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Abstract: Many authors used the concept of F−contraction introduced by Wardowski in 2012 in
order to define and prove new results on fixed points in complete metric spaces. In some later papers
(for example Proinov P.D., J. Fixed Point Theory Appl. (2020)22:21, doi:10.1007/s11784-020-0756-1) it
is shown that conditions (F2) and (F3) are not necessary to prove Wardowski’s results. In this article
we use a new approach in proving that the Picard–Jungck sequence is a Cauchy one. It helps us
obtain new Jungck–Fisher–Wardowski type results using Wardowski’s condition (F1) only, but in a
way that differs from the previous approaches. Along with that, we came to several new contractive
conditions not known in the fixed point theory so far. With the new results presented in the article,
we generalize, extend, unify and enrich methods presented in the literature that we cite.

Keywords: banach contraction principle; Fisher fixed point theorem; Wardowski-type contractions;
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1. Introduction and Preliminaries

In 1976, Jungck [1] proved the following result.

Theorem 1. Let T and I be commuting mappings of a complete metric space (Υ, dΥ) into itself that satisfy
the inequality

dΥ (T x̃, T ỹ) ≤ λdΥ (I x̃, I ỹ) (1)

for all x̃, ỹ ∈ Υ, where 0 < λ < 1. If the range of I contains the range of T and if I is continuous, then T and
I have a unique common fixed point.

In 1981, Fisher [2] proved the common fixed point theorem for four mappings and thus obtained
a genuine generalization of Jungck’s result from 1976.

Theorem 2. Let S , I and T ,J be pairs of commuting mappings of a complete metric space (Υ, dΥ) into itself
that satisfies

dΥ (S x̃, T ỹ) ≤ λdΥ (I x̃,J ỹ) (2)

for all x̃, ỹ ∈ Υ, where 0 < λ < 1. If S x̃ ∈ J (Υ) and T x̃ ∈ I (Υ) for each x̃ ∈ Υ and if I and J are
continuous, then all mappings S , T , I and J have a unique common fixed point.
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Remark 1. It is obvious that both previous Theorems holds true for λ = 0 alike. In addition, it is evident that
Theorems 1 and 2 genuinely generalize the famous Banach contraction principle [3].

Since 2012., several research papers (for example [4–16]) considered a new type of contraction
mapping introduced by Wardowski [17] . For other new-old types of contractive mappings see e.g.,
[18–22]. Firstly, in [17] the author introduced the following:

Definition 1. Let F : (0,+∞)→ (−∞,+∞) be a mapping satisfying:

(F1) F is strictly increasing, i.e., for all a, b ∈ (0,+∞) , if a < b then F (a) < F (b) ;
(F2) For each sequence {x̃p}p∈N ⊂ (0,+∞), limp→+∞ x̃p = 0 if and only if limp→+∞ F (x̃p) = −∞;
(F3) There exists m ∈ (0, 1) such that limx̃→0+ x̃mF (x̃) = 0.

A self-mapping A of a complete metric space (Υ, dΥ) into itself is said to be an F−contraction if there
exists τ > 0 such that

dΥ (Ax̃,Aỹ) > 0 implies τ +F (dΥ (Ax̃,Aỹ)) ≤ F (dΥ (x̃, ỹ)) , (3)

for all x̃, ỹ ∈ Υ

Remark 2. Since inequality F (t− 0) ≤ F (t) ≤ F (t + 0) holds for all t ∈ (0,+∞), one can conclude
(using (F1) property only) that there are limc→t− F (c) = F (t− 0) and limc→t+ F (c) = F (t + 0).

In addition, from property (F1) it follows either

(1) F (0 + 0) = limx̃→0+ F (x̃) = m,m ∈ (−∞,+∞), or
(2) F (0 + 0) = limx̃→0+ F (x̃) = −∞ (for more details see [13,23]).

