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This paper presents the design of a thrust controller for a ramjet engine. The mathematical
model for controller synthesis is based on a numerical solution of a set of nonlinear equations.
Transfer functions of the engine are found for certain operation points defined by the altitude,
Mach number and angle of attack. Local controllers are developed by using H∞ control
methodology, finally reduced to proportional-integral (PI) controllers. For gain scheduling,
linear interpolation of parameters of the local PI controllers is used. Next, simulations are
performed in order to show performances of the presented control algorithm.
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1. Introduction

The ramjet presents the simplest form of air-breathing jet engines due to nonexistence of moving
parts like compressors and turbines. In addition to its simplicity, it provides reasonably efficient
operation over a range of supersonic speeds, altitudes and angles of attack (Chandra et al.,
2009, 2010). This paper presents the design of a thrust controller for a ramjet engine. The
mathematical model for controller synthesis is based on a numerical solution of a set of nonlinear
equations which include: conical and normal shock waves at the intake, correction for the angle
of attack, pressure recovery at the diffuser, model of the combustion chamber, model of the
nozzle, etc. Nonlinear simulations are performed at an altitude of 200 meters for the following
Mach numbers: 2.8, 3, 3.2 and 3.4 in supercritical regimes. For each Mach number, the following
angles of attack are considered: 0, 2.5 and 5.5 degrees. Thus, one operation point is determined
by a single Mach number and a single angle of attack. For each operation point the simulation
is run for the following fuel-to-air ratios: 0.0025, 0.005, 0.0075, 0.01, 0.015, 0.02, 0.025, 0.03,
0.035, 0.04, 0.045, 0.05 and 0.055. The following variables are simulated: thrust, fuel mass flow,
air mass flow, pressure at the front of the combustion chamber and temperature in the nozzle.

Since the thrust depends on the fuel mass flow, the ramjet model can be represented in a
single-input-single-output (SISO) manner. First, static relationships between the fuel mass flow
and the thrust are found. Next, the first-order transfer functions for the ramjet are obtained
via transient simulation for each operation point. The fuel supply system is also included in the
model in the form of a 2nd order transfer function. Controllers are developed by using the H∞
theory (Skogestad and Postlethwaite, 2001; Zhou, 1997) for each operating point resulting in 5th
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order local controllers. After canceling pole-zeros pairs in the controller transfer functions, 4th
order controllers are obtained. The H∞ based controller is robust to various model uncertainties
and disturbances but the resulting controller order is higher than the plant model order. Due to
that, the controller may not be feasible for real-time implementation because of hardware and
computational limitations (Zamani et al., 2009). To avoid this problem, the obtained higher-
-order controllers are changed to the first-order controllers by using balance reduction. These
controllers are simplified to the proportional-integral (PI) form by excluding the second term
in the denominator. For gain scheduling, linear interpolation of parameters of local PI con-
trollers is used. Next, simulations are run to present performances of the discussed control
algorithm.

2. Obtaining linear mathematical model

Dimensions of the ramjet engine elements are given in Table 1.

Table 1. Dimensions of the ramjet engine elements

Intake capture area [m2] 0.1275

Cone angles [deg] 9; 8

Diffuser exit area [m2] 0.12

Combustion chamber diameter [m] 0.45

Length of burning zone [m] 1.125

Nozzle throat diameter [m] 0.390

Nozzle exit diameter [m] 0.440

The thrust F of the ramjet can be calculated as follows

F = ṁair(1 + q)wexit − ṁairM
√

κRTair +Aexit(p10 − pair) (2.1)

where ṁair is the air mass flow, q is the fuel-to-air ratio, M is the Mach number, Tair and pair
are the atmospheric temperature and pressure, respectively, wexit is the flow speed at the nozzle
exit, Aexit is the cross-section area of the nozzle exit, while p10 is the static pressure at the nozzle
exit.
The mathematical model of the ramjet engine consists of a set of nonlinear equations which

