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In this paper, we present a common fixed point result for a pair of mappings defined on a b-metric space, which satisfies quasi-
contractive inequality with nonlinear comparison functions. An application in solving a class of integral equations will support
our results.

1. Introduction

In 1974, Ćirić presented the first fixed point result for quasi-
contractive mappings. This Ćirić’s theorem is one of the most
general results with linear comparison function in classical
metrical fixed point theory (see [1, 2]). The existence and
uniqueness of fixed point for mappings defined on metric
spaces, which satisfies a quasi-contractive inequality with a
nonlinear comparison function, were considered by Danes
[3], Ivanov [4], Aranđelović et al. [5], and Bessenyei [6].
Alshehri et al. [7] proved a fixed point theorem for quasi-
contractive mappings, defined by linear quasi-contractive
conditions on b-metric spaces. Common fixed point general-
izations of Ćirić result was obtained by Das and Naik [8],
with linear comparison functions and by Di Bari and Vetro
[9], with a nonlinear comparison function.

The notion of symmetric spaces, which is the oldest and
one of the most important generalizations of metric spaces,

was introduced by Fréchet [10]. He used the name E-space
for a symmetric space. In the last 50 years, many authors
(see [11–16]) called them semimetric (in German halb-metr-
isher) spaces. Now, the term symmetric space is usual. After
1955, the term semimetric space is widely used to denote a
symmetric space in which the closure operator is idempotent,
which started the papers of Heath, Brown, Mc Auley, Jones,
and Burke (see [17, 18]). Fixed point investigation was started
by Cicchese [19] and Jachymski et al. [18] on semimetric
spaces and by Hicks and Rhoades [20] on symmetric spaces.

In [10], Fréchet also considered the class of E-spaces with
regular écart which include the class of b-metric spaces.
Important examples of b-metric spaces are quasi-normed
spaces introduced by Bourgin [21] and Hyers [22] and spaces
of homogeneous type which have many applications in the
theory of analytic functions (see Coifman and Weiss [23]).
First, fixed point results on b-metric spaces were presented
by Bakhtin [24] and Czerwik [25].
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In this paper, we present a common fixed point result for
a pair of mappings defined on a b-metric space, which sat-
isfies a quasi-contractive inequality with a nonlinear compar-
ison function.

2. Symmetric Spaces and b-Metric Spaces

The ordered pair ðΔ, μÞ, where Δ is a nonempty set and
μ : Δ2 → ½0,∞Þ, is a symmetric space, if and only if it
satisfies:

(W1) μðι, κÞ = 0 if and only if ι = κ

(W2) μðι, κÞ = μðκ, ιÞ for any ι, κ ∈ Δ
The difference between symmetric spaces and more con-

venient metric spaces is in the absence of triangle inequality,
but many notions in symmetric spaces are defined similar to
those in metric spaces. For instance, in symmetric space
ðΔ, μÞ, the limit point of a sequence ðιnÞ is defined by

limμ ιn, ιð Þ = 0⇔ limιn = ι: ð1Þ

Also, we say that a sequence fιng ⊆ Δ is a Cauchy
sequence, if for any given ε > 0, there exists a positive integer
n0 such that μðιm, ιnÞ < ε for every m, n ≥ n0. If each Cauchy
sequence in symmetric space ðΔ, μÞ is convergent, then we
say that ðΔ, μÞ is a complete symmetric space.

By

diam Að Þ = sup
ι,κ∈A

μ ι, κð Þ, ð2Þ

we indicate the diameter of the set A.
Let ðΔ, μÞ be a symmetric space. We can introduce the

topology τd by defining the family of all closed sets as follows:
a set A ⊆ Δ is closed if and only if for each ι ∈ Δ, μðι, AÞ = 0
implies ι ∈ A, where

μ ι,Að Þ = inf μ ι, að Þ: a ∈ Af g: ð3Þ

The convergence of a sequence ðιnÞ in the topology τd
need not imply μðιn, ιÞ→ 0, but the converse is true.

