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Abstract
Wind energy extraction is one of the fastest developing engineering branches today. Number of installed wind turbines
is constantly increasing. Appropriate solutions for urban environments are quiet, structurally simple and affordable small-
scale vertical-axis wind turbines (VAWTs). Due to small efficiency, particularly in low and variable winds, main topic here
is development of optimal flow concentrator that locally augments wind velocity, facilitates turbine start and increases
generated power. Conceptual design was performed by combining finite volume method and artificial intelligence (AI).
Smaller set of computational results (velocity profiles induced by existence of different concentrators in flow field) was
used for creation, training and validation of several artificial neural networks. Multi-objective optimization of concentra-
tor geometric parameters was realized through coupling of generated neural networks with genetic algorithm. Final solu-
tion from the acquired Pareto set is studied in more detail. Resulting computed velocity field is illustrated. Aerodynamic
performances of small-scale VAWT with and without optimal flow concentrator are estimated and compared. The per-
formed research demonstrates that, with use of flow concentrator, average increase in wind speed of 20%–25% can be
expected. It also proves that contemporary AI techniques can significantly facilitate and accelerate design processes in
the field of wind engineering.
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Introduction

Due to some of the pressing issues of modern society,
that include climate change, global warming, pollution,
etc, the extraction of wind energy is one of the fastest
developing engineering fields today. As an answer to
the growing energy needs, the number of installed
wind turbines is constantly increasing. International
Renewable Energy Agency (IRENA)1 reports that the
capacity of installed wind power reached nearly
564GW in 2018 worldwide. Furthermore, European
Union acknowledged reaching a share of at least 32%

of renewable energy till 2030 as a binding target.2 One
possibility to make better use of wind energy resources
in urban and densely populated areas is to install many
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small-scale wind turbines. Many computational studies
deal with this topic, for example, Arteaga-Lopez et al.3

employ computational fluid dynamics (CFD) approach
on building-mounted wind turbines while Stathopoulos
et al.4 accentuate both potentials and challenges of
urban wind energy.

Generally, it is possible to classify wind turbines as
either horizontal-axis (HAWTs) or vertical-axis
(VAWTs) according to the direction of their rotation
axis. VAWTs are much less employed, but aerodynami-
cally very interesting structures, particularly in starting
regimes.5 Their main advantages are decreased noise,
operability in lower and changeable wind speeds as well
as reasonable price. However, due to their inherently
smaller efficiency than HAWTs, approximately 0.15–
0.35 in comparison to 0.40–0.50 in HAWTs as demon-
strated,6–9 they are the topic of many optimization
studies. Some additional problems might include opera-
tion in Earth’s boundary layer and vortex trail of sur-
rounding objects. Possible solutions and improvements
are continually being offered, both for the drag- and
lift-type architectures. For the drag-type Savonius tur-
bine Alom and Saha6 provide a thorough review of
power augmentation techniques. Alizadeh et al.10 use a
simple barrier to deviate the flow. For the lift-type
VAWTs, adjustments range from the modifications to
the wind turbine structure itself in the form of blade
adaptation as demonstrated by Preen and Bull11 and
Baghdadi et al.8 who investigated supershapes and
morphing blades, respectively, or airfoil optimization
as considered by De Tavernier et al.12 to the addition
of the separate elements that would serve as flow direc-
tors or concentrators and whose main role is to locally
amplify flow velocity. For example, De Santoli et al.13

investigated a VAWT with a surrounding linear, con-
vergent duct. Similarly, Cho et al.14,15 investigated both
numerically and experimentally the design parameters
of towers that could improve VAWT performance. For
more details and examples, Wong et al.16 provide a
good overview of the tried VAWT performance
enhancements.

Bearing in mind the thought that if not adapted to
the complex wind environment, a VAWT might not be
a successful energy converter, a novel optimal flow con-
centrator (specifically designed for a particular geome-
try operating in local winds) is proposed. In order to
achieve this, several requests have to be met: omni-
directional operability must be preserved, flow concen-
trator should induce accelerated sub-sonic flow and the
construction should be the simplest possible. These
demands lead to an axisymmetric geometry converging
from the windward side (i.e. all the sides since wind
blows from all directions). Therefore, the proposed
concentrator consists of two half-ellipsoids, lower
and upper, as illustrated in Figure 1. Such a design is
characterized by compactness, simplicity, and

omnidirectional operability. Apart from the possible
boost of local velocity and generated power, if designed
properly, this innovative concept also leads to an easier
start of the VAWT, expansion of its operational range
as well as an increase in the number of working hours.
To accomplish this, the geometric parameters of the
flow concentrator should be optimized with respect to
the global dimensions of the planned wind turbine as
well as the wind conditions at the chosen location.