include: conical and normal shock waves at the intake, correction for the angle of attack, pressure
recovery at the diffuser, model of the combustion chamber, model of the nozzle, etc. This set
of equations is not suitable for an analytically obtained linear model when it is necessary to
calculate derivatives of the ramjet for the controller design. The mathematical model can be
obtained analytically by a low-order empirical model, but this model is not capable to represent
complex physical interactions in the combustion system (Chandra et al., 2009, 2010). On the
other hand, Computational Fluid Dynamics (CFD) provides a high-order model that is not
suitable for the controller implementation. Gupta et al. (2007) obtained the mathematical model
by a combination of CFD simulations and a quasi-1D formulation.
In this paper, the set of nonlinear equations is numerically solved by using the Newton-

-Raphson method (Turns, 2000). The main idea is to find the relationship between the thrust
and the fuel mass flow at different operation points defined by: altitude, Mach number and angle
of attack.
The non-linear model is linearized at the altitude of 200m for each of the four Mach numbers

listed in Introduction and for each of the three angles of attack also shown in Introduction. More-
over, the simulation runs for each of the thirteen fuel-to-air ratios. These operation points are
listed in Introduction as well. The simulated and calculated performances are as follows: thrust,
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fuel mass flow, air mass flow and temperature in the nozzle. All these simulations correspond to
real supercritical regimes. Table 2 presents calculated simulation data for the operation point
defined by the Mach number 3 and the angle of attack 2.5◦.

From Fig. 1a it can be noticed that for a fuel mass flow below 5.92 kg/s, which corresponds
to the fuel-to-air ratio of 0.04, the thrust is linear compared to the fuel mass flow. Above this
value, behavior of the thrust is nonlinear. Considering Table 2, it can be concluded that for
the fuel-to-air ratio above 0.04, the temperature in the nozzle is close to its critical value of
2000K. This behavior is the same for other operation points. Due to that, in further analysis,
only fuel-to-air ratios below 0.04 are considered (i.e. the linear part of the curve presented in
Fig. 1a). Figure 1b presents the linear part of thrust versus fuel mass flow and the trendline of
the plotted values.

Fig. 1. M = 3 and α = 2.5◦: (a) thrust versus fuel mass flow, (b) linear part of thrust versus fuel mass
flow and trendline

Table 2. Calculated data from nonlinear simulation for M = 3 and α = 2.5◦

q F [N] ṁfuel [kg/s] ṁair [kg/s] T10 [K]

0.0025 −13736.8 0.37 148.005 903.3095

0.005 −8358.09 0.74 148.005 963.5276

0.0075 −3269.78 1.11 148.005 1021.721

0.01 1579.941 1.48 148.005 1078.244

0.015 11199.32 2.22 148.005 1193.884

0.02 21705.93 2.96 148.005 1326.718

0.025 33443.39 3.70 148.005 1483.43

0.028 40772.36 4.144 148.005 1585.272

0.03 45584.52 4.44 148.005 1653.548

0.033 52405.16 4.884 148.005 1751.754

0.035 56513.49 5.18 148.005 1811.315

0.04 64455.67 5.92 148.005 1924.402

0.045 68205.96 6.66 148.005 1968.621

0.05 68164 7.40 148.005 1949.216

0.055 68012.18 8.14 148.005 1928.281

Using the obtained data, the thrust is plotted against the fuel mass flow. Fig. 1a presents
the thrust versus fuel mass flow for the operation point defined by the Mach number 3 and the
angle of attack 2.5◦.
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Thus, the static relation between the thrust and the fuel mass flow can be represented as
follows

F = Grjṁfuel + C0 (2.2)

where Grj and C0 are constants which can be determined from the trendlines. The previously
obtained dependence between the thrust and the fuel mass flow corresponds to the static be-
havior of the ramjet engine. The part of the engine that contributes to engine dynamics is the
combustion chamber. Dynamical behavior of the combustion chamber can be modeled by using
the following first-order differential equation

