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Non-isothermal rarefied gas flow in
microtube with constant wall
temperature

Iva Guranov , Snežana Milićev and Nevena Stevanović

Abstract
In this paper, pressure-driven gas flow through a microtube with constant wall temperature is considered. The ratio of
the molecular mean free path and the diameter of the microtube cannot be negligible. Therefore, the gas rarefaction is
taken into account. A solution is obtained for subsonic as well as slip and continuum gas flow. Velocity, pressure, and
temperature fields are analytically attained by macroscopic approach, using continuity, Navier-Stokes, and energy equa-
tions, with the first order boundary conditions for velocity and temperature. Characteristic variables are expressed in
the form of perturbation series. The first approximation stands for solution to the continuum flow. The second one
reveals the effects of gas rarefaction, inertia, and dissipation. Solutions for compressible and incompressible gas flow are
presented and compared with the available results from the literature. A good matching has been achieved. This enables
using proposed method for solving other microtube gas flows, which are common in various fields of engineering, bio-
medicine, pharmacy, etc. The main contribution of this paper is the integral treatment of several important effects such
as rarefaction, compressibility, temperature field variability, inertia, and viscous dissipation in the presented solutions.
Since the solutions are analytical, they are useful and easily applicable.
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Introduction

Microelectromechanical systems (MEMS) are small-
sized devices consisted of mechanical and electro com-
ponents, which play a significant role in electromag-
netic, thermal, pneumatic, and many other fields.1

MEMS’s characteristical dimension takes the values
between 1mm and 1mm. As all systems recognizable to
humans can be classified as astronomical, macro
(human size), and microscales, MEMS belong to
microscale systems. Surface and volume effects have
different influence in these scales. In case of microscale
gas flow, surface forces are significantly more influen-
tial than volume ones.

In gas flow through microtube, the ratio of the mole-
cular mean free path ~l and microtube diameter ~D,

which represents Knudsen number, is not negligible.
According to values of Knudsen number, which is the
measure of rarefaction, characteristic regimes are: con-
tinuum flow (Knł 0:001), slip flow (0:001 łKnł 0:1),
transition regime (0:1 łKnł 10), and free molecular
flow (Kn.10).2

Microtubes are frequently used as components of
MEMS. They can be transparent, flexible, and biocom-
patible, which makes them suitable for use in
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biomedicine. Microtubes are often essential parts of
actuators, sensors, valves, etc. Moreover, they are an
integral part of micro heat exchangers. They are
used, primarily as cooling devices, in many fields:
automotive, aerospace, power and process industries,
thermotechnics, microelectronics, bioengineering, etc.
Non-isothermal gas flow in microtubes under various
temperature conditions is present in all mentioned fields
and devices. That is why finding solutions for gas flow,
for different geometries and different temperature
boundary conditions, are very significant.

The problem of the rarefied gas flow in a microtube
with constant cross section has been considered by
various authors. Sharipov and Seleznev3 analyzed
pressure-driven isothermal rarefied gas flow between
two reservoirs connected with microtube. The authors
solved the problem for all Knudsen numbers by kinetic
theory of gases. The problem of isothermal rarefied slip
gas flow in microtubes, which is considered as compres-
sible, axisymmetric, and at low Reynolds numbers is
considered in Radenković et al.4 The analytical solution
was reached by macroscopic approach with Maxwell
slip boundary condition. Hemadri et al.5 presented an
experimental study of rarefied gas flow with heat trans-
fer in circular tube with constant wall temperature.
There, for the first time, the local temperature measure-
ments were performed in rarefied gas flow in order to
analyze Nusselt number values. Xiao et al.6 gave solu-
tion obtained by solving momentum and energy equa-
tion, with second order velocity slip and temperature
jump boundary conditions, combined with isoflux con-
dition at the surface of the microtube. An analytical
solution for temperature field and Nusselt number, for
hydrodynamically and thermally fully developed gas
flow, is obtained by neglecting compressibility, viscous
dissipation, and axial conduction. Spiga and Vocale7

considered steady fully-developed slip gas flow in ellip-
tic microducts with axial uniform heat flux, neglecting
compressibility and viscous dissipation, numerically, by
a commercial software. A similar analysis is performed
by Kushwaha and Sahu8 taking into account viscous
dissipation.

