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MATCHING THEOREMS ON TOPOLOGICAL
SPACES

Ivan D. Arand-elović

Abstract. In this paper we give one general matching theorem and
some its applications in the fixed point theory. Our results generalize
earlier theorems obtained by Horvath, Chang - Zhang and Chang - Ma.

1. Introduction

The famous Brouwer fixed point theorem (any continuous function
f : K → K has at least one fixed point, where K ⊆ Rn is non-empty,
compact and convex set of Rn) for n = 3 was proved by him in 1909; equiv-
alent results was established earlier by Henri Poincare in 1883 and P. Bohl
in 1904. It was Hadamard who in 1910 gave (using the Kronecker index)
the first proof for an arbitrary n. In 1912 Brouwer gave another proof using
the simplicial approximation technique, and notions of degree. A short and
simple proof of Brouwer theorem was given in 1929 by Knaster, Kuratowski
and Mazurkiewicz. This proof is based on the following corollary of Sperner’s
lemma:

Proposition A Let F0, . . . , Fn be nonempty subsets of Rn+1, such that
∆A ⊆

⋃
ej∈A Fj , where A ⊆ {e0, . . . , en}. If all Fj , 0 ≤ j ≤ n, are closed sets

then ⋂
0≤i≤n

Fi �= ∅.

This result is known as the KKM lemma. There are many its applica-
tions and generalizations in Functional Analysis and Topology (see [8]).

It’s interesting that this statement is true, when all Fj , 0 ≤ j ≤ n, are
open sets. This result is due to Shih [9] and Kim [7], sixty years ago.
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2. Preliminaries

Let X and Y be nonempty sets; we denote by 2X a family of all
nonempty subsets of X, F(X) a family of all nonempty finite subsets of X
and P(X) a family of all subsets of X. A multifunction G from X into Y is a
map G : X → 2Y . If G : X −→ 2Y we define G−1, G∗ : Y −→ P(X) and Gc :
X −→ P(Y ) by G−1(y) = {x ∈ X : y ∈ G(x)}, G∗(y) = {x ∈ X : y �∈ G(x)}
and Gc(x) = Y \G(x). Clearly, by definitions we have (Gc)c = G and for
all x ∈ X, y ∈ Y statements y ∈ G(x) and x ∈ G−1(y) are equivalent which
implies (G−1)−1 = G.

Let X be a nonempty set and let F : X −→ P(X) be a multifunction.
x0 ∈ X is a fixed point of the multifunction F if and only if x0 ∈ F (x0). Since
statements x ∈ F (x) and x ∈ F−1(x) are equivalent, multifunctions F and
F−1 have the same fixed points.

The following notations are used: [e0, . . . , en] for the canonical basis of
Rn+1, ∆n = co([e0, . . . , en]) for the standard simplex of dimension n, where
co(.) denotes the convex hull. ∆A = coA, where A ⊆ {e0, . . . , en}. ∆k

n is the
k− skeleton of ∆n i.e. it is the union of all k−dimensional faces of ∆n. If X
is a path-connected topological space, Hn(X) is the homotopy group of order
n, where n ∈ N .

Definition 2 (Arand-elović [1]) Let X be a uniform space. Measure of
noncompactness on X is an arbitrary function φ : P(X) → [0,∞], which
satisfies the following conditions:

1) Φ(A) = ∞ if and only if set A is unbounded;
2) Φ(A) = φ(A);
3) from Φ(A) = 0 it follows that A is totally bounded set;
4) from A ⊆ B it follows Φ(A) ≤ Φ(B);
5) if X is complete space, and if {Bn}n∈N is a sequence of closed subsets

of X such that Bn+1 ⊆ Bn for each n ∈ N limn→∞ Φ(Bn) = 0, then
K =

⋂
n∈N Bn is nonempty compact set.

A family of sets has the finite intersection property if and only if the
intersection of each its finite subfamily is nonempty.

Proposition B (Arand-elović [1]) Let X be a complete uniform space,
Φ measure of noncompactness on X and {Gj | j ∈ J} ⊆ P(X ) a family of
its closed subsets which has finite intersection property such that for all t > 0
there exists finite set A ⊆ J such that Φ(

⋂
j∈AGj) < t. Then⋂

j∈J

Gj �= ∅.

For a nonempty set X by ∆X = {(x, x) | x ∈ X} we denote its diagonal.
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3. Main Results

Theorem 1. Let X be a topological space, I a nonempty set and H :
F(I) −→ 2X is a given multifunction which satisfies the following condition:

1) if {x} ⊆ I then H({x}) �= ∅;
2) if A ∈ F(I) then H(A) is a path-connected set;
3) if A ∈ F(I) has a n ≥ 3 members, then Hn−2(H(A)) is a trivial

group;
4) if A,B ∈ F(I) and A ⊆ B then H(A) ⊆ H(B).
If A = {x0, . . . , xn} ∈ F(I), then there exist a continuous map f :

∆n → X such that

f(∆B) ⊆ H
(
{xj : j ∈ B}

)
for each B ⊆ {0, . . . , n}.

