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Predicting anemia using NIR 
spectrum of spent dialysis fluid 
in hemodialysis patients
Valentina Matović1*, Branislava Jeftić1, Jasna Trbojević‑Stanković2,3 & Lidija Matija1

Anemia is commonly present in hemodialysis (HD) patients and significantly affects their survival 
and quality of life. NIR spectroscopy and machine learning were used as a method to detect anemia 
in hemodialysis patients. The aim of this investigation has been to evaluate the near-infrared 
spectroscopy (NIRS) as a method for non-invasive on-line detection of anemia parameters from HD 
effluent by assessing the correlation between the spectrum of spent dialysate in the wavelength 
range of 700–1700 nm and the levels of hemoglobin (Hb), red blood cells (RBC), hematocrit (Hct), 
iron (Fe), total iron binding capacity (TIBC), ferritin (FER), mean corpuscular volume (MCV) and mean 
corpuscular hemoglobin concentration (MCHC) in patient blood. The obtained correlation coefficient 
(R) for RBC was 0.93, for Hb 0.92, for Fe 0.94, for TIBC 0.96, for FER 0.91, for Hct 0.94, for MCV 0.92, 
for MCHC 0.92 and for MCH 0.93. The observed high correlations between the NIR spectrum of the 
dialysate fluid and the levels of the studied variables support the use of NIRS as a promising method 
for on-line monitoring of anemia and iron saturation parameters in HD patients.

Chronic kidney disease (CKD) is a highly prevalent and ubiquitous disease affecting between 4 and 14% of 
adults worldwide. It is estimated that 5 million individuals will require renal replacement therapy for end-stage 
renal disease by the year 2030, presenting a substantial burden on health services worldwide1,2. Anemia is a well-
known consequence of CKD, and is associated with structural and functional alterations of myocardium in this 
population, thus contributing to the risk of cardiovascular morbidity and mortality3. The kidney is the major 
source of erythropoietin, and the ability to secrete this hormone is lost as the kidney function declines. Other 
factors contributing to anemia include impaired response of the bone marrow to erythropoietin caused by uremic 
milieu and chronic inflammation, absolute and relative iron deficiency, a shortened erythrocytes’ half-life, vitamin 
deficiencies precipitated by malnutrition and diet restrictions, and blood losses related to hemodialysis (HD).

Anemia is defined as a red blood cell (RBC) count that is not sufficient for delivering oxygen to peripheral 
tissues4. The hemoglobin (Hb), hematocrit (Hct) and/or the RBC concentrations can be used to establish the 
presence of anemia in a patient4. On the other hand, the qualitative characteristics of the red cell population are 
defined by the mean corpuscular volume (MCV) and the mean corpuscular hemoglobin concentration (MCHC)4. 
Iron deficiency is the most common nutritional deficiency in the world5. The RBC and serum ferritin (FER) 
concentrations, along with the transferrin saturation can detect earlier changes in iron status6. The ferritin is an 
indicator of the total body iron stores, while the total iron binding capacity (TIBC) can be used as an estimator 
of serum transferrin7.

The current recommendations for anemia monitoring in HD patients require hemoglobin monitoring every 2 
to 4 weeks, thus necessitating frequent blood sampling, which further contributes to anemia8. On the other hand, 
studies have shown that clinically optimal Hb monitoring would actually be on a weekly basis because short-
term Hb variability affects the reliability of Hb measurement and may lead to incorrect dosing of erythropoiesis 
stimulating agents9. Thus, for the HD population, an on-line monitoring method of anemia and iron levels might 
be clinically valuable and patient-friendly as it would avoid frequent blood sampling, but still provide important 
information on the patients’ status.

Background
The possibility of detecting certain substances (urea, creatinine) in the spent dialysate fluid has already been 
proven by Fridolin et al.10,11 in UV region. Henn et al. showed the possibility to detect biological substances (urea, 
glucose, lactate, phosphate and creatinine) in the MIR region using artificial dialysate fluid12. On-line scanning 
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of blood and monitoring of substituents is complicated by the fact that blood is a highly saturated fluid, prone 
to coagulation and clotting. All subcutaneous biosensors suffer from interferences in complex matrices such 
as blood or serum. Coating of the sensor with proteins or cellular material from the biological matrix is also a 
frequent phenomenon13. Optical sensors that receive an array of light emitted through a spent dialysis fluid that 
contains blood substituents and use the principle of NIR absorption pattern may overcome these interferences. 
This signal can then be quantitatively related to the blood substituents concentration14. Such approach is nonde-
structive and information about multiple analytes can be obtained from a single NIR spectrum15,16, representing 
a great potential for measurement and detection of blood components17,18.