Let ðΔ, μÞ be a symmetric space, ðιnÞ, ðκnÞ, ðznÞ ⊆ Δ and
ι, κ ∈ Δ. We considered the following seven properties as par-
tial replacements for the triangle inequality:

(W3) limμðιn, ιÞ = 0 ∧ limμðιn, κÞ = 0⇒ ι = κ
(W4) limμðιn, ιÞ = 0 ∧ limμðιn, κnÞ = 0⇒ limμðκn, ιÞ = 0
(HE) limμðιn, ιÞ = 0 ∧ limμðκn, ιÞ = 0⇒ limμðιn, κnÞ = 0
(CC) limμðιn, ιÞ = 0⇒ limμðιn, κÞ = μðι, κÞ
(W) limμðιn, κnÞ = 0 ∧ limμðκn, znÞ = 0⇒ limμðιn, znÞ = 0
(JMS) limμðιn, κnÞ = 0 ∧ limμðκn, znÞ = 0⇒ �limμðιn, znÞ

≠∞;
(SC) lim

n→∞
μðιn, ιÞ = 0 implies �lim

n→∞
μðιn, κÞ = μðι, κÞ

The property (W3) has been introduced by Fréchet
[10]; (W4), (HE), and (W) by Pitcher and Chittenden
[14]; (CC) by Sims [15]; (JMS) by Jachymski et al. [18];
and (SC) by Aranđelović and Kečkić [17]. Note that

ðWÞ⇒ ðW4Þ⇒ ðW3Þ, ðWÞ⇒ ðJMSÞ, ðWÞ⇒ ðHEÞ, ðCCÞ
⇒ ðW3Þ, and ðCCÞ⇒ ðSCÞ (see [17, 26]).

In [26], the authors give examples for the following rela-
tionships: ðW3Þ⇒ðW4Þ, ðW4Þ⇒ðHEÞ, ðW4Þ⇒ðCCÞ, ðW3Þ
⇒ðHEÞ, ðW3Þ⇒ðCCÞ, ðCCÞ⇒ðW4Þ, ðHEÞ⇒ðCCÞ, ðHEÞ⇒
ðW3Þ, ðHEÞ⇒ðW4Þ, and ðCCÞ⇒ðHEÞ. The fact that ðWÞ
⇒ðCCÞ has been proved in [27].

Definition 1. Let Δ be a nonempty set, μ : Δ × Δ→ ½0,∞Þ.
ðΔ, μÞ is said to be a b -metric space if there exists s ∈ ½0,∞Þ
such that

(1) μðι, κÞ = 0 if and only if ι = κ

(2) μðι, κÞ = μðκ, ιÞ for any ι, κ ∈ Δ
(3) μðι, zÞ ≤ s½μðι, κÞ + μðκ, zÞ�for all ι, κ, z ∈ Δ.
Any s ∈ ½0,∞Þ which satisfies inequality (3) of Definition

1 for all ι, κ, z ∈ Δ, where ðΔ, μÞ is a b-metric space, is said to
be the b constant of space ðΔ, μÞ. It is clear that if s = 1, then
ðΔ, μÞ is a metric space.

Lemma 2. Let ðΔ, μÞ be a b-metric space with b constant s.
Then, s ≥ 1.

Proof. Let ι, κ ∈ Δ. Then, μðι, κÞ ≤ s½μðι, κÞ + μðκ, κÞ� = sμðι, κÞ,
which implies that s ≥ 1.

In [17], the following result was proved.

Lemma 3 (see [17]). Let ðΔ, μÞ be a b-metric space. Then,
ðΔ, μÞ is a symmetric space which satisfies the properties
(W3), (W4), (HE), (W), and (JMS).