Additionally, in [17] Wardowski proved and generalized the Banach contraction principle in the
following form:

Theorem 3. Let (Υ, dΥ) be a complete metric space and A : Υ→ Υ an F− contraction. Then A has a unique
fixed point, say x̃∗ in Υ and for every x̃ ∈ Υ the sequence {Ap x̃} , p ∈ N converges to x̃∗.

Note that in 2013., Turinci [24] noticed that condition (F2) can be weakened as follows:

(T) limt→0+ F (t) = −∞.

Other details of property (F2) can be found in Secelean’s work ([12] [Lemma 2 and Remark 3.1]).
Further, Wardowski in [15] introduced a concept of (τ,F )−contraction on metric space. A self
mapping A : Υ → Υ is said to be (τ,F )−contraction if for some F : (0,+∞) → (−∞,+∞) and
τ : (0,+∞)→ (0,+∞) the following conditions apply

(τ1) F satisfies (F1) and (T);
(τ2) lim infc→t+ τ (c) > 0 for all t ≥ 0;
(τ3) τ (dΥ (x̃, ỹ)) +F (dΥ (Ax̃,Aỹ)) ≤ F (dΥ (x̃, ỹ)) for all x̃, ỹ ∈ Υ such that Ax̃ 6= Aỹ.

Among other things, he generalized the result from [17] and proved the following theorem [15].

Theorem 4. Let A : Υ→ Υ be a (τ,F )−contraction on complete metric space (Υ, dΥ). Then A has a unique
fixed point.

Recently, in [14], we proved the Theorem 4 using only the condition (F1) and the following two
lemmas [9,10] .
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Lemma 1. Let {x̃p} be a sequence in a metric space (Υ, dΥ) such that limp→+∞ dΥ
(

x̃p, x̃p+1
)
= 0. If {x̃p}

is not a Cauchy sequence, then there exist ε > 0 and two sequences {p (s)} and {q (s)} of positive integers such
that p (s) > q (s) > s and the sequences:{

dΥ

(
x̃p(s), x̃q(s)

)}
,
{

dΥ

(
x̃p(s)+1, x̃q(s)

)}
,
{

dΥ

(
x̃p(s), x̃q(s)−1

)}
,

{
dΥ

(
x̃p(s)+1, x̃q(s)−1

)}
,
{

dΥ

(
x̃p(s)+1, x̃q(s)+1

)}
, (4)

tend to ε+, as s→ +∞.

Lemma 2. Let
{

x̃p+1
}
= {Ax̃p} = {Ap x̃0} , p ∈ N∪{0} ,A0 x̃0 = x̃0 be a Picard sequence in a metric space

(Υ, dΥ) induced by a mappingA : Υ→ Υ and let x̃0 ∈ Υ be an initial point. If dΥ
(

x̃p, x̃p+1
)
< dΥ

(
x̃p−1, x̃p

)
for all p ∈ N then x̃p 6= x̃q whenever p 6= q.

Proof. Suppose the opposite, let x̃p = x̃q for some p, q ∈ N with p < q. Then x̃p+1 = Ax̃p = Ax̃q =

x̃q+1. Further, we get

dΥ
(

x̃p, x̃p+1
)
= dΥ

(
x̃q, x̃q+1

)
< dΥ

(
x̃q−1, x̃q

)
< ... < dΥ

(
x̃p, x̃p+1

)
, (5)

and that is a contradiction.

At the end of this section, let us recall the following terms and results (for more information,
see [25,26]). LetA and B be self mappings of a nonempty set Υ. If ỹ = Ax̃ = Bx̃ for some x̃ ∈ Υ, then x̃
is called a coincidence point of A and B, and ỹ is called a point of coincidence of A and B. A pair of
self mappings (A,B) is said to be a compatible if limp→+∞ dΥ (ABx̃p,BAx̃p) = 0, for every sequence
{x̃p} in Υ for which limp→+∞Ax̃p = limp→+∞ Bx̃p = t, for some t ∈ Υ. The pair (A,B) is weakly
compatible if mappings A and B commute at their coincidence points. A sequence {x̃p} in Υ is said to
be a Picard–Jungck sequence of the pair (A,B) (based on x̃0) if ỹp = Ax̃p = Bx̃p+1 for all p ∈ N∪ {0}.