Regardless of the method, optimization usually
implies performing a large number of repetitive actions
which makes it unsuitable to be coupled with CFD
techniques since they still generally require significant
computational resources. And this is where artificial
neural networks (ANNs) come in as a perfect tool for
the estimation of highly non-linear functions in multidi-
mensional space. Here, they can facilitate the predic-
tion of the velocity profiles of interest to the VAWT.
Although they are not often utilized in the fields of
aerodynamics and rotational machinery there are some
examples. Mortazavi et al.9 used ANN and multi-
objective genetic algorithm (MOGA) to obtain the set
of optimal HAWT airfoils. Mohammadi et al.7 used
computational intelligence to study the relations
between the parameters of the Savonius rotor and to
perform its single-objective GA optimization. Kuppers
et al.17 also coupled CFD with ANN in order to opti-
mize vertical-axis Kirsten–Boeing turbine. Finally, the
authors also previously used ANNs to control bound-
ary layers around foils in linear cascades.18

Figure 1. Isometric view of a H-rotor with the flow
concentrator.
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The paper is organized as follows: since this is pri-
marily a computational study, adopted numerical
approaches are firstly validated in the next section.
Chapter 3 provides a description of the parameterized
concentrator model that is used in flow computations
covered in section 4. Performed simulations of the spa-
tial, steady flow field surrounding the concentrator,
assuming incompressible, viscous fluid were conducted
by finite volume method (FVM). After performing a
sufficient number of computations, several ANNs were
created, trained and validated and this procedure is
described in section 5. Multi-objective GA optimization
is explained in section 6. Finally, obtained results, con-
clusions and experience are summarized.

Validation of the computational
approaches

Since the performed study includes both flows around
flow concentrators as well as around VAWT rotors, the
validation of the employed CFD models was also rea-
lized in two phases. In the first step, simulating
unsteady flows around a VAWT rotor was investigated,
in order to ensure that its aerodynamic performances
can be computationally estimated with satisfactory
accuracy.

Computation of rotational flows around a VAWT
rotor

As previously mentioned, simulating flows around
VAWTs still presents quite a challenge since numerous
flow phenomena might appear such as flow and vortex
separation, dynamic stall, etc. Numerous simpler
numerical models have been tried and used but the
most usual approach today assumes 3D, unsteady, tur-
bulent flow around a moving rotor, solved by finite
volume method (FVM). However, it still does not pro-
vide completely reliable results, particularly in cases of
higher rotor solidities which are the most convenient
solutions for urban environment, and should be vali-
dated through comparison with available experimental
data.

The model and its results obtained in an open-air
wind tunnel testing used for verification of the adopted
numerical set-up are provided by Bravo et al.19 The 3-
bladed H-rotor (B=3) has radius R=1.25m (and dia-
meter D=2.5m), length L=3m and blade chord
c=0.4m resulting in rotor reference area A=DL=
7.5m2, and solidity s=Bc/D=0.48 (that can be con-
sidered high). The blade has constant profile along its
length, shaped like a symmetric NACA 0015 airfoil,
with a blunt trailing edge.

Flow simulations, together with all the pre- and
post-processing, were fully realized in the engineering
software package ANSYS.

Outer, stationary part of the computational domain
is shaped like a cuboid and extends 26D and +18D
fore and aft of the rotor axis, 6 9D to the sides and
6 4D along the vertical axis. Inner, rotational part is in
a form of a hollow cylinder encompassing the blades.
Other wind turbine elements (e.g. struts, mast, and
base) were neglected.

Computational mesh is hybrid unstructured, mean-
ing it primarily contains tetrahedral cells but also 25
layers of prismatic cells encompassing the blade walls
to ensure an appropriate value of dimensionless wall
distance y+ \ 5. It is refined in the vicinity of the inter-
face boundary as well as leading and trailing edges of
the blades. It numbers approximately 1.7million ele-
ments (which is not particularly fine but is appropriate
for this optimization study).