Proof We use the following statement: let X be a topological space such
that Hn−2(X) (for some n ≥ 3) is a trivial group; then any continuous function
is the restriction to ∂∆n (the boundary of ∆n) of a continuous function g :
∆n → X (see Spanier [10]). Let y0, . . . , yn ∈ X be arbitrary elements such
that yk ∈ H({xk}) for any 0 ≤ k ≤ n. Function f0 : {e0, . . . , en} → X defined
by f0(ej) = yj is continuous because its domain is a finite subset of an
Euclidian space. The sets H({yi, yj}), i �= j, i �= j are path-connected. Every
path which connects points yi i yj, 0 ≤ i < j ≤ n, defines a continuous function
on the interval [0, 1] into X. So, we can define a continuous function f1 :
∆1

n → X, such that f1|∆0
n

= f0, because [0, 1] and [ei, ej ] are homeomorphic
sets. This function, also satisfies condition f([ei, ej ]) ⊆ H({yi, yj}), i �=
j, i �= j for any 1 ≤ i < j ≤ n. Let 1 < k < n and let fk : ∆k

n → X be
a continuous function, which satisfies the following condition: for any finite
set J ⊆ {0, . . . , n}, which has k elements, fk(∆J) ⊆ H({xj | j ∈ J}). If
J ′ ⊆ {0, . . . , n} has k + 1 elements then ∂∆J ′ ⊆ ∆k

n. Since fk(∂∆J ′) ⊆
H({(xj | j ∈ J ′}) and Hk−1(H({(xj | j ∈ J ′})) is a trivial group then there
exists a continuous mapping fk+1,J : ∆J ′ → X such that fk+1,J ′|∂∆J′ = fk.
So we have an extension fk+1 of fk on ∆k+1

n , because if ∆J1 and ∆J2 are two
k+1-dimensional faces with the nonempty intersection; then ∆J1

⋂
∆J2 ⊆ ∆k

n

and fk+1,J1(x) = fk+1,J2(x) = fk(x) for any x ∈ ∆J1
⋂

∆J2 ⊆ ∆k
n.

The continuous function fn = f : ∆n → X has the following property:
f(∆J) ⊆ H({(xj | j ∈ J}), for any J ⊆ {0, . . . , n}.

If H(A) is contractible set for any A ∈ F(X) from Theorem 1 we obtain
a famous result of Horvath (see [4] and [6]).
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In the next theorem we give sufficiency and neccesity conditions for
finite intersection property for arbitrary family of subsets of arbitrary topo-
logical space. First of them generalize earlier results of Chang and Zhang [3]
and Chang and Ma [2].

Theorem 2. Let X be a topological space and I a nonempty set. Family
of closed [open] subsets of space X {Gi}i∈I has the finite intersection property
if and only if for any J ∈ F(I) there exists mapping HJ : 2J → 2X which
satisfies:

1) for each A ∈ F(J) set HJ(A) is nonempty and path-connected;
2) if A ∈ F(I) has a n ≥ 3 members,then Hn−2(HJ(A)) is a trivial

group;
3) if A,B ∈ F(I) and A ⊆ B then HJ(A) ⊆ HJ(B);
4) from L ∈ F(J) it follows HJ(L) ⊆

⋃
j∈LGj .

Proof Neccesity. If {Gi | i ∈ I} has the finite intersection property, then
any finite set J ∈ 2I satisfies

⋂
j∈J Gj �= ∅. For arbitrary x∗ ∈

⋂n
i=1G(xi) let

HJ(A) = {x∗} for A ⊆ J . This mapping satisfies conditions 1), 2), 3) and 4).
Sufficiency. Let {Gi}i∈I satisfies conditions of the Theorem. If this fam-

ily does not have finite intersection property, then there exists J ∈ F(I) such
that: ⋂

j∈J

Gj = ∅.

If J = {y1, y2, . . . , yn} from Theorem 1 it follows that there exists a continuous
function f : ∆n → X such that B ⊆ {0, . . . , n} implies

f(∆B) ⊆ HJ({yj : j ∈ B}).
Let {Gi}i∈I be a family of closed [open] subsets. Then the family of closed
[open] sets {G∗

j | j ∈ J} defined by G∗
j = f−1(Gj) satisfies conditions of

KKM lemma [Kim-Shih result] which implies
⋂

j∈J G
∗
j �= ∅. So, there exists

x∗ ∈
⋂

j∈J G
∗
j . Now f(x∗) ∈ Gj for j ∈ J which is a contradiction.

Next statements extend results of C. Horvath [4] and [6].