To the best of our knowledge, there is no previous work on automatic anomaly detection of blood indices 
levels based on the scanning of the spent dialysate. There have been relevant studies in the area of spent dialysate 
monitoring, but the specific problem of monitoring and detecting anomalies in blood indices levels using the 
NIR spectrum has not been addressed. Moreover, a machine learning (ML) approach has not been adopted for 
this purpose10,19.

In this study we demonstrate the utility of NIR analysis for the indirect measurement of anemia related 
parameters: RBC, Hb, Hct, MCV, MCH, MCHC, Fe, FER and TIBC. The objective was to evaluate the accuracy 
of NIR spectroscopy of the spent dialysate fluid for determining concentrations of these analytes by assessing 
the correlation between the spectra and values of Hb, RBC, Hct, MCV, MCH, MCHC, Fe, TIBC and FER in the 
blood circulation.

Materials
Subjects and dialysis parameters.  Samples of spent dialysis fluid were collected from 35 maintenance 
HD patients, of whom 9 were treated with hemodiafiltration (HDF) and 26 with high-flux HD. The samples have 
been collected during the course of a year. Inclusion criteria were stable HD prescription, stable intradialytic 
blood pressure, the absence of physical weakness or dyspnea, and the ability to rest in a 45°–90° position dur-
ing the entire dialysis session. The dialysis was performed using Dialog + Adimea, (BBraunAvitum AG, 34209 
Melsungen, Germany) machines. The dialysate contained Na+ 138  mmol/l, Cl 110.5  mmol/l, K+ 2  mmol/l, 
Ca++ 1.75 mmol/l or 1.50 mmol/l, Mg++ 1 mmol/l, CH3COO 3 mmol/l, HCO3 32 mmol/l, Glucose 1 g/l. The 
mean dialysate flow was 500 ml/min, and the mean effective blood flow was 300 ml/min. All patients were dia-
lyzed via antebrachial arterio-venous fistulas using a two-needle system.

Sampling procedures.  The samples of spent dialysate were collected directly from the dialyzer outlet dur-
ing the dialysis session. It was previously ensured that the dialysate flow was free and uninterrupted. The spent 
dialysate, containing dialyzed waste metabolites, flowed upwards through the cartridge, and the outlet to the 
external environment. Fifteen milliliters of spent dialysate fluid were sampled from the effluent line 15 min after 
the beginning of the dialysis session. Visible-Near infrared (VIS–NIR) absorbance spectra of the samples were 
measured on the following day.

The blood samples were collected from the sampling port on the arterial line of the dialysis system, e.g., com-
ing from the patient immediately before entering the dialysis circuit. Composition of biological analytes used 
in this study are shown in Table 1.

Methods
Ultraviolet–Visible-Near infrared (UV–VIS–NIR) optical absorption spectra of the spent dialysate have been 
registered using the spectrometer Lambda 950 (PerkinElmer CA, USA). The wavelength region of interest was 
700–1700 nm, and the resolution was set to 2 nm. Absorbance spectra were scanned and collected three times 
per sample. The optical path-length was 1 mm.

Blood parameter analysis.  Complete blood count and all related variables were determined by fluo-
rescent flow cytometry on the Sysmex XS-1000i hematological analyzer (Sysmex Corporation, Japan). Hemo-
globine was determined by sodium lauryl sulphate method. Serum iron and ferritin levels were measured with 
the Dimension RxL Max analyzer (Siemens Healthcare GmbH, Germany).

Table 1.   Composition of biological analytes used in this study.

Parameter Mean ± SD Max value Min value Max predicted value Min predicted value

RBC (1012 l ) 3.49 ± 0.309 4.17 2.68 4.2 2.77

Hb (g/l) 105.57 ± 7.82 82 119 122 83

Hct (l/l ) 0.34 ± 0.025 0.39 0.267 0.388 0.266

Fe (mcmol/L) 11.33 ± 2.99 19 8 19.27 6.86

TIBC (%) 42 ± 7.52 54 28 52.6 26.4

FER (ng/ml) 377 ± 76.97 471 225 480 246

MCV (fL) 97.446 ± 6.46 104.1 88.8 103.7 89

MCHC (g/dL) 310 ± 7.54 326 297 332 297.2

MCH (pg) 30.7 ± 1.318 27.5 32.4 32.6 26,95
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The ethical committee of the University Hospital Center Dr Dragiša Mišović has reviewed the study protocols 
and signed informed consent forms have been obtained from all participating patients. All the methods described 
herein have been performed in accordance with the relevant guidelines and regulations.