Flow computations by means of numerically solving
fundamental flow equations (mass and momentum
conservation equations as well as additional transport
equations of turbulence quantities) are performed in
ANSYS FLUENT. The flow around the wind turbine
is considered as spatial, transient, incompressible and
viscous (i.e. turbulent). The effects of rotor rotation are
simulated by sliding-mesh approach, where in every
time-step Dt, the inner zone is actually rotated for a
small angular increment Dc.

Unsteady Reynolds-averaged Navier-Stokes
(URANS) equations were closed by a two-equation k-
v SST turbulence model,20 based on Boussinesq
hypothesis, that provides good results and is often
employed in the engineering problems from the field of
computational aerodynamics. It presents a combina-
tion of standard k-v model near the walls and k-e in
the outer layer. As observed by Menter et al.,20 its fea-
tures (modifications) make it more accurate and reli-
able for flows including airfoils, adverse pressure
gradient flows, etc.

Different operating conditions, that is, tip-speed
ratios l=Rv/Vo, are accomplished by various combi-
nations of undisturbed wind velocity Vo assigned along
the inlet boundary and angular speed of the rotor v.
Zero gauge pressure Dp=0Pa is defined at the outlet
surface. No-slip boundary conditions are defined at
walls that are, in this case, rotational.

Pressure-based solver is employed with SIMPLEC
pressure-velocity coupling scheme. All spatial deriva-
tives are approximated by second order schemes, and
temporal derivatives by first order scheme. One time-
step corresponds to Dc=2�, while the number of itera-
tions per time-step is 10. The computations were per-
formed until reaching periodic convergence of torque
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coefficient CQ=Q/(0.5rVo
2 RA), which usually

required at least three revolutions. Computed averaged
torque coefficients (per revolution) were then used for
the estimation of wind turbine power coefficient
CP=CQl.

By looking at Figure 2(a) certain discrepancies
between the two data sets can be observed. Computed
maximal power coefficient CP of approximately 0.265
is slightly smaller than the measured values from the
range [0.25, 0.30] (these changes depend on the actual
wind speed Vo). Also, computed optimal tip-speed ratio
l of about 1.85 is somewhat higher than the measured
value of approximately 1.6. However, since these differ-
ences remain below 15% and are on the safety side (i.e.
the real turbine performs better), numerical results can
be considered quite satisfactory and the defined set-up
may also be used for the optimization purposes.

Computation of (unsteady and transitional) flows
around a sphere

In the second step, flows around a smooth sphere were
simulated. This standard geometry (of high relative
thickness) was chosen because it has been extensively
experimentally investigated in the past while being com-
parable to the assumed flow concentrator geometry
(both are rotational bodies derived from second order
curves). However, although standard in shape, it is by
no means simple to compute. The flow is highly depen-
dent on Reynolds number (Re), surface roughness and
free stream turbulence intensity. In the range of Re that
are expected around the flow concentrator, that is, [105,
106], the flow transits from laminar to turbulent (when
the drag coefficient drops significantly), and with fur-
ther increase in speed, there is massive, highly unsteady
flow separation (due to the alternating generation of
vortices from the pressure and suction sides) that leads
to a new escalation in drag.

Here, the radius of the sphere is R=1m. Shape and
dimensions of the outer computational domain are sim-
ilar to the ones described in section 4.1. Cuboid domain
extends 29R and +18R fore and aft, and 6 9R in the
two remaining directions. The sphere center coincides
with the coordinate beginning. Again, the mesh is
hybrid unstructured, with a thick layer of prismatic
cells encompassing the walls and producing dimension-
less wall distance lower than 1. Computational grid is
refined around the sphere and numbers approximately
920,000 cells. More details on its specific features are
provided in section 4.2.

Since this flow case is used to validate the numerical
approach applied to flow concentrator geometry, com-
putational set-up is similar to the one described in sec-
tion 4.3 with the important difference that these flows
were mostly solved as transitional and unsteady.
Uniform velocity profile, resulting in 105\Re\ 106,
was assumed along the inlet boundary. Time-step used
in computations was 0.02 s. In cases of highly unsteady
and oscillating flow, it was necessary to simulate peri-
ods of time ranging 30–100 s.