3. Comparison Functions

Let χ : ½0,∞Þ→ ½0,∞Þ be a function such that χðιÞ = 0 if and
only if ι = 0. Define:

(1) χ ∈ Ξ0 if and only if χðrÞ < r for each r > 0

(2) χ ∈ Ξ1 if and only if �lim
tr+

χðtÞ = χðrÞ for each r > 0

(3) χ ∈ Ξ2 if and only if �lim
tr
χðtÞ ≤ χðrÞ for any r > 0

(4) χ ∈ Ξ3 if and only if �lim
tr+

χðtÞ < r for any r > 0

(5) χ ∈ Ξ4 if and only if �lim
tr
χðtÞ < r for all r > 0

(6) χ ∈ Ξ5 if and only if lim
t→∞

ðt − χðtÞÞ =∞

(7) χ ∈ Ξ6 if and only if I − χ : ½0,∞Þ→ ½0,∞Þ is a
strictly increasing surjection

(8) χ ∈ Ξ7 if and only if fι : ðI − χÞðιÞ < rg is bounded for
every r > 0

(9) χ ∈ Ξ8 if and only if χ is monotone nondecreasing

If χ ∈ ∩ 7
i=0Ξi, then we say that χ is a comparison

function.
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If χ ∈ Ξ1, then χ is continuous from the right on ð0,∞Þ.
If χ ∈ Ξ2, then χ is upper semicontinuous on ð0,∞Þ.
The class of Ξ0 ∩ Ξ1 ∩ Ξ6 ∩ Ξ8 has been applied in the

theory of nonlinear quasi-contractions by Danes
[18],Ξ0 ∩ Ξ1 ∩ Ξ5 ∩ Ξ8 by Ivanov [4], Ξ0 ∩ Ξ3 ∩ Ξ5 ∩ Ξ8 by
Aranđelović et al. [5] and Di Bari and Vetro [9], Ξ0 ∩ Ξ4 ∩
Ξ5 by Aranđelović et al. [5], and the class of Ξ0 ∩ Ξ2 ∩ Ξ7 ∩
Ξ8 by Bessenyei [6].

Note that Ξ4 ⊆ Ξ3, ðΞ1 ∩ Ξ0Þ ⊆ ðΞ3 ∩ Ξ0Þ, and ðΞ2 ∩ Ξ0Þ
⊆ ðΞ4 ∩ Ξ0Þ. Some further inclusion between different classes
of comparison functions will be presented in the next
statements.

Proposition 4. If χ ∈ Ξ3 ∩ Ξ8, then χ ∈ Ξ4.

Proof. For any r > 0, from �lim
tr+

χðtÞ < r, we get that �lim
tr
χðtÞ

< r, because χ is monotone nondecreasing. So, we obtain
that �lim

tr
χðtÞ < r, for every r > 0. ⋄

Proposition 5. Ξ5 = Ξ7 .

Proof. Let χ ∈ Ξ5. If there exists r > 0 such that fι : ι − χðιÞ
< rg is unbounded; then, for every M > 0, there exists t > 0
such that t − χðtÞ < r. So,

limt→∞χ tð Þ ≤ r <∞, ð4Þ

which is a contradiction with χ ∈ Ξ5.
Let χ ∈ Ξ7. Suppose that there exists an increasing sequence

ðtnÞ ⊆ ð0,∞Þ such that limtn =∞ and R > 0 such that ðtn − χ
ðtnÞÞ < R, for each n. Hence, ðtnÞ ⊆ fι : ι − χðιÞ < Rg. So, fι : ι
− χðιÞ < Rg is unbounded which implies that χ∈Ξ7.

Proposition 6. If χ ∈ Ξ6 , then χ ∈ Ξ5.

Proof. Let χ ∈ Ξ6. Suppose that there exists a strictly increas-
ing sequence ðtnÞ ⊆ ð0,∞Þ such that limtn =∞ and R > 0
such that ðtn − χðtnÞÞ < R, for each positive integer n. So,
for any ι > 0, we have ι − χðιÞ < R, because there exists tn such
that ι < tn, which implies that χ is not a surjection. Hence,
lim
t→∞

ðt − χðtÞÞ =∞.⋄

Two following two lemmas have been proved in [5].