Several authors examined extended Graetz problem
of rarefied gas flow in microtube.9–11 Barisik et al.9

solved problem analytically, comprising axial conduc-
tion and viscous dissipation effects, using Gram-
Schmidt orthogonalization technique. Comparative
analysis between first and second order slip model of
incompressible gas flow, with viscous dissipation and
axial heat conduction taken into account, is presented
by Aziz and Niedbalski,10 with combining analytical
and numerical approach. Chen11 researched slip flow
with heat transfer in microtubes based on lattice
Boltzmann model.

The fully-developed temperature profile and Nusselt
value are analytically determined for incompressible

rarefied gas flow in a microtube, with second order
velocity slip and temperature jump boundary condi-
tions and constant wall heat flux.12 The solution
includes viscous dissipation as well as axial conduction
effect. In Maharjan et al.13 and Valougeorgis and
Pantazis,14 authors considered heat transfer of rarefied
gas flow between two coaxial cylinders at different tem-
peratures. In Maharjan et al.13 solution is obtained by
S-model kinetic equation and DSMC technique, with
implemented Lin and Willis temperature jump bound-
ary condition. Valougeorgis and Pantazis14 solution is
based on the nonlinear S kinetic model with
Cercignani–Lampis boundary conditions. Colin15

wrote review on convective heat transfer in microgeo-
metries with focus on rarefaction effects in slip flow
regime. In that review, various heat transfer conditions
(constant wall temperature, constant heat flux) and
various microgeometries (circular, parallel plate, rec-
tangular, trapezoidal or triangular microchannel,
microtube with annular or semi-circular cross section),
with influence of specific effects (viscous dissipation,
axial conduction, variable fluid properties), are
examined.

In this paper, stationary axisymmetric rarefied
pressure-driven slip gas flow in microtube with con-
stant wall temperature is analyzed. The solution is
obtained for subsonic gas flow with moderately high
Reynolds numbers, that is inertia effect is included.
Solution procedure is based on assuming all variables
by perturbation series. An analytical solution for velo-
city, pressure and temperature are presented for both
compressible and incompressible gas flow.

Governing equations and problem
description

System of governing equations (energy equation,
momentum equation projected on longitudinal direc-
tion, momentum equation projected on radial direc-
tion, continuity equation, equation of state of an ideal
gas)1 with Maxwell16 velocity slip and Smoluchowski
von Smolan17 temperature jump boundary conditions
in cylindrical coordinates are respectively:
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where ~u, ~v, ~p, ~T , ~r, ~r, ~z are respectively longitudinal
velocity (m/s), radial velocity (m/s), pressure (Pa), tem-
perature (K), density (kg/m3), radial and longitudinal
coordinate (m) (Figure 1). sv (–) and sT (–) are momen-
tum and thermal accommodation coefficients, ~cp is spe-
cific heat coefficient at constant pressure (J/(kgK)), ~Rg

specific gas constant (J/(kgK)), ~R radius of microtube
(m), ~Tw the microtube wall temperature (K), k heat
capacity ratio (–).

System of governing equations and boundary condi-
tions (1)–(7) is transformed in non-dimensional form by
defining non-dimensional variables:
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where ~ur is mean longitudinal velocity at the exit cross
section, ~pr pressure at the exit cross section, ~rr reference

density (~rr = ~pr

�
(~Rg

~Tw)), ~L microtube length (m), ~mr

reference dynamic viscosity, and ~kr thermal conductiv-
ity, both defined for ~Tw.

Dimensionless equations are simplified by the fol-
lowing assumptions:

- small parameter e (e\\ 1) is defined as

e=
2~R
~L

ð9Þ

- radial velocity component is much smaller than
longitudinal velocity component

~v= e~V , ~V =O(1) ð10Þ

- subsonic gas flow

kMa2r = gem, g =O(1), m.0, ð11Þ

where reference Mach number is Mar = ~ur

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~pr=~rr

p
;

- slip gas flow

Knr=hen, h=O(1), n.0, ð12Þ

where Knr = ~lr

�
2~R is reference Knudsen number;

- low value of Mach number allows following
correlation

kMa2r
Rer

=be, b=O(1) ð13Þ

in which Rer = ~rr~ur2~R
�

~mr is reference Reynolds
number.