The comparison of experimentally and numerically
obtained results is presented in Figure 2(b). A precise
approximation of the experimental data used for model
validation was taken from Almedeij.21 Error-bar of
computed points for higher values of Re denotes the
amplitudes in drag coefficient oscillating character.
Again, although there are discrepancies between the
two sets of data (caused by the effects of walls in wind
tunnels, roughness of sphere surface and turbulence
levels in free stream), the overall trend of the computed
drag coefficient curve seems well captured. The effects
of Reynolds number are clearly present. Since flows
around spheres are particularly complex (unsteady and
transitional), the results obtained on a relatively course
mesh can be considered satisfactory for preliminary
study purposes that involve optimization (that is the

Figure 2. Comparison of measured and computed: (a) VAWT power coefficient curves and (b) sphere drag coefficient.
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main topic of this research). Furthermore, the surface
gradients of half-ellipsoids that are considered in conti-
nuation are considerably lower than those of a sphere,
so less dynamic flows can be expected (that include
much weaker vortex shedding as well as quasi-steady
flow states).

Definition of the parameterized
concentrator model

Since the flow concentrator should be designed in
accordance with the wind turbine, it is first necessary to
make some assumptions regarding the dimensions and
vertical position of the rotor. Here, a scaled-down (by
factor 2) version of the 3-bladed model described in the
previous section is used. Its diameter, blade length and
chord are D=1.25m, L=1.5m, and c=0.2m,
respectively, as illustrated in Figure 3, while the dis-
tance of its central point to the ground equals 2.75m.
The flow concentrator and the wind turbine rotor are
positioned coaxially.

The two parts of the concentrator, lower and upper,
are assumed in the shape of half-ellipsoids. Being axi-
symmetric, they are completely determined by four
input parameters: semi-major and semi-minor axes of
the lower part, a2 and b2 respectively, and semi-major
and semi-minor axes of the upper part, a1 and b1 respec-
tively. The distances between the wind turbine and the
concentrator are kept the same for all considered

concentrator models, meaning that the position of the
wind turbine is fixed in space while the concentrator
parts are positioned accordingly (y-coordinates of the
lower and upper co-vertices are 2m and 3.5m, respec-
tively) as illustrated in Figure 3.

Different concentrator geometries were achieved by
diverse combinations of input parameters. The values
of the semi-major axes were allowed to take values
from the range 1.0m ł a ł 2.2m, and semi-minor
axes b from the set [0.3m, 1.2m], Figure 3. In order to
generate a valid and well-founded basis for the develop-
ment of ANNs, 300 miscellaneous models were numeri-
cally computed. Output parameters in the form of
minimum, average and maximum speed (that would
serve to define goal functions for the ensuing optimiza-
tion) along a characteristic cross-section that is, a line
located 0.75m downstream from the rotational axis
were extracted from the computed accelerated velocity
fields.

Flow simulation

Again, as with validation cases, all flow simulations
were realized in ANSYS. The following subsections
provide details of the adopted computational approach.

Parameterized geometry

All necessary 3D models were created in ANSYS
DesignModeler to facilitate the definition of input
parameters. The computational domain is defined in
the same manner as the previously described outer, sta-
tionary zone from the validation study, that is, extend-
ing 26D and +18D fore and aft, 6 9D to the sides
and 6 4D along the vertical axis measured from the
assumed rotational axis. The lower end of the wind tur-
bine is supposed to be placed at the height of 2m, and
its upper end should reach 3.5m (since the planned
height of the wind turbine is 1.5m). These points coin-
cide with the co-vertices of the lower and upper half-
ellipsoids.

The two concentrator parts (completely defined by
the four input parameters a1, a2, b1, b2) are cut-out from
the fluid zone. The boundaries of the computational
domain are: inlet, outlet, wall_ground, wall_1 (upper
part of the concentrator) and wall_2 (lower part of the
concentrator).

Grid generation

Families of similar, hybrid unstructured meshes are
generated using ANSYS Meshing. Each mesh is both
globally and locally refined. Cell size along the walls of
the concentrator is set to 100mm. The boundary layer
encompassing the two parts of the concentrator con-
tains N=30 layers of prismatic cells, with growth rate

Figure 3. Four geometric parameters of the concentrator and
its position in space.
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of q=1.2 and first layer thickness of y1=0.1mm. The
other boundary layer along the ground also contains
30 layers of prismatic cells, with growth rate of 1.2 but
with the increased first layer thickness of y1=1mm.

As a result, each generated grid contains approxi-
mately 800,000 cells. This level of fineness was adopted
after a grid convergence study as quite satisfactory for
a repeated number of numerical simulations. A repre-
sentative example is illustrated in Figure 4.