Lemma 7. Let χ ∈ Ξ0 ∩ Ξ4 ∩ Ξ5. Then, there exists Ω ∈ Ξ0 ∩
Ξ3 ∩ Ξ5 ∩ Ξ8 such that

χ ιð Þ ≤Ω ιð Þ < ι, ð5Þ

for each ι > 0.

Lemma 8. Let χ1,⋯, χn ∈ Ξ0 ∩ Ξ3 ∩ Ξ5 ∩ Ξ8. Then, there
exists Ω ∈ Ξ0 ∩ Ξ3 ∩ Ξ5 ∩ Ξ8 such that

χk ιð Þ ≤Ω ιð Þ < ι, ð6Þ

for each 1 ≤ k ≤ n and ι > 0.

4. Main Results

First, recall some standard terminology and notations from
the fixed point theory.

Let Δ be a nonempty set, and let Y : Δ→ Δ be an arbi-
trary mapping.

Let Δ and Λ be nonempty sets, Y , Γ : Δ→Λ, and YðΔÞ
⊆ ΓðΔÞ. Choose a point ι1 ∈ Δ such that Yðι0Þ = Γðι1Þ. Con-
tinuing this process, having ιn ∈ Δ, we obtain ιn+1 ∈ Δ such
that YðιnÞ = Γðιn+1Þ. YðιnÞ is called a Jungck sequence with
an initial point ι0. Note that a Jungck sequence might not
be determined by its initial point ι0.

Let Δ be a nonempty set and Y , Γ : Δ→ Δ. Y and Γ are
called weakly compatible if they commute at their coinci-
dence points.

Lemma 9 (see [28]). Let Δ be a nonempty set and let Y , Γ
: Δ→ Δ be weakly compatible self mappings. If Y and Γ have
a unique point of coincidence κ = YðιÞ = ΓðιÞ, then κ is the
unique common fixed point of Y and Γ.

Now, we present our main result. Before stating the result,
we make a convention to abbreviate YðιÞ and ΓðιÞ in order to
avoid too much parenthesis.

Theorem 10. Let ðΛ, μÞ be a b -metric space with b constant s
and let Y , Γ : Δ→Λ be two mappings. Suppose that the range
of Γ contains the range of Y and that ΓðΔÞ is a complete sub-
space of Λ. If there exist χ1, χ2, χ3, χ4, χ5 : ½0,∞Þ→ ½0,∞Þ
such that

s · χ1, s · χ2, s · χ3, s · χ4, s · χ5 ∈ Ξ0 ∩ Ξ4 ∩ Ξ5 and ð7Þ

μ Y ι, Yκð Þ ≤max χ1 μ Γι, Γκð Þð Þ, χ2 μ Γι, Y ιð Þð Þ, χ3f
� μ Γκ, Yκð Þð Þ, χ4 μ Γι, Yκð Þð Þ, χ5 μð Y ι, Γκð Þg, ð8Þ

for any ι, κ ∈ Δ, then there exists z ∈Λ which is the limit of
every Jungck sequence defined by Y and Γ. Further, z is the
unique point of coincidence of Y and Γ. Moreover, if Δ =Λ
and Y , Γ are weakly compatible, then z is the unique common
fixed point for Y and Γ.

Proof. We shall, first, reduce the statement to the case χ1 =
⋯ = χ5 and s · χi ∈ Ξ0 ∩ Ξ3 ∩ Ξ5 ∩ Ξ8. Indeed, from Lemma
7, it follows that there exist functions χ∗

k : ½0,∞Þ→ ½0,∞Þ
such that s · χ∗

k ∈ Ξ0 ∩ Ξ3 ∩ Ξ5 ∩ Ξ8 and

χk ιð Þ ≤ χ∗
k ιð Þ < ι, ð9Þ

for each ι > 0 and for all 1 ≤ k ≤ 5, whereas from Lemma 8, it
follows that there exists a real function χ : ½0,∞Þ→ ½0,∞Þ
such that s · χ ∈ Ξ0 ∩ Ξ3 ∩ Ξ5 ∩ Ξ8 and