ṗ7 =
ṁ7 − ṁ8

B
(2.3)

where p7 and ṁ7 are the pressure and the mass flow at the front of the combustion chamber,
ṁ8 is the mass flow at the exit of the combustion chamber, while B is the backpressure factor
given as

B =
(

8
∫

7

1

γRT (x)
dx
)

Acom (2.4)

where γ is the heat capacity ratio, R is the specific gas constant, T (x) is the static temperature
at location x, while Acom is the cross-section area of the combustion chamber.
Equation (2.3) is solved numerically by using transient simulation. The transient simulation

calculates variation of the pressure in front of the combustion chamber versus time for a given
step input of fuel mass flow and is performed for each operating point for the following intervals
of fuel-to-air ratios: 0.00001-0.005; 0.005-0.01; 0.01-0.015; 0.015-0.02; 0.02-0.025; 0.025-0.03; 0.03-
0.035; 0.035-0.04. Afterwards, the pressure in front of the combustion chamber is adjusted to
start with the zero value at the initial time by removing the off-set (i.e. subtracting the first value
from all values). In other words, an increment of this pressure is obtained. Figure 2a presents
the step response of this pressure for the operating point defined by the Mach number 3 and
the angle of attack 2.5◦ with an input step-function of the fuel-to-air ratio from 0.025 to 0.03.

Fig. 2. Step response for M = 3, α = 2.5◦ and q = 0.025-0.03: (a) from nonlinear simulation,
(b) comparison from nonlinear simulation and obtained from fitted transfer function

This response can be modeled as the first-order transfer function. The input in this transfer
function is a step function of increment of the pressure (from 0 to ∆p7max). Thus, the transfer
function can be represented as follows

H(s) =
1

τs+ 1
(2.5)
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where τ is the time constant which depends on the operation point as well as on the fuel-to-air
ratio. It will be determined iteratively in such way so as to minimize the deviation between the
graph obtained as the output of the transfer function and the graph obtained by the transient
response from the nonlinear model. For example, considering the step response presented by
Fig. 2a, the fitted value of τ is 0.078, and these two graphs are presented by Fig. 2b.
Since the thrust depends on the pressure in front of the combustion chamber and its transient

behavior corresponds to transient behavior of this pressure, the relation between the thrust and
the fuel mass flow can be represented as follows

F =
Grj

τs+ 1
ṁfuel + C0 (2.6)

The input/output form of the previous equation can be written as

δF =
Grj

τs+ 1
δṁfuel (2.7)

so, the transfer function of the ramjet engine is

Hrj(s) =
Grj

τs+ 1
(2.8)

The obtained values of the parameters of equation (2.5) are shown in Tables 3 and 4.

Table 3. Obtained values of Grj and C0

M α [◦] Grj C0

0 14845.58 −14880.23
2.8 2.5 14845.11 −14892.44

5.5 14859.97 −15002.95

0 14475.43 −19634.06
3 2.5 14474.981 −19620.433

5.5 14453.53 −19493.39

0 14102.94 −25426.3
3.2 2.5 14102.5 −25381.29

5.5 14099.79 −25108.14

0 13730.86 −32330.66
3.4 2.5 13730.45 −32248.34

5.5 13727.86 −31748.8

The fuel pump model can be represented as the second-order transfer function (Chandra et
al., 2009, 2010)

Hfss(s) =
ṁfuel (s)

i(s)
=

Kcω
2
n

s2 + 2ζωns+ ω2n
(2.9)

where Kc = 2.4, ωn = 1507.96 and ζ = 0.5 are the low-frequency (DC) gain, the natural
frequency and the damping ratio of the fuel pump transfer function, respectively, and i represents
current as the control input in the metering valve.