Numerical set-up

Again, spatial, incompressible, turbulent but in this case
steady flow around the flow concentrator is simulated
using ANSYS FLUENT by solving RANS equations
closed by k-v SST turbulence model.20

In order to simulate the flow in the Earth’s bound-
ary layer as accurate as possible, height-dependent
velocity profile is defined along the inlet boundary,
Figure 5. Here, a power-law velocity profile is assumed
where V(h)=Vref(h/href)

a. The reference wind speed at
the reference height of href=10m is Vref=5m/s while
the value of exponent a=0.15 corresponds to terrain
roughness class 2. Such a velocity profile implies that a
velocity of approximately Vo=4.12m/s hits the
assumed wind turbine’s central point as illustrated in
Figure 5. This smaller wind velocity is purposely simu-
lated to resemble urban environment. Zero gauge pres-
sure is defined at the outlet. No-slip boundary
conditions are assumed along all the walls.

Since the flow was considered incompressible, again,
the pressure-based solver with the SIMPLEC pressure-
velocity coupling scheme were employed. To increase
accuracy, all spatial derivatives were approximated by
second order schemes. Computations were performed
for 1000 iterations that is, until reaching the converged
values of minimum, average and maximum speeds
along the characteristic line located 0.75m downstream
from the rotational axis.

Results

The final results (used for both ANN formulation and
subsequent optimization) are the same as the aforemen-
tioned convergence criteria. For each considered model,
the values of minimum, average and maximum velocity
along the characteristic line were registered. They were
recorded as two distinct goal functions: average speed
Vmean and min-to-max speed ratio Vmin/Vmax that
serves to quantify the uniformity of the velocity field in
the downstream part of the rotor that is generally more
critical for VAWT performance.

Artificial neural networks (ANNs)

ANNs present a very suitable and often employed
means for forecasting and modeling the behavior of
complex nonlinear systems. Today, they are used for a
large number of applications in many research fields.
Some typical applications in aerospace include: flight
simulations, control systems, autopilots, aircraft com-
ponent behavior simulations, aircraft component fault
detection, maintenance analysis, image/signal identifi-
cation, processing, and compression. They were
employed in this research because a fast and accurate
prediction of output velocity profile based on four
input geometric parameters was necessary for concen-
trator optimization, contrary to the solution of the
nonlinear Navier-Stokes equations that takes up too
much time.

Being inspired by biological nervous systems, ANNs
comprise a net of intertwined artificial neurons which

Figure 4. A detail of one of the generated meshes.

Figure 5. Profile of wind speed V(h) [m/s] defined along the
inlet.
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makes them suitable for replicating the performance of
massive computational resources. Their architecture
and performance are determined by the number of
input and output parameters as well as the number of
layers of neurons and connections between them.

A simplified description of the operation of a single
artificial neuron j is illustrated in Figure 6(a). It can be
explained as taking the sum of multiple inputs, scaled
by weights wij, and bias bj, and forming an output by
applying an activation function f which is usually one
of the sigmoid functions. Here, a hyperbolic tangent
sigmoid function was used, f(x)= tanh x= (ex2e2x)/
(ex+ e2x), for its main characteristics of continuity,
smoothness, monotonicity, boundedness to range (21,
1) and differentiability as illustrated in Figure 6(b).

Although several different ANNs were created, they
all had the same architecture 2 a two-layer feed-for-
ward network with 20 hidden neurons and two output
neurons resulting in (4�20+20�2) + (1�20+1�2)=
142 initially unknown coefficients, 120 weights and 22
biases. It is depicted in Figure 7. Generally, a larger
number of neurons in the hidden layer gives the net-
work more flexibility, but can also lead to overfitting
when the error of the training set appears to be very
small, but the error of the new data being evaluated is
actually large. The input vector contained the values of
the four geometric concentrator parameters: a2, a1, b2,
and b1, while the output vector stored the values of
average velocity Vmean and min-to-max velocity ratio
Vmin/Vmax.

ANNs should be trained, that is, the weights and
biases have to be determined, over a set of known
events to provide sufficiently accurate estimations of
untested scenarios. Here, 70% of the computed cases
(210 models) were randomly chosen and used for train-
ing. Supervised learning by back-propagation iterative
algorithm over the training set was applied as demon-
strated by Hagan et al.22 The remaining 30% were split
into two equal halves (each containing 45 computed
flow cases) and used for validation and testing, respec-
tively. The validation dataset is used for the estimation
of ANN’s performance during training and regulation
of early stopping before overfitting, while the testing

vectors are used as a further check and to provide
insight into the final performances of the ANN (they
do not affect the training).