Preprocessing.  Mathematical pre-processing such as scatter correction and derivatives has been investi-
gated and the best one was selected on the basis of the lowest standard error and highest coefficient of determina-
tion. The best results have been obtained with the Standard Normal Variate (SNV) technique.

Artificial neural network algorithm.  NIR absorption values were implemented into the ANN (artificial 
neural network) algorithm. Artificial neural networks (ANN) were originally designed to mimic the function of 
the human brain. They consist of a number of simple processing units (or neurons) linked by weighted modifi-
able interconnections. ANN is a flexible modeling methodology, since both linear and non-linear functions can 
be used in the processing units. The backpropagation ANN is the most common neural network. It generally 
consists of an input layer, one or more hidden intermediate layers and one output layer. A neuron is a processing 
unit that transforms, by an activation function, an input into output data. Once the ANN model is trained, the 
analysis of its connection weights can easily identify the important inputs20.

Here, in order to form the ANN and perform its training, the MATLAB Neural Net Fitting tool (nftool) was 
used. The NIR spectrum of the spent dialysis fluid is used as input, while the red blood parameters were taken 
as output. The data are randomly divided into two groups: 85% of data is used for training and the remaining 
15% is used for testing.

There are several batch training algorithms that can be used to train a network, like Levenberg–Marquardt 
and Scaled Conjugate Gradient. In this research, the Bayesian regularization training algorithm has been used. 
This function updates the values of weights and biases according to the Bayesian optimization method so as to 
minimize the network error.

The test set data have no effect on the training process. This set provides an independent measure of network 
performance during and after training. The training starts with 2 and finishes with 10 hidden neurons. The 
number of hidden layer neurons is increased when the network is not performing well. The optimum number of 
hidden neurons was determined to be three. Training multiple times generates different results due to different 
initialization of connection weights and different initial conditions.

There are a number of solutions based on ML that provide support to physicians and medical professionals. 
ML provides advantages for recognizing complex correlative relations between the input variables. By reducing 
the utilization of redundant information in input variables in the course of the training process, the ML algo-
rithms produce highly nonlinear decision boundaries, permitting the use of small training data samples, and 
simply exploit various forms of medical data that may be latent in nature. Machine Learning has been recognized 
as a helpful tool for decision making in both diagnosis and medical treatment. Several applications of ML in 
medicine have been reported to produce an excellent fit of the model to a given set of data21,22.

Ethics approval.  The ethical committee of the University Hospital Center Dr Dragiša Mišović has reviewed 
and approved the study protocols and signed informed consent forms have been obtained from all participating 
patients.

Consent to participate.  Written informed consent was obtained from the patients.

Consent for publication.  The author hereby consents to publication of the work.

Results
The following regression plots display the network outputs with respect to targets for training and test sets 
(Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9). For a perfect fit, the data should fall along the 45-degree dashed line, where the 
network outputs are equal to the targets.

The data points are represented with circles. The R value is an indication of the relationship between the neural 
network outputs and targets. The correlation coefficient (R-value) measures the correlation between outputs and 
targets. Correlation was considered perfect if R was = 1 (there is an exact linear relationship between outputs and 
targets), very strong if R was > 0.90 and < 1, moderate if R was > 0.60 and < 0.80, and fair if R was < 0.6023. If R is 
close to zero, no linear relationship between outputs and targets exists.

The following regression plots display the neural network outputs with respect to targets for training and 
test sets.

The MSE for training and testing sets, quantifying the difference between the network outputs and measured 
values, are very close to zero. Therefore, it can be assumed that the designed ANN model is well trained by 
observing the R an MSE values.