χ∗
k ιð Þ ≤ χ ιð Þ < ι

s
, 1 ≤ k ≤ 5ð Þ for each ι > 0, ð10Þ

which implies
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μ Y ι, Yκð Þ ≤max χ μ Γι, Γκð Þð Þ, χ μ Γι, Y ιð Þð Þ, χf
� μ Γκ, Yκð Þð Þ, χ μ Γι, Yκð Þð Þ, χ μ Y ι, Γκð Þð Þg:

ð11Þ

Thus, we can assume that χj = χ for all 1 ≤ j ≤ 5 and s ·
χ ∈ Ξ0 ∩ Ξ3 ∩ Ξ5 ∩ Ξ8.

Let ι0 ∈ Δ be arbitrary and let ðιnÞ be an arbitrary
sequence such that YðιnÞ is a Jungck sequence with an initial
point ι0.

Let d0 = μðΓι0, Y ι0Þ. We will prove that there exists a real
number r0 > 0 such that:

r0 − s · χ r0ð Þ ≤ d0 and r − s · χ rð Þ > d0 for r > r0: ð12Þ

Consider the set D = fr ∣ t − s · χðtÞ > d0∀t > rg which is
nonempty, since r − χðrÞ→∞ as r→∞. Also, if q ∈D and
p > q imply p ∈D, and hence, D is an unbounded interval.
Set r0 = inf D. For each positive integer n, there is rn ∉D such
that r0 − 1/n < rn, and therefore, there is r0 ≥ tn > rn > r0 − 1/n
such that tn − s · χðtnÞ ≤ d0. Since χ is nondecreasing, we have
s · χðtnÞ ≤ s · χðr0Þ which implies that tn − s · χðr0Þ ≤ d0.
Taking the limit as n→∞, we get r0 − s · χðr0Þ ≤ d0.

For any j ≥ 0, define OnðιjÞ = fY ιk ∣ k = j, j + 1, j + 2,⋯,
j + ng and OðιjÞ = fYðιkÞ ∣ k = j, j + 1, j + 2,⋯g. Also, let
diamðAÞ denote the diameter of A.

Next, we prove that

δ On ιkð Þð Þ ≤ χ δ On+1 ιk−1ð Þð Þð Þ, ð13Þ

for all positive integer k, n.
Since χ is nondecreasing, it commutes withmax, and for

all k ≤ i, j ≤ k + n, we have

μ Y ιi, Y ιj
� �

≤ χ max μ Γιi, Γιj
� �

, μ Γιi, Y ιið Þ, μ Γιj, Y ιj
� �

, μ
��

� Γιi, Y ι j
� �

, μ Γιj, Y ιi
� ���

= χ max μ Y ιi−1, Y ιj−1
� �

, μ Y ιi−1, Y ιið Þ, μ��
� Y ιj−1, Y ιj
� �

, μ Y ιi−1, Y ιj
� �

, μ Y ιj−1, Y ιi
� ���

≤ χ diam On+1 ιk−1ð Þð Þð Þ:
ð14Þ

By induction, from (13), we obtain that

δ On ιkð Þð Þ ≤ χl diam On+l ιk−lð Þð Þð Þ: ð15Þ

For 1 ≤ i, j ≤ n, we have Y ιi, Y ιj ∈ On−1ðι1Þ, and hence,
by (13)

μ Y ιi, Y ιj
� �

≤ diam On−1 ι1ð Þð Þ ≤ χ diam On ι0ð Þð Þð Þ < diam On ι0ð Þð Þ:
ð16Þ

Therefore, there is 1 ≤ k ≤ n such that

diam On ι0ð Þð Þ = μ Y ι0, Y ιkð Þ ≤ s · μ Y ι0, Y ι1ð Þ + μ Y ι1, Y ιkð Þ½ �
≤ s · d0 + s · diam On−1 ι1ð Þð Þ
≤ s · d0 + s · χ diamð On ι0ð Þð Þ:

ð17Þ

Hence, we get

diam On ι0ð Þð Þ − s · χ diam On ι0ð Þð Þð Þ ≤ d0, ð18Þ

which implies that diamðOnðι0ÞÞ ≤ r0, and hence

diam O ι0ð Þð Þ = sup
n
diam On ι0ð Þð Þ ≤ r0: ð19Þ

Hence, all Jungck sequences defined by Y and Γ are
bounded.