The performances of generated ANNs can be quan-
tified through the general parameters 2 the mean
squared error which was approximately mse ’ 1e23

and the error standard deviation of roughly s ’ 0.01.
This actually means that an approximate relative error
in the estimation of average speed is below 1%, while
the relative error in the estimation of min-to-max speed
ratio is somewhat higher, but is still below 5%. In
order to further reduce the prediction error, five differ-
ent networks were created, trained and validated, and
the final outputs were obtained by taking the average
values of the five estimations for each considered input
vector.

Multi-objective optimization by genetic
algorithm

In order to find the most suitable concentrator geome-
try, a two-objective optimization by a heuristic, evolu-
tionary genetic algorithm was performed.

Figure 6. (a) Artificial multiple-input neuron and (b) hyperbolic tangent sigmoid function and its derivative.

Figure 7. The adopted network architecture.
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Basics of GA

This is another algorithm derived from biological sys-
tems, but with the purpose of finding global optima of
functions that are in some way tricky for example, non-
linear, non-smooth, discontinuous, non-differentiable,
stochastic, too complicated, etc. GAs simulate the
course of natural selection and advancement through
the developing generations of new entities. They involve
some basic processes and behavior observed in groups
of individuals such as favoritism, reproduction or mat-
ing, crossover and random mutation. Ever since their
formulation, GAs have been extensively used in engi-
neering applications. They are quite popular because:
they enable the consideration of large numbers of input
parameters, both continuous and discrete, do not
require information of function derivatives, can search
significant portions of design space in a single genera-
tion, can be parallelized or combined with multiple goal
functions. A thorough review of contemporary wind
turbine optimization techniques (among which GAs
present a significant portion) and various studies is pro-
vided by Shourangiz-Haghighi et al.23

Although different variants exist as demonstrated,24

a general outline of GAs can be given. The process
begins with the random generation of multitudinous
initial population, where each individual is defined by
an input vector 2 set of genes. This is followed by the
cyclic repeating of:

– estimating each individual of the population
according to the chosen objectives or goals,

– selecting the best individuals for mating,
– producing children (by combining parents’ char-

acteristics 2 crossover),
– introducing random changes 2 mutations to a

portion of the population to make sure that the
process does not get stuck in local optima,

– replacing the current with the newly formed
population.

The process comes to a halt when the maximum num-
ber of generations is achieved or particular convergence
criteria are met.

Implementation of MOGA

Same as with ANNs, each individual was described by
the input vector containing the values of the four geo-
metric concentrator parameters [a2, a1, b2, b1], while the
output vector (used for selecting the best individuals)
contained the values of average velocity and min-to-
max velocity ratio [Vmean, Vmin/Vmax] estimated by
ANNs. The MOGA optimization was performed over
a population numbering 800 individuals, since the num-
ber of possible combinations of input parameters is

practically infinite. The maximal number of generations
was limited to 1000 which proved to be suitable for pro-
cess convergence.

Estimating the goal functions of each individual
results in a Pareto set that contains all equally good
particles. From this set, 35% is randomly chosen and
directly transferred to the next generation. The remain-
der of the new population is mostly formed by cross-
over (80%) and, to a smaller extent, mutation (20%).

Results and discussion

Two-criteria optimization

Optimization of the four basic geometric characteristics
of the flow concentrator is executed on the basis of the
estimated improvements in intensity and uniformity of
the modified velocity field between the two concentra-
tor parts. The obtained Pareto front, together with the
computed cases (represented by dots), are illustrated in
Figure 8. Marker shaped like the letter x presents the
theoretical maximum, that is, the point whose values of
abscissa and ordinate correspond to the maximal com-
puted (by CFD) relative average speed and maximal
min-to-max-velocity ratio, respectively. Since the final
result of the performed optimization is actually a set of
equally good optima, the choice of a single, definite
solution is somewhat ambiguous. It mostly depends on
the engineer designing the wind turbine, the initial
requirements and the precedence of the chosen goal
functions. For instance, if flow uniformity has the pri-
ority, one might single out Optimum 1, denoted by a
triangle in Figure 8. In order to satisfy both goal func-
tions, the final choice of the optimal solution can be
made as the point closest to the theoretical maximum,
that is, as Optimum 2 marked by a circle. Finally, if the

Figure 8. Pareto front.
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highest value of average speed should be achieved,
Optimum 3 designated by a square in Figure 8 could be
selected. The obtained input and output parameters of
the three chosen optima are listed in Table 1.