The best models are defined as those that yield the lowest values of the root mean square error in cross valida-
tion (RMSE), and the highest coefficient of determination. Furthermore, we have calculated the RPD (Table 2). 
Regarding the RPD statistic, an RPD < 2 is considered insufficient for applications, whereas a value for RPD 
between 2 and 2.5 makes approximate quantitative predictions possible. For values between 2.5 and 3, predic-
tions can be classified as good, and an RPD > 3 indicates an excellent prediction24 (Fig. 10).
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Discussion
NIR spectroscopy is used as an alternative, non-invasive method for clinical analyses. In this method, NIR light 
is transmitted through or absorbed by the sample, and the substance concentration is predicted by analyzing the 
spectral information. Even information about complex substances can be obtained from a single NIR spectrum25. 
The goal of this study was to estimate the analytical benefit of NIR spectroscopy for the detection of anemia and 
iron indices from spent dialysate fluid in patients on maintenance HD.

The NIR region of the electromagnetic spectrum covers the wavelength range of 750–2500 nm26. We have 
empirically determined the optimal wavelength segment to be between 700 to 1700 nm.

In order to be used in clinical measurements, quantitative methods must be accurate and precise, reliable 
and inexpensive. The measurement procedures should be readily automated and the results should be quickly 
available. The NIR spectroscopy has the potential to satisfy all these conditions. Reagents are not required, nor 
sample preparation. The method is rapid and nondestructive, and is suitable for complex matrices. This makes 
it suitable for conducting low cost repetitive analyses.

The overtone and combination bands of the molecular vibrations of C–H, S–H, O–H and N–H bonds pre-
sent in biological materials result in the appearance of near-infrared absorption bands that are wide and weak. 

Figure 1.   Shows the regression plot between the NIR-absorbance of spent dialysate and the RBC concentration 
in the patient blood at the beginning of the HD session (wavelength from 700–1700 nm, Rall = 0.93, Rtrain = 0.95, 
Rtest = 0.83, the number of spectra used for training was N = 270). The RBC concentration in patients’ blood was 
3.49 ± 0.309·1012 l (mean ± SD). The Rall represents the value of R for the training and test sets. The equation 
relating the predicted and measured values is Output = 0.8*Target + 0.71.
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When several biomolecules with similar concentrations are present in a matrix, the absorption bands overlap 
one another, so that at any given wavelength, many substances may contribute to the resulting spectrum27.

Blood Hct is routinely determined by analysis of blood samples. Friebel et al. introduced a non-invasive 
method for measuring Hct using the NIR spectroscopy (250 nm and 1100 nm)34. The occurrence of the NIR Fe 
absorption bands in the 700–1000 nm region is explained by the electronic transitions between the central iron 
ion and porphyrin ring and the transition between the ion and the coordinating oxygen35. The MCV, MCH, and 
MCHC were first introduced by Wintrobe in 1929 to define the size (MCV) and hemoglobin content (MCH, 
MCHC) of red blood cells36.

Blood parameters during hemodialysis (HD) are typically estimated from non-invasive measurements of their 
optical, electrical, acoustic or viscous properties while flowing through the dialyzer lines37,38. The classical way 
to measure red blood cell volume is by dilution technique, using 51Cr-labelled red blood cells, but this method 
is inpractical and seldom used in routine clinical practice.

Considering the rheologic properties of blood and its typically non-Newtonian behavior, some hypotheses 
can be formulated. Blood is a fluidized suspension of red blood cells with viscoelastic properties that reflect the 
cumulative effects of plasma viscosity and Hct. Based on the knowledge that the dialysis fluid has a constant 
chemical composition prior to contact with the dialyzer membrane, we can learn a lot about blood components 

Figure 2.   Shows the regression plot between the NIR-absorbance of spent dialysate and the Hb concentration 
in the patient blood at the beginning of the HD session (wavelength from 700–1700 nm, Rall = 0.92, 
Rtrain = 0.94, Rtest = 0.83, number of spectra used for training was N = 270). The Hb concentration in patients’ 
blood was 105.57 ± 7.82 g/l (mean ± SD). The equation relating the predicted and measured values is 
Output = 0.81*Target + 21.
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based on substances that transfer into the dialysate. The most common methods for estimating red blood param-
eters during HD are based on measurements of the hematocrit and hemoglobin concentration.

Studies39,40 showed that creatinine and phosphate clearances significantly decrease in the presence of high Hct 
values, although urea clearance is minimally affected and only demonstrates a negative trend. Urea, creatinine 
and phosphates are highly diffusible molecules and freely mobile between two different membrane surfaces.