Corollary 1. Let X be a complete uniform space, ψ arbitrary measure
of noncompactness defined on X and {Gj}j∈I a family of closed subsets of X.
If for any t > 0 there exists a finite set A ⊆ J such that ψ(

⋂
x∈AGj) < t and

if for any J ∈ F(I) there exist HJ : 2J → 2X such that:
1) for each A ∈ F(J) set HJ(A) is nonempty and path-connected;
2) if A ∈ F(I) has a n ≥ 3 members, then Hn−2(HJ(A)) is a trivial

group;
3) if A,B ∈ F(I) and A ⊆ B then HJ(A) ⊆ HJ(B);
4) from L ∈ F(J) it follows HJ(L) ⊆

⋃
j∈LGj .

then
⋂

j∈I Gj �= ∅.
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Proof From Theorem 2 it follows that this family has the finite inter-
section property. From Proposition B it follows that

⋂
j∈I Gj �= ∅ because X

is a complete space.

4. Applications in the Fixed point theory

Now we give some applications of main results in fixed point theory,
which extends earlier results of C. Horvath [5].

Theorem 3. Let X be a compact path-connected topological space such
that Hn(X) is a trivial group, for any n ∈ N and let R : X → P(X) be an
multifunction which satisfies:

1) R−1x is an open set for any x ∈ X;
2)

⋂
x∈AR(x) �= ∅ implies that Hn(

⋂
x∈AR(x)) is a trivial group for

any A ∈ 2X and n ∈ N ;
then either exists x0 ∈ X such that x0 ∈ R(x0) or there exists y0 ∈ X such
that R(y0) = ∅.

Proof Completeness and uniformity of the space X follows from its
compactness. For any A ∈ F(X) denote by Ã the set {x ∈ X | A ⊆ R(x)}.
Let H(A) =

⋃
x∈Ã ⊆ R(x) if Ã �= ∅ and let H(A) = X if Ã = ∅. Let HA(J) =

H(J) for J ∈ F (A). Let A ∈ F(X) be such that H(A) �⊆
⋃

x∈AR
∗−1(x). Then

there exists x0 ∈ H(A) such that A ⊆ R(x0). Now we have H(A) ⊆ R(x0)
which implies x0 ∈ R(x0). In complementary case H(A) ⊆

⋃
x∈AR

∗−1(x),
which implies by Theorem 2 that the family {R∗−1(x)}x∈X of closed sets has
the finite intersection property. Compactness of X implies

⋂
x∈X R∗−1(x) �= ∅.

Hence there exists y0 ∈
⋂

x∈X R∗−1(x) which implies x �∈ R(y0) for each
x ∈ X. So R(y0) = ∅.

Theorem 4. Let X be a compact path-connected topological space such
that Hn(X) is a trivial group, for any n ∈ N and let R : X → 2X be a
multifunction which satisfies:

1) R−1x is an open set for each x ∈ X;
2) for each A ∈ 2X from

⋂
x∈AR(x) �= ∅ it follows that Hn(

⋂
x∈AR(x))

is a trivial group, for any n ∈ N .
Then for any continuous function f : X → X there exists x0 ∈ X such that
x0 ∈ R(f(x0)).

Proof The mapping V defined by V (x) = R(f(x)) satisfies conditions
of Theorem 3 and its values are nonempty sets. This implies that there exists
x0 ∈ X such that x0 ∈ V (x0).
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Theorem 5. Let X be a compact path-connected Hausdorff topological
space such that Hn(X) is a trivial group, for any n ∈ N , and let {vi}i∈I be
a symmetric base (from (x, y) ∈ vi follows (y, x) ∈ vi) of open (in topology of
space X ×X) neighborhoods of ∆X . Let Vi(x) be {y ∈ X | (x, y) ∈ vi}. If for
any A ∈ 2X from

⋂
x∈A Vi(x) �= ∅ it follows that Hn(

⋂
x∈A Vi(x)) is a trivial

group for any n ∈ N , then any continuous function f : X → X has at least
one fixed point.

Proof If f : X → X is a continuous function without fixed points then

{(x, f(x)) | x ∈ X}
⋂

∆ = ∅.

So then there exists i0 ∈ I such that

{(x, f(x)) | x ∈ X}
⋂
vi0 = ∅.

Multifunction R : x→ Vi0(x) satisfies conditions of Theorem 4 which implies
that x0 ∈ R(f(x0)) for some x0 ∈ X which is a contradiction.

This theorems when X is contractible space reduce to Horvath results
[5]. Its corollary is the next statement which is a generalization of famous
results of Brouwer, Schauder, Tychonoff, Ky Fan and many others.

Corollary 2. Let X be a Hausdorff topological commutative group,
K ⊆ X a compact path-connected set such that Hn(K) is a trivial group,
for any n ∈ N , and let {vi}i∈I be a symmetric base (from x ∈ Vi it fol-
lows −x ∈ Vi) of open neighborhoods of zero in X. If for any A ∈ 2K from
K

⋂
(
⋂

x∈A(x + Vi)) �= ∅ it follows that Hn(K
⋂

(
⋂

x∈A x + Vi)) is a trivial
group for any n ∈ N then any continuous function f : X → X has at least
one fixed point.
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