Now, we shall prove that our Jungck sequence is a Cau-
chy sequence. Let m > n be positive integers. Then, Y ιn, Y ιm
∈ Om−n+1ðιnÞ. Using (15) (with l = n) and (19), we get

μ Y ιn, Y ιmð Þ ≤ diam Om−n+1 ιnð Þð Þ ≤ χn diam Om+1 ι0ð Þð Þð Þ ≤ χn r0ð Þ→ 0, ð20Þ

as m, n→∞. Since YðΔÞ ⊆ ΓðΔÞ, and ΓðΔÞ is complete, it
follows that Y ιn is convergent. Let κ ∈ Δ be its limit.

Clearly, κ ∈ ΓðΔÞ. So, there is z ∈ Δ such that ΓðzÞ = κ. Let
us prove that YðzÞ is also equal to κ. By (8), we have

μ Y ιn, Yzð Þ ≤ χ max μ Γιn, Γzð Þ, μ Γιn, Y ιnð Þ, μ Γz, Yzð Þ, μfð
� Γιn, Yzð Þ, μ Γz, Y ιnð ÞgÞ

= χ max μ Y ιn−1, κð Þ, μ Y ιn−1, Y ιnð Þ, μ κ, Yzð Þ, μfð
� Y ιn−1, Yzð Þ, μ κ, Y ιnð ÞgÞ:

ð21Þ

If n→∞, then the left-hand side in the previous inequal-
ity tends to μðκ, YzÞ, and the first, the second, and the fifth
argument of max tend to μðκ, κÞ = 0, whereas the third and
the fourth tend to μðκ, YzÞ. Thus, we have

μ κ, Yzð Þ ≤ χ μ κ, Yzð Þð Þ, ð22Þ

which is impossible, unless μðκ, YzÞ = 0.
Finally, we prove that the point of coincidence is unique.

Suppose that there is two points of coincidence κ and κ′
obtained by z and z′, i.e., Yz = Γz = κ and Yz′ = Γz′ = κ′.
Then, by (8) we have

μ κ, κ′
� �

= μ Yz, Yz′
� �

≤ χ max μ Γz, Γz′
� �

, μ Γz, Yzð Þ, μ
n�

� Γz′, Yz′
� �

, μ Γz, Yz′
� �

, μ Γz′, Yz
� �o�

= χ max μ κ, κ′
� �

, 0, 0, μ κ, κ′
� �

, μ κ′, κ
� �n o� �

= χ μ κ, κ′
� �� �

< μ κ, κ′
� �

,

ð23Þ

unless μðκ, κ′Þ = 0. Since every Jungck sequence con-
verges to some point of coincidence, and the point of coinci-
dence is unique, it follows that all Jungck sequences converge
to the same limit.
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Let Δ =Λ and let Y , Γ be weakly compatible. By Lemma
3, we get that κ = z which is the unique common fixed point
of Y and Γ.

The previous theorem extended earlier results for nonlin-
ear contractions on metric spaces obtained by Danes [3],
Ivanov [4], Aranđelović et al. [5], and Bessenyei [6] and com-
mon fixed point results of Das and Naik [8] and Di Bari and
Vetro [9]. It also generalizes the fixed point theorem of
Aleksić et al. [7] which proved the fixed point theorems for
quasi-contractive mappings on b-metric spaces, defined by
linear quasi-contractive conditions.

