

27154.54 2460.18
2460.18 174.40
−⎛ ⎞
⎜ ⎟
⎝ ⎠

 unstable 

28636.85 2041.20
2041.20 211.13

− −⎛ ⎞
⎜ ⎟− −⎝ ⎠

 unstable 

28794.66 2460.18
2460.18 174.40

− −⎛ ⎞
⎜ ⎟− −⎝ ⎠

 unstable 

28636.85 2041.20
2041.20 211.13

− −⎛ ⎞
⎜ ⎟− −⎝ ⎠

 unstable 

 
Based on the above, in order to determine the 

stability of the equilibrium position, it is necessary to 
calculate the main minors of the matrix C. Another way 
of examining the stability of the undisturbed motion of 
the considered system is by using the Hurwitz criterion, 
i.e. via the basic principal minors of the Hurwitz matrix 
and polynomial. The result of the program code, for the 
second case in Table 5, is in Figures 15 and 16, which 
confirms that the position of static equilibrium is cor-
rectly determined. 
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Table 5. Stability of static equilibrium position based on the 
roots of characteristic polynomials 

Characteristic polynomial 

Undisturbed 
motion of 
the system 

is: 
2 3 48216 254.36 243.49 1.5λ λ λ λ+ + − −  unstable 

2 3 42102.77 250.79 193.25 1.38 λ λ λ λ+ + + +  stable 

2 3 41058.73 254.36 163.72 1.5λ λ λ λ− + + + +  unstable 

2 3 42102.77 250.79 193.25 1.38 λ λ λ λ+ + + +  stable 

2 3 410314.12 30.26 261.97 1.5λ λ λ λ− + − + +  unstable 

2 3 41711.84 34.82 292.43 1.43 λ λ λ λ− − + +  unstable 

2 3 4985.47 30.26 322.36 1.5λ λ λ λ− − − + +  unstable 

2 3 41711.85 34.82 292.43 1.43λ λ λ λ− − + +  unstable 

 

.  
Figure 15. Graph of generalized coordinate φ(t) over time 

 
Figure 16. Graph of generalized coordinate θ(t) over time 

It is possible to establish the disturbed equations of 
motion as: 

( )
( )

0 0 0

0 0 0

; , , ,

; , , ,      1, ,

q q t t

q q t t n

α α

α α α

=

= = …

q q

q q
  (54) 

where: 0 01 02 0( , , , )nq q q= …q , ( )01 02 0, , , nq q q…  and  

( ) ( ) ( ) ( ) ( ),  q t q t t q t q tα α α α α αξ η− = − = are distur-
bances. For the initial disturbances values: 

1 0.1ξ = , 2 0ξ = ,  1 0.1η = , 1 0ξ = , it is expected that 
the norm of disturbed motion tends to zero during time 
(since earlier results have shown that the second 
position of static equilibrium is stable). 

The earlier conclusion on the stability of the position 
of static equilibrium, based on the Lagrange - Dirichlet 
theorem and based on the root of the characteristic poly-
nomial, second case shown in Tables 4 and 5, does not 
change. The check was performed for all other equili-
brium points and earlier conclusions were confirmed. 

 
Figure 17. Graph of ξ1(t) over time 

 
Figure 18. Graph of η1(t) over time 

 
Figure 19. Graph of ξ2(t) over time 

 
Figure 20. Graph of  η1(t)over time 

 
Figure 21. ξi(t) - η(t), i = 1,2 dependency 
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7. CONCLUSION  
 

In the beginning of this paper, using the example of a 
simple mechanical construction model with constrained 
motion, we have proved that it is possible to perform an 
analysis of the motion of a mechanical systemby 
applying Lagrange's equations of the first and second 
kind, as well as Hamilton's equations. By applying 
Lagrange’s equations of the first kind, the system of six 
differential equations was obtained. The system had two 
degrees of freedom, so there are only two independent 
coordinates, and the other four can be expressed through 
those two. Based on the above, it is concluded that the 
analysis of the systemby applying Lagrange equations 
of the first kind is complex and redundant. Much more 
elegant and better way of analyzing the system is by 
applying the Lagrange equations of the second kind. 
Based on determination of the total kinetic energy of the 
system and potential generalized forces, as well as their 
partial derivatives,two differential equations can be 
obtained. These differential equations depend on only 
twogeneralized coordinates andthe final equations of 
motion are obtained.By applying Hamilton's equations 
instead of secondorder differential equations, solving 
the problemis simplified. Moreover, a model has been 
obtained with consideration for Coulomb friction force. 
The stability of the system for disturbed and undisturbed 
motion was checked. Different methods were confirmed 
by drawing the same conclusions. 

APPENDIX  

Absolut angles are:  1 2, q qϕ θ= =  
Distances between points are:  1 2 2M M l= , 3BM l= , 

2 / 2BM l=   
Spring whose stiffness is  has a length: l01 = O1O  
Spring whose stiffness is  has a length: l02 = l/2 
Coordinate: A(0, 5l/2) 

Other data:  1 2
0 0 0 ;

3 6

TT
q q π π⎡ ⎤⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦

q  

[ ]1 2
0 0 0 3.95  5.85 ;

T Tq q⎡ ⎤= = −⎣ ⎦q v 

1 2 314 kg; 14 kg;  4 kg;m m m= = =  

1 2
N N1.47m;  759 ; 1850 ;
m m

l c c= = =  

2
21Ns m; 400 N;  9.80665 

m s
st gβ = = =F  

00.11; 0.13dμ μ= =  

0 0sin ; 255 N;  te tα−= − Ω =F F F  
11 .5s , 0.09.α−Ω = =  
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АНАЛИЗА КРЕТАЊА И СТАБИЛНОСТИ 

ХОЛОНОМНОГ МЕХАНИЧКОГ СИСТЕМА 
У ПРОИЗВОЉНОМ ПОЉУ СИЛА 

 
 М.В. Весовић, Г.Р. Петровић, Р.Р. Радуловић 

 
У циљу добијања увида у рад машине пре њене 
монтаже и производње, као и добијања добре анали- 
зе, овај рад представља детаљна решења специ-
фичног проблема из области аналитичке механике. 
Поред нумеричких поступака у раду, извршен је и 
преглед теоријских основа. Разне врсте анализа су 
врло честе у машинском инжењерству, због могућ-
ности апроксимације сложених машина. За пред-
ложени систем дате су Лагранжове једначине прве 
врсте, коваријантне и контраваријантне једначине, 
Хамилтонове једначине, генералисане координате, 
као и увид у Кулонову силу трења. Такође, решени 
су и услови статичке равнотеже уз помоћ нумерич-
ких и графичких поступака - пресеком две криве. 
Коначно, разматрана је и стабилност кретања поре-
мећеног и непоремећеног кретања. 

 