Proposition 1. [26] If weakly compatible self mappings A and B of a set Υ have a unique point of coincidence
ỹ = Ax̃ = Bx̃, then ỹ is a unique common fixed point of A and B.

2. Results

In the following theorem, we bring forward first of our results for four self-mappings in a complete
metric space.

Theorem 5. Let (S , I) and (T ,J ) be a pair of compatible self-mappings of a complete metric space (Υ, dΥ)

into itself and F : (0,+∞)→ (−∞,+∞) is a strictly increasing mapping such that

τ +F (dΥ (S x̃, T ỹ)) ≤ F
(
MI ,J
S ,T (x̃, ỹ)

)
, (6)

for all x̃, ỹ ∈ Υ with dΥ (S x̃, T ỹ) > 0, where

MI ,J
S ,T (x̃, ỹ) = max

{
dΥ (I x̃,J ỹ) , dΥ (S x̃, I x̃) , dΥ (T ỹ,J ỹ) ,

dΥ (S x̃,J ỹ) + dΥ (T ỹ, I x̃)
2

}
,

and τ is a given positive constant. If I ,J ,S and T are continuous and if S (Υ) ⊆ J (Υ) , T (Υ) ⊆ I (Υ)
then mappings I ,J ,S and T have a unique common fixed point.
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Proof. First of all we show the uniqueness of a possible common fixed point. Suppose that I ,J ,S
and T have two distinct common fixed points x̃ and ỹ in Υ. Since dΥ (x̃, ỹ) = dΥ (S x̃, T ỹ) > 0 we get
according to (6):

τ +F (dΥ (S x̃, T ỹ)) ≤ F
(
MI ,J
S ,T (x̃, ỹ)

)
, (7)

where

MI ,J
S ,T (x̃, ỹ) = max

{
dΥ(I x̃,J ỹ), dΥ(S x̃, I x̃), dΥ(T ỹ,J ỹ),

dΥ(S x̃,J ỹ) + dΥ(T ỹ, I x̃)
2

}
= max

{
dΥ(x̃, ỹ), dΥ(x̃, x̃), dΥ(ỹ, ỹ),

dΥ(x̃, ỹ) + dΥ(ỹ, x̃)
2

}
= dΥ(x̃, ỹ).

Hence,
τ +F (dΥ (x̃, ỹ)) ≤ F (dΥ (x̃, ỹ)) . (8)

Since τ > 0 and x̃ 6= ỹ we get a contradiction. So, if there exists a common fixed point, it is unique.
We further prove the existence of this common fixed point. Let x̃0 ∈ Υ be arbitrary. Since S x̃0 ∈ J (Υ),
there is x̃1 ∈ Υ such that J x̃1 = S x̃0, and also as T x̃1 ∈ I (Υ), let x̃2 ∈ Υ be such that I x̃2 = T x̃1.
In general, there are x̃2p+1 and x̃2p+2 in Υ such thatJ x̃2p+1 = S x̃2p and I x̃2p+2 = T x̃2p+1, p = 0, 1, 2, ....
Denote a sequence {z̃p} with

z̃2p = J x̃2p+1 = S x̃2p

z̃2p+1 = I x̃2p+2 = T x̃2p+1,

p = 0, 1, 2, .... We will show that {z̃p} is a Cauchy sequence. Due to the condition dΥ (S x̃, T ỹ) > 0 it
follows that dΥ