3. Control system design

3.1. H∞ control design

A block diagram of the designed closed loop is shown in Fig. 3.
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Table 4. Obtained values of τ

M
α

[◦]

q

0.00001- 0.005- 0.01- 0.015- 0.02- 0.025- 0.03- 0.035-
-0.005 -0.01 -0.015 -0.02 -0.025 -0.03 -0.035 -0.04

0 0.07 0.066 0.066 0.075 0.088 0.088 0.078 0.05
2.8 2.5 0.072 0.066 0.067 0.075 0.088 0.088 0.078 0.05

5.5 0.072 0.067 0.068 0.075 0.088 0.088 0.078 0.05

0 0.062 0.058 0.058 0.066 0.076 0.078 0.068 0.044
3 2.5 0.062 0.058 0.058 0.066 0.077 0.078 0.068 0.045
5.5 0.062 0.058 0.059 0.068 0.077 0.078 0.068 0.046

0 0.054 0.05 0.05 0.058 0.066 0.068 0.06 0.04
3.2 2.5 0.054 0.05 0.052 0.058 0.067 0.068 0.06 0.04

5.5 0.054 0.051 0.052 0.058 0.067 0.068 0.06 0.042

0 0.047 0.044 0.044 0.052 0.06 0.06 0.052 0.032
3.4 2.5 0.047 0.044 0.045 0.052 0.06 0.061 0.053 0.034

5.5 0.047 0.044 0.045 0.052 0.06 0.062 0.053 0.036

Fig. 3. Block diagram of the designed closed loop; Fref is the reference thrust

The plant model consists of the ramjet engine and the fuel supply system, so the control
input in the plant is the current, while the output is the thrust. The transfer function of the
plant can be calculated as follows

Hpl(s) = Hrj(s)Hfss(s) (3.1)

The H∞ controller is designed by using the S/KS mixed-sensitivity approach (Skogestad and
Postlethwaite, 2001). This approach enables obtaining H∞ by simultaneously shaping frequency
responses for reference tracking, disturbance rejection, robustness, and control effort. The input-
-output relation of the S/KSmixed sensitivity minimization model (Skogestad and Postlethwaite,
2001) is displayed in Fig. 4.

Fig. 4. Input-output relation of the S/KS mixed sensitivity minimization model

In Fig. 4, r(t) is the reference input, e(t) – error signal, y(t) – output variable, u(t) –
control input (controller output), K(s) – H∞ controller, W1(s), W2(s) and W3(s) are weighting
functions which reflect the system performance requirements (reference tracking and control
effort), Hpl(s) is the plant transfer function, while e1(t) and e2(t) are weighted outputs.
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The selection of weighting functions for a specific design problem involves many iterations,
fine tuning and trial-and-error procedure, and it is very hard to give a general equation that
will work for every problem (Zhou, 1997). In the design procedure presented in this paper, the
following weighting functions are selected by using the trial-and-error procedure

W1(s) = 0.5
s+ 12

s + 0.012
W2(s) = 0.5

s + 0.0001

s+ 10
W3(s) = 1 (3.2)

Since the plant model depends on the operating point as well as on the fuel-to-air ratio,
the main idea is to design a controller for each operating point (local controllers) and perform
gain scheduling of the controller parameters. By scheduling these parameters, the robustness
and performance for the whole envelope can be evaluated. In order to reduce the number of
local controllers and also considering the robustness of H∞ control, instead of calculating the
controller for each interval of the fuel-to-air ratio for a certain operation point, the average of
the parameter τ is used. Since the thrust is negative for the intervals of the fuel-to-air ratio
0.00001-0.005 and 0.005-0.01, these intervals are excluded for determination of the average of τ .
Thus the obtained transfer functions of the ramjet for H∞ synthesis are presented in Table 5.