From definition of reference Mach, Knudsen, and
Reynolds number, relationship between these numbers
is:

Knr =

ffiffiffiffiffiffi
pk

2

r
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Also, from equations (11) and (13) reference Reynolds
number follows:

Rer =gem�1
�

b, ð15Þ

where value of parameter m determines the order of
magnitude of reference Reynolds number (low or mod-
erately high Reynolds number). Involving equations
(11), (12), (15) into equation (14) relationship between
parameters g, h, and b is obtained:

g =
b2p

2h2
ð16Þ

Parameters g, h, b, m, and n are introduced in order
to make the model more flexible, so that it provides a

Figure 1. Microtube geometry.
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wider application. Without these parameters introduced
in equations (11)–(13), for a certain value of small para-
meter e, which represents ratio of microtube diameter
and its length, there would be only one corresponding
value for Mach, Knudsen, and Reynolds number. By
bringing in parameters g, h, b, m, and n into the model,
for a certain value of small parameter e, results could be
obtained for a wide range of Mach and Knudsen num-
ber values within subsonic and slip flow regime, that is
corresponding wide range of Reynolds number values.
Furthermore, considering equation (15) together with
relation 2n + m=2, which is obtained from assump-
tions (11), (12) and equations (14)–(16), leads to the
solution for two characteristic regimes18:

small Reynolds numbers :

Rer\1 : 1\m\2, 0\n\1=2
ð17Þ

moderately high Reynolds numbers :

Rer ø 1 : 0\m ł 1, 1=2 ł n\1
ð18Þ

Prandtl number has the same value in the whole flow
field:

Pr=Prr =~cp

~mr

~kr

ð19Þ

Dimensionless form of governing equations

Considering previous assumptions, dimensionless sys-
tem of governing equations and boundary conditions
follows:
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According to molecular model of solid spheres, dimen-
sionless values of dynamic viscosity and thermal con-
ductivity were assumed as m= k = Ta, where values of
viscosity-temperature parameter a may cover different
models. Parameter a with value a= 0:5 represents
model of elastic molecules, a= 1 represents model of
Maxwell molecules, while a= 0 covers the case of con-
stant viscosity and thermal conductivity m= k = 1.

In order to solve system of equations with perturba-
tion approach, all characteristic dimensionless variables
(u, v, p, r, T) are expressed in form of perturbation
series19:

f = f0 +Knrf1 +O(Kn2
r ) ð27Þ

This assumption of perturbation series in power of
Knudsen number, equation (27), assures the rarefaction
effect to appear in the second approximation. With the
intent to achieve the same order of magnitude for slip,
as well as inertia and dissipation effects, that is to make
sure that all these effects appear in the second approxi-
mation, values for parameters m and n have to be m=
n= 2/3. This follows from equations (20), (21) and its
correlation 2n + m=2. Thus, such flow corresponds to
moderately high values Reynolds number regime, equa-
tion (18). Now, from system of governing equations and
boundary conditions (20)–(26), two approximations fol-
low. The first approximation corresponds to continuum
flow (variables marked with index ‘‘0’’) while the second
approximation comprises influence of slip, inertia, and
dissipation (variables marked with ‘‘1’’).

- The governing equations and boundary conditions
O(1) are:
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- The governing equations and boundary condi-
tions O(Knr) are:
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For defined mass flow in microtube, the whole value of
_m is in the first approximation, so _m0 = 1 and _m1 = 0.
The solution procedure goes for both approxima-

tions in following way. Firstly, energy equations for
both approximations (28), (35) are solved with appro-
priate axisymmetric and boundary conditions (32), (39).
Attained solution for temperature field is:

T =T0 +KnrT1 = 1+Kn2rRe2
r
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Secondly, the longitudinal velocity follows from the
momentum equations (29), (36), with axisymmetric and
boundary conditions (33), (40):
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Solution for the pressure field is derived from integral
form of continuity equations (31), (38).

Regarding compressibility effect, this paper exam-
ines two cases: compressible and incompressible micro-
tube gas flow.