(
z̃2p, z̃2p+1

)
> 0 for all x̃, ỹ ∈ Υ and p ∈ N∪ {0}. Replacing x̃ and ỹ respectively with

x̃2p and x̃2p+1 in (6) we obtain

τ +F
(
dΥ
(
z̃2p, z̃2p+1

))
≤ F

(
MI ,J
S ,T

(
x̃2p, x̃2p+1

))
, (9)

where

MI ,J
S ,T (x̃2p, x̃2p+1) = max

{
dΥ(I x̃2p,J x̃2p+1), dΥ(S x̃2p, I x̃2p), dΥ(T x̃2p+1,J x̃2p+1),

dΥ(S x̃2p,J x̃2p+1) + dΥ(T x̃2p+1, I x̃2p)

2

}
= max

{
dΥ(z̃2p−1, z̃2p), dΥ(z̃2p, z̃2p−1), dΥ(z̃2p+1, z̃2p),

dΥ(z̃2p, z̃2p) + dΥ(z̃2p+1, z̃2p−1)

2

}
≤ max

{
dΥ(z̃2p−1, z̃2p), dΥ(z̃2p+1, z̃2p),

0 + dΥ(z̃2p+1, z̃2p) + dΥ(z̃2p, z̃2p−1)

2

}
≤ max{dΥ(z̃2p−1, z̃2p), dΥ(z̃2p, z̃2p+1)}.

Hence, (9) transforms into

τ +F
(
dΥ
(
z̃2p, z̃2p+1

))
≤ F

(
max

{
dΥ
(
z̃2p−1, z̃2p

)
, dΥ

(
z̃2p, z̃2p+1

)})
. (10)

It is clear that max
{

dΥ
(
z̃2p−1, z̃2p

)
, dΥ

(
z̃2p, z̃2p+1

)}
= dΥ

(
z̃2p−1, z̃2p

)
. Finally, since F is a strictly

increasing mapping and dΥ
(
z̃2p, z̃2p+1

)
< dΥ

(
z̃2p−1, z̃2p

)
for all p ∈ N we have

τ +F
(
dΥ
(
z̃2p, z̃2p+1

))
≤ F

(
dΥ
(
z̃2p−1, z̃2p

))
. (11)
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Similarly, replacing x̃ with x̃2p+2 and ỹ with x̃2p+1 in (6), it follows dΥ
(
z̃2p+2, z̃2p+1

)
< dΥ

(
z̃2p+1, z̃2p

)
,

for all p ∈ N. So,
dΥ
(
z̃p+1, z̃p

)
< dΥ

(
z̃p, z̃p−1

)
(12)

for all p ∈ N, which, further, implies that limp→+∞ dΥ
(
z̃p+1, z̃p

)
= d∗Υ ≥ 0. If d∗Υ > 0 from (11) follows

τ +F (d∗Υ + 0) ≤ F (d∗Υ + 0) ,

and that is a contradiction. Hence, limp→+∞ dΥ
(
z̃p+1, z̃p

)
= 0. To prove that {z̃p} is a Cauchy

sequence, it suffices proving that for the sequence {z̃2p}. Indeed, according to Lemma 1,
puting x̃ = x̃2p(s), ỹ = x̃2q(s)+1 in (6), we get

τ +F
(

dΥ

(
S x̃2p(s), T x̃2q(s)+1

))
≤ F

(
MI ,J
S ,T

(
x̃2p(s), x̃2q(s)+1

))
, (13)

where

MI ,J
S ,T (x̃2p(s), x̃2q(s)+1) = max

{
dΥ(I x̃2p(s),J x̃2q(s)+1), dΥ(S x̃2p(s), I x̃2p(s), dΥ(T x̃2q(s)+1,J x̃2q(s)+1),

dΥ(S x̃2p(s),J x̃2q(s)+1) + dΥ(T x̃2q(s)+1, I x̃2p(s))

2

}
= max

{
dΥ(z̃2p(s)−1, z̃2q(s)), dΥ(z̃2p(s), z̃2q(s)−1), dΥ(z̃2q(s)+1, z̃2q(s)),

dΥ(z̃2p(s), z̃2q(s)) + dΥ(z̃2q(s)+1, z̃2p(s)−1)