As expected, the way to obtain the greatest average
velocity is pretty straightforward. One should simply
implement the largest flow concentrator since it pro-
duces the most considerable area contraction. On the
other hand, if we also want flow uniformity or have
special requirements regarding the incoming wind pro-
file (that can be extremely irregular) several aspects
should be simultaneously considered.

It is, however, possible to make some general con-
clusions by analyzing the set of obtained optima. While
the optimal lower semi-major axis a2 should be the
greatest possible (’ 2.2m), the recommended value of
the optimal upper semi-major axis a1 should be smaller,
that is, from the range [1.3m, 1.9m]. Also, while the
optimal lower semi-minor axis b2 may be around 0.8–
0.9m, the optimal upper semi-minor axis b1 is almost
uniformly distributed around 1.2m. Overall, it can be
concluded that the imposed velocity profile mostly
requires elongated lower concentrator parts as well as
chubby, more spherical upper parts.

Optimal solution

The coordinates [a2, a1, b2, b1] of the finally chosen
optimum, that is, the point closest to the theoretical
maximum, are [2.20m, 1.70m, 0.84m, 1.20m]. Detailed
computational analysis of the optimal solution was also
performed and the results are briefly presented qualita-
tively, by computed pressure, velocity and turbulence
fields and flow visualizations by streamlines and vortex
structures, and quantitatively by comparing the initial
and improved velocity profiles.

Computed values of gauge pressure are depicted in
Figure 9(a). As expected, the regions of the highest
pressure correspond to the two frontal stagnation
points (marked in red), while the lowest values appear
between the two concentrator halves (marked in blue).
Computed velocity field is illustrated in Figure 9(b) by
colored streamlines originating from a line located
upstream from the concentrator in the symmetry plane.
Regions of locally accelerated flow (mostly between the
two concentrator parts) are colored in red and orange.
As a result of the notable asymmetry between the lower

and upper concentrator part, the downstream flow
seems more uniform than the upstream which was one
of the optimization goals. It can also be seen that the
flow between the two concentrator parts (where the
wind turbine is supposed to be located) is even, acceler-
ated and attached. The flow separation and vortex
detachment only happen below, above and after the
concentrator (empty regions) implying that no losses
will be induced to the wind turbine by the flow
concentrator.

Similar findings can be reached if contours of com-
puted turbulence kinetic energy are considered (Figure
9(c)). The main sources of disturbances lie above the
upper part and aft of the two halves of the flow concen-
trator, that is, in the zones that should not significantly
affect the operation of the potential VAWT rotor.
Flow slides smoothly along the flow concentrator,
accelerating along the way, and only detaching after
the planed VAWT rotor (and more massively from the
upper, thicker half). Finally, Figure 9(d) illustrates the
vortices that shed from the back sections of the two
concentrator parts. Again, their intensity is not consid-
erable and they should not pose a significant detriment
to the VAWT aerodynamic performances.

The comparison of the velocity profiles (initial vs.
improved) is illustrated in Figure 10. At first glance, it
can be noted that the speed of approximately
Vo=4.12m/s defined at the inlet (at the height of
2.75m) can be accelerated to almost 5.0m/s, that is,
increased by nearly 22%. Furthermore, the velocity
profile is visibly steadied and more evenly distributed
which is particularly noticeable with the z-component
that is nearly linear and symmetrical, Figure 10(b).

It is also worth mentioning that the differences in
computed (by CFD) and predicted (by ANNs) output
parameters of the chosen optimum are 0.75% for the
average speed, and 2.33% for the min-to-max velocity
ratio, which is quite satisfactory.

Effect of the wind turbine

Since the presence of a rotor significantly alters the ini-
tially straight flow by decelerating the axial and adding
the rotational components to the wind velocity, it is
also necessary to compare the performances of a chosen
small-scale VAWT with and without the optimal flow
concentrator, and thus truly justify the performed

Table 1 Parameters of the chosen optima.