Example 1. Let Δ =Λ = f0, 1, 2, 3g be equipped with the
following b-metric μ : X × X→ℝ+ by μðι, κÞ = jι − κj2:

It is easy to see that ðΔ =Λ, μÞ is a complete b-metric
space with s = 2.

Define the self-maps Y and Γ by

Y =
0 1 2 3
0 0 1 0

 !
,

Γ =
0 1 2 3
0 0 3 1

 !
:

ð24Þ

We see that ΓðΔÞ ⊇ YðΔÞ.
Define χi : ½0,∞Þ→ ½0,∞Þ by χðtÞ = t − sinh−1t. One can

easily check that Y satisfies condition (8). Indeed, we have
some cases as follows:

(1) ðι, κÞ = ð0, 2Þ: Then,

μ Y ι, Yκð Þ = Y0 − Y2j j2 = 1 ≤ 9 − sinh−1 9ð Þ
≤ χ1 μ Γι, Γκð Þð Þ
≤max χ1 μ Γι, Γκð Þð Þ, χ2 μ Γι, Y ιð Þð Þ, χ3f
� μ Γκ, Yκð Þð Þ, χ4 μ Γι, Yκð Þð Þ, χ5 μð Y ι, Γκð Þg:

ð25Þ

(2) ðι, κÞ = ð1, 2Þ: Then,

μ Y ι, Yκð Þ = Y1 − Y2j j2 = 1 ≤ 9 − sin h−1 9ð Þ
= χ1 μ Γι, Γκð Þð Þ
≤max χ1 μ Γι, Γκð Þð Þ, χ2 μ Γι, Y ιð Þð Þ, χ3f
� μ Γκ, Yκð Þð Þ, χ4 μ Γι, Yκð Þð Þ, χ5 μð Y ι, Γκð Þg:

ð26Þ

(3) ðι, κÞ = ð3, 2Þ: Then,

μ Y ι, Yκð Þ = Y1 − Y2j j2 = 1 ≤ 4 − sin h−1 4ð Þ
= χ1 μ Γι, Γκð Þð Þ
≤max χ1 μ Γι, Γκð Þð Þ, χ2f
� μ Γι, Y ιð Þð Þ, χ3 μ Γκ, Yκð Þð Þ, χ4
� μ Γι, Yκð Þð Þ, χ5 μð Y ι, Γκð Þg:

ð27Þ

Thus, all the conditions of Theorem 10 are satisfied, and
hence, Y and Γ have a common fixed point. Indeed, 0 is the
unique common fixed point of Y and Γ.

5. Application

The existence of the solution for the following integral equa-
tion is the main purpose in this section.

σ ιð Þ = f ι,
ðρ ιð Þ

0
g ι, κ, σ ρ κð Þð Þð Þdκ

� 	
, ð28Þ

where ι ∈ ½0,∞Þ:
Wewill ensure such an existence by applying Theorem 10.
Let BC½0,∞Þ be the space of all real, bounded and con-

tinuous functions on the interval ½0,∞Þ. We endow it with
the b-metric

d ι, κð Þ = sup ι tð Þ − κ tð Þj jp : t ∈ 0,∞½ Þ� �
, ð29Þ

where p ≥ 1:

Theorem 11. Suppose that the following assumptions are
satisfied:

(i) ρ, ϱ : ½0,∞Þ→ ½0,∞Þ are continuous functions so
that

Λp = sup ϱ tð Þj j: t ∈ 0,∞½ Þf g < 1, ð30Þ

(ii) The function f : ½0,∞Þ × R→ R is continuous so that

f ι, σ1ð Þ − f ι, σ2ð Þj j ≤ σ1 − σ2j j, ð31Þ

(iii) For all ι ∈ ½0,∞Þ and σi ∈ℝ

g ι, κ, σ1 ρ κð Þð Þð Þ − g ι, κ, σ2 ρ κð Þð Þð Þj j ≤ σ1 ρ κð Þð Þ − σ2 ρ κð Þð Þj j,
ð32Þ

where g : ½0,∞Þ2 × R→ R is continuous.