2

}
→ max

{
ε, ε, 0,

ε + ε

2

}
= ε,

when s→ +∞. Taking the limit in (13) as s→ +∞, we get a contradiction

τ +F (ε + 0) ≤ F (ε + 0) . (14)

Thus, {z̃p} is a Cauchy sequence in a complete metric space (Υ, dΥ). Having in mind that Υ is a
complete, we conclude that there exists z̃ ∈ Υ such that limp→+∞ z̃p = z̃ or

lim
p→+∞

I x̃2p+2 = lim
p→+∞

T x̃2p+1 = lim
p→+∞

J x̃2p+1 = lim
p→+∞

S x̃2p = z̃.

Further, due to the continuity and compatibility of mappings J and T , we obtain

dΥ (J z̃, T z̃) ≤ dΥ
(
J z̃,J T x̃2p+1

)
+ dΥ

(
J T x̃2p+1, T z̃

)
≤ dΥ

(
J z̃,J T x̃2p+1

)
+ dΥ

(
J T x̃2p+1, T J x̃2p+1

)
+ dΥ

(
T J x̃2p+1, T z̃

)
→ 0 + 0 + 0 = 0

as p → +∞, because T x̃2p+1 → z̃ implies J T x̃2p+1 → J z̃ and dΥ
(
J T x̃2p+1, T J x̃2p+1

)
→ 0

since T x̃2p+1 and J x̃2p+1 converge to the same z̃, so due to their compatibility, we obtain
dΥ
(
J T x̃2p+1, T J x̃2p+1

)
→ 0 and, finally T J x̃2p+1 → T z̃. So, J z̃ = T z̃.

Similarly, we have I z̃ = S z̃. Indeed,

dΥ (I z̃,S z̃) ≤ dΥ (I z̃, IS x̃2p) + dΥ (IS x̃2p,S z̃)

≤ dΥ (I z̃, IS x̃2p) + dΥ (IS x̃2p,SI x̃2p) + dΥ (SI x̃2p,S z̃)

→ 0 + 0 + 0 = 0.
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If S z̃ 6= T z̃ from (6) we obtain

τ +F (dΥ (S z̃, T z̃)) ≤ F
(
MI ,J
S ,T (z̃, z̃)

)
, (15)

where

MI ,J
S ,T (z̃, z̃) = max

{
dΥ (I z̃,J z̃) , dΥ (S z̃, I z̃) , dΥ (T z̃,J z̃) ,

dΥ (S z̃,J z̃) + dΥ (T z̃, I z̃)
2

}
= max

{
dΥ (I z̃,J z̃) , 0, 0,

dΥ (I z̃,J z̃) + dΥ (J z̃, I z̃)
2

}
= dΥ (I z̃,J z̃) = dΥ (S z̃, T z̃) .

Now, (15) can be written in the form

τ +F (dΥ (S z̃, T z̃)) ≤ F (dΥ (S z̃, T z̃)) ,

which is a contradiction. Therefore, S z̃ = T z̃. This further entails equality I z̃ = S z̃ = J z̃ = T z̃.
Let w̃ = I z̃ = S z̃ = J z̃ = T z̃. Then we get

Sw̃ = SI z̃ = IS z̃ = Iw̃ (16)

and
T w̃ = T J z̃ = J T z̃ = J w̃. (17)

If S z̃ 6= T w̃ from (6) it follows

τ +F (dΥ (S z̃, T w̃)) ≤ F
(
MI ,J
S ,T (z̃, w̃)

)
, (18)

where

MI ,J
S ,T (z̃, w̃) = max

{
dΥ (S z̃, T w̃) , dΥ (S z̃,S z̃) , dΥ (T w̃, T w̃) ,

dΥ (S z̃, T w̃) + dΥ (T w̃,S z̃)
2

}
= dΥ (S z̃, T w̃) ,

and now (18) can be written as

τ +F (dΥ (S z̃, T w̃)) ≤ F (dΥ (S z̃, T w̃)) , (19)

which is a contradiction. Therefore, it must be S z̃ = T w̃. Hence, T w̃ = w̃ and from (17) it follows that
w̃ is a common fixed point for T and J . Similarly as in previous case, assumption Sw̃ 6= T z̃ implies a
contradiction, since from (6) we get

τ +F (dΥ (Sw̃, T z̃)) ≤ F (dΥ (Sw̃, T z̃)) .