Solution for compressible gas flow

From dimensionless equation of state of an ideal gas
(24), assuming density, pressure and temperature by
perturbation series (27), with obtained solution T0 = 1,
first and second order approximation of density are:
r0 = p0 and r1 = p1 � p0T1. Then, from continuity
equations (31) and (38), for known pressure at the exit
(34), (41), the solution for pressure distribution in com-
pressible microtube gas flow follows:
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Here, the first approximation of pressure is:

p0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 64b 1� zð Þ

p
ð45Þ

According to this pressure solution, from general solu-
tions for temperature (42) and velocity (43), tempera-
ture and velocity distributions for compressible gas
flow in microtube are, respectively:

T =T0 +KnrT1 = 1+ 4Kn2rRe2rPr
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Solution for incompressible gas flow

For incompressible gas flow, complete density is con-
tained in the first approximation: r0 = 1, while r1 = 0.
Now, by integrating continuity equations (31) and (38),
for known pressure at the exit (34) and (41), the pres-
sure distribution for incompressible microtube gas flow
follows:

p= p0 +Knrp1 = p0 +Knr �
2� sv

sv

8 ln p0

	

+ 2aKnrRe2rPr
k� 1

pk
1� p0ð Þ


 ð48Þ

Here, the first pressure approximation is:
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p0 = 32b 1� zð Þ+ 1 ð49Þ

Finally, general solution for temperature (42) and velo-
city (43), with the first pressure approximation (49) pro-
vide results for incompressible gas flow in microtube:

T = T0 +KnrT1 = 1+ 4Kn2rRe2rPr
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Results and discussion

All presented results are obtained for diatomic gas
k=1.4, Pr=0.7, for diffuse reflection sv = 1 and the
perfect energy exchange sT = 1. Beside this, for obtain-
ing pressure, temperature and velocity in microtube,
the three dimensionless parameters are necessary and
sufficient. Here, for the results presentation, Reynolds
number, Knudsen number, and small parameter e are
chosen.

The pressure, temperature, and velocity distribution
for compressible rarefied gas flow in microtube with
constant wall temperature, for the regime with moder-
ately high Reynolds number, are presented in Figures 2
to 4.

The influence of Knudsen number on pressure distri-
bution along the microtube is presented in Figure 2. It
is evident that for the same Reynolds number at the exit

cross section of microtube and for the same microtube
geometry, increase of rarefaction, that is, of the refer-
ence Knudsen number leads to the lower pressure in the
microtube. This means that for the same flow condi-
tions at the exit, pressure along the microtube is lower
when rarefaction is taken into account.

The temperature and velocity profiles at different
cross sections of microtube, z=0, z=0.96, and z=1,
for continuum (Knr=0) and slip gas flow (Knr=0.1),
are presented in Figures 3 and 4, respectively. The pre-
sented model (46) shows that the flow appears to be
isothermal for continuum flow conditions, Knr=0
(Figure 3). Furthermore, the rarefaction leads to the
temperature change in the cross section as well as along

Figure 2. The pressure distribution in microtube for
compressible gas flow (44), for continuum (Knr = 0) and slip
(Knr = 0.1).

Figure 3. The temperature profile (46) at different cross
sections of microtube for compressible gas flow, for continuum
(Knr = 0) and slip (Knr = 0.1).

Figure 4. The velocity profile (47) at different cross sections of
microtube for compressible gas flow, for continuum (Knr = 0)
and slip (Knr = 0.1).
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the microtube. Regardless of the miniature dimensions
of the tube diameter and constant wall temperature, the
presented model shows that the flow is non-isothermal.

The influence of rarefaction on the velocity field
along the microtube is analyzed in Figure 4. It shows
that, for rarefied gas flow, the slip velocity at the wall
exists and increases along the microtube.

Next, we have considered the influence of m(T) and
k(T) on pressure, temperature, and velocity field, for
compressible and incompressible gas flow. In case of
constant wall temperature, a minute temperature varia-
tion in microtube is obtained (Figure 3), so the effect of
dynamic viscosity and thermal conductivity dependence
on temperature is negligible. Therefore, the solution
which does not comprise the influence of transport
coefficient’s dependence on temperature (a=0) could
be used. From the compressible gas flow solutions, by
plugging in a=0 into the equations (44) and (47), we
get:

p= p0 +Knrp1 = p0 +

Knr
2� sv

sv

8
1

p0

� 1

� �
+ 2KnrRe2r

ln p0

pp0

2� Pr
k� 1

k

� �	 

ð52Þ

u= u0 +Knru1 =
2

p0

1� r2
� �

+

+Knr
2� sv

sv

8

p2
0

+
p1
0

16b
r2 � 1
� �	

+KnrRe2r
16

pp3
0

r6

9
� r4

2
+ r2 � 11

18

� �
 ð53Þ

Equation (46) for temperature solution remains in the
same form.