Fleming et al. calculated the erythrocyte volume from mean corpuscular hemoglobin concentrations 
(MCHC), and found a significant correlation of RBC concentration and high dialysate sodium concentration41. 
Relative changes in RBC and Hb are strongly correlated (R = 0.96, p < 0.001) and lying relatively close one to 
another in our study. The difference between the Hb increase and Hct increase can be explained by the con-
comitant decrease in MCV of a similar percentage magnitude. If MCV remained unchanged during HD, the 
relative Hct variation would follow the changes in RBC. In such a case, the relative changes of Hct should follow 
those of Hb. The MCV decrease during HD was already reported by several authors in the past42–44. The study 
by Fleming et al.41 concluded that the dialysis fluid composition, mainly its sodium concentration, significantly 
influences plasma osmolarity and changes in MCV during dialysis. Also, during a typical dialysis session, MCV 
may transiently increase while the erythrocytes pass through the dialyzer45.

Figure 3.   Shows the regression plot between the NIR-absorbance of spent dialysate and the hematocrit 
concentration in the patient blood at the beginning of the hemodialysis session (wavelength from 700–
1700 nm, Rall = 0.94, Rtrain = 0.97, Rtest = 0.86, number of spectra used for training was N = 270). The hematocrit 
concentration in patients’ blood was 0.34 ± 0.025 l/l (mean ± SD). The equation relating the predicted and 
measured values is Output = 0.86*Target + 0.047.
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NIR data contains a huge amount of information, usually of very high dimension, which lends itself to the 
successful implementation of machine learning methods. Machine learning is a set of methods that can auto-
matically detect patterns in data, and then use the detected patterns to make predictions on future data46. It is a 
relatively new but effective method that has been applied successfully in many fields.

The method used in this study is based on the surrogate indicators relating blood and dialysate constitu-
ents. The experimental results indicate a very good correlation between the NIR-absorbance spectrum of spent 
dialysate fluid and indicators of anemia and iron levels—RBC (0.93), Hb (0.92), Fe (0.94), TIBC (0.96), FER 
(0.91), Hct (0.94), MCV (0.92), MCH (0.93), MCHC (0.92) in the blood. The median value of the correlation 
coefficient for those solutes is high and the non-outlier range is very small when calculated over all 35 individual 
patients for whole spectrum ranging from 700–1700 nm.

More studies are needed to further evaluate the general validity of these results and elucidate the relationship 
between the parameters in dialyzate and blood. Further improvements in method precision might be expected 
with additional wavelength ranges, and by instrument improvements that will reduce or cancel noise.

Figure 4.   Shows the regression plot between the NIR-absorbance of spent dialysate and the Fe concentration 
in the patient blood at the beginning of the hemodialysis session (wavelength from 700–1700 nm, Rall = 0.94, 
Rtrain = 0.97, Rtest = 0.84, number of spectra used for training was N = 126). The Fe concentration in patients’ blood 
was 11.33 ± 2.99 (mean ± SD). The TIBC levels were 42 ± 7.52%, and the FER 377 ± 76.97 ng/ml. The equation 
relating the predicted and measured values is Output = 0.84*Target + 1.9.
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The machine learning algorithms can be combined with other artificial intelligence methods or other statisti-
cal techniques, thus avoiding some of their limitations, such as the necessity of large amounts of data in order 
to successfully train a NN.