Table 5. Transfer functions of the ramjet of each operating point for H∞ synthesis

M α = 0◦ α = 2.5◦ α = 5.5◦

2.8 14845.58
0.0742s+1

14845.11
0.0743s+1

14859.97
0.0794s+1

3 14475.43
0.065s+1

14474.98
0.0653s+1

14453.53
0.066s+1

3.2 14102.94
0.057s+1

14102.50
0.0575s+1

14099.79
0.0578s+1

3.4 13730.86
0.05s+1

13730.45
0.0508s+1

13727.86
0.0518s+1

Considering orders of the ramjet and the fuel supply system, the plant model is the 3-rd
order model. Also, weights W1 and W2 are the 1st order transfer functions, which results in
the 5th order controllers. After canceling pole-zeros pairs in the controller transfer function, the
4th order controllers can be obtained. After eliminating negligible states by using the balanced
reduction, obtained controllers can be reduced to the lower orders. In this case, the controllers are
reduced to the 1st order. The transfer functions of the local non-reduced and reduced controllers
are presented in Table 6.

For the operating point defined by the Mach number 3 and the angle of attack 2.5◦, Fig. 5a
presents singular values, Fig. 5b presents the step response from the reference to the output,
while Fig. 5c presents the step response from the reference to the input for the non-reduced and
reduced controller.

3.2. Obtaining PI controllers and gain scheduling

From Table 5 it can be noticed that for reduced controllers the second term in the de-
nominator (0.012) is much smaller than the first term (1), so it can be omitted. In that case,
PI controllers can be obtained. Table 7 presents proportional gains Kp and integral gains Ki of
the obtained local PI controllers for each operation point.

For gain scheduling, linear interpolation of the parameters of local PI controllers is used.
Also, for simulation, linear interpolation of the ramjet model parameters (Tables 3 and 4) is
used.
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Table 6. Transfer functions of local controllers