For incompressible gas flow, solutions for pressure
(48) and velocity (51) for a=0 are reduced to:

p= p0 +Knrp1 = p0 �
2� sv

sv

8Knr ln p0 ð54Þ

u= u0 +Knru1 = 2 1� r2
� �

+Knr
2� sv

sv

8

p0

+
p1
0

16b
r2 � 1
� �	 
 ð55Þ

while the temperature profile remains the same (50).
In Figures 5 to 7 solutions for pressure (54), tem-

perature (50), and velocity distribution (55) in micro-
tube for incompressible gas flow are presented. All
pressure distributions presented in Figure 5 are
obtained for the same Rer number, that is, in this case

Figure 5. The pressure distribution in microtube for
incompressible gas flow (54), for continuum (Knr = 0) and slip
(Knr = 0.1).

Figure 6. Temperature profile for incompressible gas flow.

Figure 7. Velocity profiles at the different cross sections of the
microtube for incompressible gas flow.
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(a=0) for the same mass flow. It is shown that, for the
same mass flow, rarefaction increase leads to the lower
pressure in microtube.

In order to verify presented solutions, results for
velocity (55) and temperature (50) are compared with
Asako and Hong20 results, which are obtained for
incompressible thermally fully developed gas flow in
microtube with constant wall temperature. For incom-
pressible flow conditions, the model presented in this
paper gives solution for thermally fully developed flow,
that is, temperature profile does not change along the
microtube. Comparing the presented results with tem-
perature profile obtained by Asako and Hong,20 which
is fully developed at the exit, a good agreement is
achieved, with relative error less than 1% (Figure 6).
The velocity profile (55) in three cross sections of
microtube is presented and compared with Asako and
Hong20 solution, resulting in a good agreement (Figure
7). Both solutions provide the increase of slip velocity
at the wall, as well as the decrease of the maximum
velocity, along the microtube.

Conclusions

Solutions for pressure, temperature, and velocity fields
for stationary, axisymmetric, rarefied slip gas flow in
microtube with constant wall temperature for moder-
ately high values of Reynolds numbers are presented.
Analytical solutions are obtained by macroscopic
approach for compressible and incompressible gas
flow.

Governing equations are analyzed for subsonic, slip
gas flow with moderately high values of Reynolds num-
ber by assuming that the diameter of microtube is
much smaller than its length and radial velocity is
much smaller than longitudinal one. Velocity slip and
temperature jump boundary conditions are incorpo-
rated into the presented model. Solution is obtained by
perturbation method, that is temperature, pressure,
density, longitudinal, and radial velocity are expressed
in form of perturbation series. Two approximations are
achieved, where the first one represents continuum flow
conditions, while the second approximation represents
the correction due to the slip and inertia effects.

Viscosity-temperature parameter a has an insignifi-
cant influence on temperature, pressure, and velocity
fields. Hence, the simplified solutions obtained for
a=0 are also presented, both for compressible and
incompressible gas flow. Temperature and velocity
solutions for incompressible flow are compared with
the results of Asako and Hong20 and a good agreement
is achieved.

Since the presented solutions are analytical, they are
easy to use, they enable easy reproduction and can be
exploited as accuracy validation of solutions attained in

other ways, numerically or experimentally. The advan-
tage of the presented solutions compared to results pre-
sented in open literature is that they simultaneously
comprise several effects: rarefaction, compressibility,
temperature field variability, inertia, and viscous dissi-
pation. Moreover, the confirmation of accuracy of the
applied perturbation method enables further research
work on a number of other problems such as: flow
through microtubes with a defined heat flux on the
wall, flow between coaxial cylinders with the same or
different wall temperatures and heat fluxes, etc.
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