Figure 5.   Shows the regression plot between the NIR-absorbance of spent dialysate and the TIBC value in 
the patient blood at the beginning of the hemodialysis session (wavelength from 700–1700 nm, Rall = 0.96, 
Rtrain = 0.96, Rtest = 0.95 number of spectra used for training was N = 135). The equation relating the predicted and 
measured values is Output = 0.85*Target + 6.2.
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Figure 6.   Represents the regression plot between the NIR-absorbance of spent dialysate and the FER 
concentration in the patient blood at the beginning of the hemodialysis session (wavelength from 700–1700 nm, 
Rall = 0.91, Rtrain = 0.93, Rtest = 0.84, number of spectra used for training was N = 108). The equation relating the 
predicted and measured values is Output = 0.74*Target + 92.
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Figure 7.   Shows the regression plot between the NIR-absorbance of spent dialysate and the MCV 
concentration in the patient blood at the beginning of the hemodialysis session (wavelength from 700–1700 nm, 
Rall = 0.92, Rtrain = 0.94, Rtest = 0.83, number of spectra used for training was N = 270). The MCV concentration 
in patients’ blood was 97.446 ± 6.46 (mean ± SD). The equation relating the predicted and measured values is 
Output = 0.8*Target + 20.
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Figure 8.   Represents the regression plot between the NIR-absorbance of spent dialysate and the MCHC 
concentration in the patient blood at the beginning of the hemodialysis session (wavelength from 700–1700 nm, 
Rall = 0.92, Rtrain = 0.95, Rtest = 0.80, number of spectra used for training was N = 270). The MCHC concentration 
in patients’ blood was 310 ± 7.54 (mean ± SD). The equation relating the predicted and measured values is 
Output = 0.81*Target + 59.
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Figure 9.   Represents the regression plot between the NIR-absorbance of spent dialysate and the MCH 
concentration in the patient blood at the beginning of the hemodialysis session (wavelength from 700–1700 nm, 
Rall = 0.93, Rtrain = 0.96, Rtest = 0.80, number of spectra used for training was N = 270). The MCH concentration 
in patients’ blood was 310 ± 7.54 (mean ± SD). The equation relating the predicted and measured values is 
Output = 0.82*Target + 5.4. Absorption spectra of the spent dialysate fluid for different values of hemoglobin 
concentration are shown in Fig. 10.
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Table 2.   Statistical parameters of the machine learning algorithm.

RBC (1012 l)
Fe 
(mcmol/L)

FER (ng/
ml) Hct (l/l) Hb (g/l) MCH (pg)

MCHC (g/
dL) MCV (fL) TIBC (%)

R 0.935 0.945 0.917 0.947 0.924 0.939 0.926 0.92 0.965

p-value: 2.20E16 2.20E16 2.00E16 2.20E16 2.20E16 2.20E16 2.20E16 2.20E16 2.20E16

R-squared: 0.874473 0.894688 0.841133 0.8923 0.854169 0.88309 0.8579 0.847018 0.932755

sse 22 842 479,002 0.1436 14,057 423 13,331 2743 7085

SSR 3.231768 99.17393 90,470.25 0.017341 2400.08 56.13242 2208.897 495.5051 510.7922

RPD 2.753501 3.037185 2.426428 3.033819 2.598154 2.864682 2.627651 2.536246 3.629581

RMSEP 0.112354 0.903719 23.57733 0.008283 3.010562 0.466367 2.892583 1.36816 2.074357

MSE 0.012623 0.816708 555.8905 6.86E05 9.063482 0.217498 8.367035 1.871861 4.302958

Bias − 0.00436 − 0.08932 − 0.206004 − 3.51E06 − 0.11802 0.040105 − 0.16751 − 0.007 0.26631

SEP 0.1122694 0.89929415 23.57643 0.008283 3.0082478 0.4646394 2.8877287 1.3681421 2.0571913

Max value 4.17 19 471 0.39 119 32.4 326 104.1 54

Min value 2.68 8 225 0.267 82 27.5 297 88.8 28

RER 13.271652 12.23181536 10.43415 14.849693 12.299519 10.545813 10.042495 11.183049 12.638591

Figure 10.   The absorption spectrum of the spent dialysate fluid shown as a function of hemoglobin 
concentration. R values for training and testing datasets are given in Table 3. The R values are very close to one 
another for both training and testing datasets. This means that the correlation between the network and the 
intended outputs does not stem from coincidence.

Table 3.   R value for training and testing.

Parameter R train R test R all

RBC 0.957 0.836 0.935

Fe 0.977 0.843 0.945

Fer 0.936 0.841 0.917

Hct 0.97 0.861 0.947

Hb 0.947 0.83 0.924

MCH 0.965 0.831 0.939

MCHC 0.955 0.805 0.926

MCV 0.94 0.839 0.92

TIBC 0.968 0.957 0.965
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Conclusions
In this work, a new approach combining ML and NIR scanning of the spent dialysis fluid has been proposed to 
enable fast, on-line evaluation of anemia in maintenance HD patients without the necessity of blood sampling. 
Neural networks have demonstrated a remarkable effectiveness in terms of efficiency (training time) and per-
formance. It has been shown that the accuracy and precision of the proposed method for indirect determining 
the concentration of blood substituents can provide useful diagnostic screening information.

Data availability
Raw data were generated at Faculty of Mechanical Engineering, Belgrade University. Derived data supporting 
the findings of this study are available from the corresponding author on request.

Code availability
Tools and functions from the MATLAB deep learning toolbox have been used in this study.
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