(iv) M =max f f ðι, 0Þ: ι ∈ ½0,∞Þg <∞ and G = sup fjgðι
, κ, 0Þj: ι ∈ ½0,∞Þg <∞

Then, the integral equation (28) admits at least one solu-
tion in the space ðBC½0,∞ÞÞ.

Proof. Let us consider the operator Y : BC½0,∞Þ→ BC½0,∞Þ
defined by

Y σð Þ ιð Þ = f ι,
ðρ ιð Þ

0
g ι, κ, σ ρ κð Þð Þð Þdκ

� 	
: ð33Þ

In view of the given assumptions, we infer that the func-
tion YðσÞ is continuous for arbitrarily σ ∈ BC½0,∞Þ. Now, we
show that YðσÞ is bounded in BC½0,∞Þ. As
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Y σð Þ ιð Þj j = f ι,
ðρ ιð Þ

0
g ι, κ, σ ρ κð Þð Þð Þdκ

� 	










≤ f ι,
ðρ ιð Þ

0
g ι, κ, σ ρ κð Þð Þð Þdκ

� 	
− f ι, 0ð Þ










 + f ι, 0ð Þj j,

ð34Þ

we have

f ι,
ðρ ιð Þ

0
g ι, κ, σ ρ κð Þð Þð Þdκ

� 	
− f ι, 0ð Þ












≤
ðρ ιð Þ

0
g ι, κ, σ ρ κð Þð Þð Þdκ












≤Λ σk k +ΛG:

ð35Þ

Thus,

f ι,
ðρ ιð Þ

0
g ι, κ, σ ρ κð Þð Þð Þdκ

� 	
− f ι, 0ð Þ










 ≤Λ σk k +ΛG:

ð36Þ

From the above calculations, we have

Y σð Þ ιð Þk k ≤Λ σk k +ΛG +M: ð37Þ

Due to the above inequality, the function Y is bounded.
Now, we show that Y satisfies all the conditions of

Theorem 10. Let σ1, σ2 be some elements of BC½0,∞Þ. Then,
we have

Y σ1ð Þ ιð Þ − Y σ2ð Þ ιð Þj jp ≤ f ι,
ðρ ιð Þ

0
g ι, κ, σ1 ρ κð Þð Þð Þdκ

� 	




− f ι,

ðρ ιð Þ

0
g ι, κ, σ2 ρ κð Þð Þð Þdκ

� 	




p

≤
ðρ ιð Þ

0
g ι, κ, σ1 ρ κð Þð Þð Þdκ






−
ðρ ιð Þ

0
g ι, κ, σ2 ρ κð Þð Þð Þdκ






p

≤
ðρ ιð Þ

0
1qdκ

� 	1/qðρ ιð Þ

0
g ι, κ, σ1 ρ κð Þð Þð Þj

 

− g ι, κ, σ2 ρ κð Þð Þð Þjpdκ�1/p
!p

≤ ρ ιð Þð Þp/q
ðρ ιð Þ

0
χ1 σ1 ρ κð Þð Þdκjð

�

− σ2 ρ κð Þð Þjp�dκÞ1/p�p
≤ ρ ιð Þð Þp/q+1χ1 d σ1, σ2ð Þð Þ
≤Λpχ1 d σ1, σ2ð Þð Þ ≤M σ1, σ2ð Þ,

ð38Þ

where Mðσ1, σ2Þ is defined by

M σ1, σ2ð Þ =max χ1 μ ι, κð Þð Þ, χ2 μ ι, Y ιð Þð Þ, χ3 μ κ, Yκð Þð Þ, χ4f
� μ ι, Yκð Þð Þ, χ5 μð Y ι, κð Þg:

ð39Þ

Thus, we obtain that

μ Y σ1ð Þ, Y σ2ð Þð Þ ≤M σ1, σ2ð Þ: ð40Þ

Using Theorem 10, we obtain that the operator Y admits
a fixed point. Thus, the functional integral equation (28)
admits at least one solution in BC½0,∞Þ.
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