Therefore, Sw̃ = T z̃. Suppose, further, that Sw̃ = w̃. Then from (16) it follows that w̃ is a common
fixed point for S and J . We proved that w̃ is unique common fixed point for S , T , I and J .

It is worth to notice that Theorem 5 generalizes Theorems 1 and 2 in several directions. Namely,
putting J = I and S = T in (6) we get the following Jungck–Wardowski type result:

Theorem 6. Let (T , I) be a pair of compatible self-mappings of a complete metric space (Υ, dΥ) into itself and
F : (0,+∞)→ (−∞,+∞) is strictly increasing mapping such that

τ +F (dΥ (T x̃, T ỹ)) ≤ F
(
MIT (x̃, ỹ)

)
, (20)
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for all x̃, ỹ ∈ Υ with dΥ (T x̃, T ỹ) > 0, where

MIT (x̃, ỹ) = max
{

dΥ (I x̃, I ỹ) , dΥ (T x̃, I x̃) , dΥ (T ỹ, I ỹ) ,
dΥ (T x̃, I ỹ) + dΥ (T ỹ, I x̃)

2

}
,

τ is a given positive constant. If T and I are continuous and T (Υ) ⊆ I (Υ) then T , I have a unique common
fixed point.

Remark 3. Replacing MIT (x̃, ỹ) with

max {dΥ (I x̃, I ỹ) , dΥ (T x̃, I x̃) , dΥ (T ỹ, I ỹ)} ,

or

max
{

dΥ (I x̃, I ỹ) ,
dΥ (T x̃, I x̃) + dΥ (T ỹ, I ỹ)

2
,

dΥ (T x̃, I ỹ) + dΥ (T ỹ, I x̃)
2

}
,

in (6) we also find Theorem 6 to be true.

As a result of Theorems 5 and 6 in the following we introduce new contractive conditions that
complement the ones given in [11,27–30].

Corollary 1. Suppose that (S , I) and (T ,J ) are the pairs of compatible self-mappings of a complete metric
space (Υ, dΥ) into itself such that for all x̃, ỹ ∈ Υ with dΥ (S x̃, T ỹ) > 0 there exist τi > 0, i = 1, 7 and the
following inequalities hold true:

τ1 + dΥ (S x̃, T ỹ) ≤MIT (x̃, ỹ)

τ2 + exp (dΥ (S x̃, T ỹ)) ≤ exp
(
MIT (x̃, ỹ)

)
τ3 −

1
dΥ (S x̃, T ỹ)

≤ − 1
MIT (x̃, ỹ)

τ4 −
1

dΥ (S x̃, T ỹ)
+ dΥ (S x̃, T ỹ) ≤ − 1

MIT (x̃, ỹ)
+MIT (x̃, ỹ)

τ5 +
1

1− exp (dΥ (S x̃, T ỹ))
≤ 1

1− exp
(
MIT (x̃, ỹ)

)
τ6 +

1
exp (−dΥ (S x̃, T ỹ))− exp (dΥ (S x̃, T ỹ))

≤ 1
exp

(
−MIT (x̃, ỹ)

)
− exp

(
MIT (x̃, ỹ)

)
τ7 + dΥ (S x̃, T ỹ) ≤ dΥ (I x̃,J ỹ)

where MIT (x̃, ỹ) is one of the sets

max
{

dΥ (I x̃,J ỹ) , dΥ (S x̃, I x̃) , dΥ (T ỹ,J ỹ) ,
dΥ (S x̃,J ỹ) + dΥ (T ỹ, I x̃)

2

}
,

max
{

dΥ (I x̃,J ỹ) ,
dΥ (S x̃, I x̃) + dΥ (T ỹ,J ỹ)

2
,

dΥ (S x̃,J ỹ) + dΥ (T ỹ, Ix)
2

}
or

max {dΥ (I x̃,J ỹ)} = dΥ (I x̃,J ỹ) .