M α [◦] Non-reduced controllers Reduced controllers

0 78.52s3+1.195·105s2+1.802·108s+2.408·109

s4+3.836·104s3+7.369·108s2+7.164·1012s+8.597·1010
2.511·10−5s+0.000336

s+0.012

2.8 2.5 78.52s3+1.195·105s2+1.802·108s+2.402·109

s4+3.833·104s3+7.358·108s2+7.148·1012s+8.578·1010
2.517·10−5s+0.0003361

s+0.012

5.5 78.57s3+1.195·105s2+1.802·108s+2.25·109

s4+3.752·104s3+7.048·108s2+6.703·1012s+8.043·1010
2.684·10−5s+0.0003357

s+0.012

0 78.45s3+1.195·105s2+1.802·108s+2.745·109

s4+3.975·104s3+7.91·108s2+7.963·1012s+9.556·1010
2.26·10−5s+0.0003447

s+0.012

3 2.5 78.46s3+1.195·105s2+1.802·108s+2.731·109

s4+3.968·104s3+7.883·108s2+7.923·1012s+9.507·1010
2.271·10−5s+0.0003447

s+0.012

5.5 78.46s3+1.195·105s2+1.802·108s+2.703·109

s4+3.953·104s3+7.822·108s2+7.832·1012s+9.398·1010
2.298·10−5s+0.0003452

s+0.012

0 78.39s3+1.196·105s2+1.803·105s+3.127·109

s4+4.116·104s3+8.482·108s2+8.839·1012s+1.061·1011
2.037·10−5s+0.0003538

s+0.012

3.2 2.5 78.39s3+1.196·105s2+1.803·108s+3.1·109

s4+4.104·104s3+8.433·108s2+8.763·1012s+1.052·1011
2.054·10−5s+0.0003538

s+0.012

5.5 78.4s3+1.196·105s2+1.803·108s+3.082·109

s4+4.096·104s3+8.399·108s2+8.711·1012s+1.045·1011
2.066·10−5s+0.0003539

s+0.012

0 78.32s3+1.197·105s2+1.805·108s+3.562·109

s4+4.261·104s3+9.09·108s2+9.803·1012s+1.176·1011
1.838·10−5s+0.0003634

s+0.012

3.4 2.5 78.33s3+1.197·105s2+1.804·108s+3.504·109

s4+4.238·104s3+8.991·108s2+9.643·1012s+1.157·1011
1.868·10−5s+0.0003634

s+0.012

5.5 78.34s3+1.197·105s2+1.804·108s+3.47·109

s4+4.224·104s3+8.931·108s2+9.548·1012s+1.146·1011
1.886·10−5s+0.0003635

s+0.012

Fig. 5. Comparisons of non-reduced and reduced controller for the operating point M = 3 and α = 2.5◦:
(a) singular values of controllers, (b) step response from the reference to output, (c) step response from

the reference to input
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Table 7. Proportional and integral gains of local PI controllers

M α [◦] Kp Ki

0 2.511 · 10−5 0.000336
2.8 2.5 2.517 · 10−5 0.0003361

5.5 2.684 · 10−5 0.0003357

0 2.26 · 10−5 0.0003447
3 2.5 2.271 · 10−5 0.0003447

5.5 2.298 · 10−5 0.0003452

0 2.037 · 10−5 0.0003538
3.2 2.5 2.054 · 10−5 0.0003538

5.5 2.066 · 10−5 0.0003539

0 1.838 · 10−5 0.0003634
3.4 2.5 1.868 · 10−5 0.0003634

5.5 1.886 · 10−5 0.0003635

4. Simulation results

Simulations are performed for two operation regimes. The first regime is defined as:

• 0 s-10 s: Mach number is 2.9, angle of attack is 5◦ and reference thrust is 30000N;

• 10 s-20 s: Mach number is linearly varied from 2.9 to 3.3, angle of attack is linearly varied
from 5◦ to 1◦ and reference thrust is 60000 N;

• 20 s: Mach number is 3.3, angle of attack is 1◦ and reference thrust is 50000 N.

The variation of the Mach number and angle of attack versus time is presented in Fig. 6.
Figure 7a shows the obtained thrust compared to the reference thrust versus time, while Fig. 7b
shows the fuel mass flow and the-fuel-to-air ratio versus time.

Fig. 6. Variation of the Mach number and angle of attack versus time

In the second regime, the Mach number, the angle of attack and the reference thrust are
varied as a sine function, as follows (α [◦], Fref [N])

M = 3.1 + 0.3 sin(0.1t) α = 2.75 + 2.75 sin(0.075t)

Fref = 30000 + 20000 sin(0.15t)
(4.1)

The obtained thrust compared to the reference thrust versus time is presented in Fig. 8a. Fig-
ure 8b shows fuel mass flow and the fuel-to-air ratio versus time.

According to Fig. 7 and Fig. 8, it can be concluded that all specifications are satisfied and
the presented control algorithm shows good performances regarding the reference tracking.
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Fig. 7. PI controller, simulation results for the first regime: (a) obtained thrust compared to the
reference thrust versus time, (b) fuel mass flow and the fuel-to-air ratio versus time

Fig. 8. PI controller, simulation results for the second regime: (a) obtained thrust compared to the
reference thrust versus time, (b) fuel mass flow and the fuel-to-air ratio versus time

5. Conclusion

The paper presents the design of a thrust controller for the ramjet engine. From the mathematical
model, the transfer function of the engine is found for certain operation points defined by the
altitude, Mach number and angle of attack. The fuel supply system is also included in the
model. Controllers for each operation point (local controllers) are developed by using the H∞
methodology. The obtained 4th order controllers are reduced to the 1st order controllers by
using balance reduction and, thereafter, the controllers are reduced to PI controllers. For gain
scheduling, linear interpolation of the parameters of local the PI controllers is used. Simulations
are performed for linear and sinusoidal variation of the Mach number, angle of attack and
reference thrust. The obtained simulation results show that the obtained control algorithm
provides good performances regarding the reference tracking.
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