Optimum a2 [m] a1 [m] b2 [m] b1 [m] Vmean/Vo Vmin/Vmax

1 1.71 1.51 0.61 1.20 1.173 0.995
2 2.20 1.70 0.84 1.20 1.223 0.950
3 2.20 2.20 0.90 1.20 1.281 0.889
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optimization study. Once again, the flow around a
small-scale VAWT was computed using the numerical
set-up previously described in section 2.1. The only dif-
ference is that, in this case, numerical mesh was even

denser (containing over 2.1million cells) since both the
rotor blades and the flow concentrator were included.
Figure 11 shows the two obtained power coefficient
curves CP(l), while Figure 12 illustrates the

Figure 9. Computed: (a) gauge pressure in [Pa], (b) streamlines colored by velocity in [m/s], (c) turbulence kinetic energy in
[m2/s2], and (d) vortex structures colored by velocity in [m/s].

Figure 10. Comparison of initial and computed velocity profiles in: (a) x-direction and (b) z-direction.
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instantaneous streamlines in the symmetry plane origi-
nating upstream from the VAWT rotor without and
with the flow concentrator at optimal tip-speed ratios.

Somewhat lower performances of the smaller iso-
lated rotor (CP,max ’ 0.25) in comparison to the vali-
dation example (presented in Figure 2) can be explained
by the viscosity effects that become more noticeable at
lower Reynolds numbers as well as height dependent
velocity profile (instead of uniform) defined along the
inlet. Nonetheless, it can be noted that the usage of flow
concentrator enables obtaining significantly higher val-
ues of maximal power coefficient, CP,max. 0.31, and
consequently generated power. In the process, the
power coefficient curve gets slightly elongated and
translated to the right, implying that the optimal perfor-
mance is now achieved at somewhat higher tip-speed
ratios l (i.e. smaller wind speeds Vo or higher angular

velocities v). At the same time, the VAWT self-starting
characteristics seem much improved and that power
can now be generated at considerably lower values of
tip-speed ratio l (i.e. lower values of wind speed).
Another benefit is that the area below the curve
becomes enlarged resulting in a wider range of possible
operating conditions.

By analyzing particular flow regimes (the optimal is
depicted in Figure 12), it can be concluded that the
rotational flow around VAWT rotor becomes steadied
by the flow concentrator, all vortex shedding happens
after the rotor, the overall deceleration of the free
stream is more effective and that the expansion of
streamlines aft of the rotor is increased. Also, a greater
amount of air flows through the rotor thus enabling
greater power extraction. Overall, the positive effects of
the flow concentrator to wind turbine aerodynamic
performances are undeniable, even at small scales and
small velocities.

It should be mentioned that the VAWT rotor used in
this section is a representative, rather than a final, optimal
choice. VAWTs of different solidity and applied airfoil
(even when the global characteristics remain the same) will
perform quite differently when encompassed by a flow
concentrator. Here, the geometry of the flow concentrator
is primarily optimized for a particular location (where cer-
tain velocity profile should be expected). The combined
pair of both optimal VAWT rotor and optimal flow con-
centrator will be the topic of future studies.

Conclusions

The most important lessons learned and gained experi-
ence by performing the described optimization proce-
dures can be summed in several general and particular
conclusions regarding the flow concentrator:

Figure 11. Comparison of power coefficient curves of a small
VAWTwith and without the flow concentrator.

Figure 12. Computed instantaneous streamlines around: (a) VAWT rotor and (b) VAWT rotor with flow concentrator colored by
velocity in [m/s].
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– The addition of the unsymmetrical, specifically
designed omnidirectional flow concentrator to a
VAWT operating in Earth’s boundary layer can
locally change the flow field in a favorable manner.

– Expected increase of initially small axial wind
velocity amounts to 20%–25% and produces a
boost of generated mechanical power.

– Relatively simple flow simulations of an isolated
concentrator (instead of the complete system
comprising both wind turbine rotor and flow
concentrator) can be used for reliable estima-
tions of possible velocity increase.

– Half-ellipsoids of increased relative thickness
produce more acceleration, but also earlier
separation of the flow and higher drag.

– Main contribution of the performed study is the
coupled usage of novel computational, predic-
tive and optimization tools and methods (CFD,
ANN, and GA) in the discipline of renewable
wind energy extraction.

– Expected benefits of adding a flow concentrator to
a VAWT rotor imply improved self-starting charac-
teristics, increased maximal power coefficient, and
expanded range of possible operating conditions at
low manufacturing and maintenance costs.

– Simple modifications and adjustments of the
proposed methodology to other types of wind
turbines, other choices of input and output para-
meters, different environmental conditions, etc.
are also possible.
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