If I ,J ,S and T are continuous and S (Υ) ⊆ J (Υ) , T (Υ) ⊆ I (Υ), then in every of these cases mappings
I ,J ,S and T have a unique common fixed point in Υ.
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Proof. Take, in Theorems 5 and 6 F (c) = c, F (c) = exp (c), F (c) = − 1
c ,F (c) = − 1

c + c,
F (c) = 1

1−exp(c) , F (c) = 1
exp(−c)−exp(c) respectively. Since every one of the functions c → F (c) is

strictly increasing on (0,+∞) the result follows by Theorems 5 and 6.

The next example supports Theorem 5. In fact, it is a modification of an example given in [31].

Example 1. Let Υ = [0, 1] and dΥ (x̃, ỹ) = |x̃− ỹ| be a standard metric on it. Let us define the mappings
I ,J ,S , T : Υ→ Υ for all x̃ ∈ Υ as

I (x̃) =
(

x̃
3

)8
,J (x̃) =

(
x̃
3

)4
,S (x̃) =

(
x̃
3

)16
and T (x̃) =

(
x̃
3

)8
.

Obviously, I ,J ,S , T are self mappings and inclusions S (Υ) ⊆ J (Υ) , T (Υ) ⊆ I (Υ) are valid. Further,
a pair (S , I) is compatible. Really, if {x̃p} is a sequence in Υ such that

lim
p→+∞

S x̃p = lim
p→+∞

I x̃p = x̃, for some x̃ ∈ Υ,

then due to the continuity of S and I it follows

lim
p→+∞

dΥ (S (I (x̃p)) , I (S (x̃p))) = lim
p→+∞

|S (I (x̃p))− I (S (x̃p))|

= |S (x̃)− I (x̃)|

=

∣∣∣∣∣
(

x̃
3

)16
−
(

x̃
3

)8
∣∣∣∣∣ =

(
x̃
3

)8
∣∣∣∣∣
(

x̃
3

)4
− 1

∣∣∣∣∣
∣∣∣∣∣
(

x̃
3

)4
+ 1

∣∣∣∣∣ = 0,

only for x̃ = 0. Similarly we can prove that the second pair (T ,J ) is compatible. Furthermore, it is easy to
show that both pairs are not commuting.

For x̃, ỹ ∈ Υ, we obtain

dΥ (S x̃, T ỹ) = |S x̃− T ỹ|

=

∣∣∣∣∣
(

x̃
3

)16
−
(

ỹ
3

)8
∣∣∣∣∣ =

((
x̃
3

)8
+

(
ỹ
3

)4
) ∣∣∣∣∣
(

x̃
3

)8
−
(

ỹ
3

)4
∣∣∣∣∣

≤
(

1
6561

+
1
81

)
dΥ (I x̃,J ỹ) =

82
6561

dΥ (I x̃,J ỹ) .

Putting τ = ln 6561
82 ,F (ω) = ln ω we get that the condition (6) holds true. Based on Theorem 5, this means

that the mappings I ,J ,S and T have a unique common fixed point x̃ = 0.

Finaly, we believe that the following problem may be interesting for some future research :
Conjecture: Prove or disprove that Theorem 5 holds true if for the set MI ,J

S ,T (x̃, ỹ) we put

MI ,J
S ,T (x̃, ỹ) = max {dΥ (I x̃,J ỹ) , dΥ (S x̃, I x̃) , dΥ (T ỹ,J ỹ) , dΥ (S x̃,J ỹ) , dΥ (T ỹ, I x̃)} .
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