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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Internet of Things (IoT) is changing the world, and therefore the application of ICT (Information and Communication Technology) in 
manufacturing. As a paradigm based on the Internet, IoT utilizes the benefits of interrelated technologies/smart devices such as RFID (Radio 
Frequency Identification) and WSAN (Wireless Sensor and Actuator Networks) for the retrieval and exchange of information thus opening  up 
new possibilities for integration of manufacturing system and its cyber representation through Cyber-Physical Manufacturing (CPM) model. On 
the other hand, CPM and digital manufacturing represent the key elements for implementation of Industry 4.0 and backbone for “smart factory” 
generation. Interconnected smart devices generate huge databases (big data), so that Cloud computing becomes indispensable tool to support 
the CPM. In addition, CPM has an extremely expressed requirement for better control, monitoring and data management. Limitations still exist 
in storages, networks and computers, as well as in the tools for complex data analysis, detection of its structure and retrieval of useful 
information.  
Products, resources, and processes within smart factory are realized and controlled through CPM model. In this context, our recent research 
efforts in the field of quality control and manufacturing metrology are directed to the development of framework for Cyber-Physical 
Manufacturing Metrology Model (CPM3). CPM3 framework will be based on: 1) integration of digital product metrology information obtained 
from big data using BDA (big data analytics) through metrology features recognition, and 2) generation of global/local inspection plan for 
CMM (Coordinate Measuring Machine) from extracted information. This paper will present recent results of our research on CPM3 – big data 
analytics issue. 
 
© 2018 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems. 
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1. Introduction 

Cyber Physical Manufacturing Systems (CPMS) are based 
on integration and interconnection of Cyber-Physical Systems 
(CPS) using Internet of Things (IoT) and cloud technologies. 
They represent high-tech methodology for development of 
new generation of factories with ever increasing intelligence, 
flexibility and self-adaptability. CPMS generate high quantity 
of data through horizontal integration (value added networks), 
as well as through functional hierarchy of the resources [1]. 

The data has to be analytically processed and utilized for 
CPMS/CPS control. In these purposes two functional entities 
are necessary: (a) reliable connectivity that ensures real-time 
data acquisition from the physical world as well as real-time 
information feedback from the cyber space, and (b) intelligent 
data management and analytics within cyber space [2]. Five 
levels – 5C CPS architecture for Industry 4.0 manufacturing 
systems includes the following functions [3], [4]: (a) smart 
connection – acquisition of accurate and reliable data from 
process at the low control level using sensors, as well as from 
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the shop-floor controllers and their transfer to servers, (b) 
data-to-information conversion – at this level previously 
acquired data are analyzed and transformed into useful 
information that represent the basis for intelligent control, (c) 
cyber level – central information hub of the 5C architecture 
which receives high quantity of data and immediately analyzes 
them, and makes data base regarding current and previous 
states of the CMS (twin model, clustering and data mining) 
[4], (d) cognition level – at this level the knowledge for 
supervision, control and decision making is generated based 
on information from previous levels, and (e) configuration 
level where the feedback information from cyber space is 
generated; feedback information makes a basis for self-
configuration and self-adaptability of machines in the physical 
world.  

In the presented 5C CPS architecture [3] in-process quality 
control represents key asset. Namely, modern understanding 
of measurements of quality in manufacturing is that their 
purpose is to enable adequate monitoring and tracking relevant 
process parameters, based on which any deviations away from 
their nominal behavior can be corrected via manual 
intervention, or automatically. Development of CPS offers 
new opportunities to accomplish this function via detailed 
models (ideally, “twin models”) of the underlying process and 
product. Timely generation of these models requires extraction 
of useful information from bulk data using big data analytics 
and different data mining methods. The increasing role of big 
data leads to continuous growth of research in these fields 
including [6 7]: (a) machine learning methods such as 
different kinds of regression (support vector machines, neural 
networks, ANOVA) to gain insight into trends within the data, 
(b) pattern recognition methods including supervised 

classification and clustering, which structure big data sets, and 
(c) expert knowledge, for example using a lookup table. 

Generation of detailed process models from quality 
measurements in manufacturing requires the development of 
dedicated framework. To address this issue, we have put our 
recent research efforts into the development of Cyber-Physical 
Manufacturing Metrology Model (CPM3) [8]. During test 
implementation of CPM3, we have encountered the generation 
of a number of big data sets that required processing, finding 
of correlations between data and its structure as well as the 
extraction of useful information to be shared between CPM3 
modules. In this paper we summarize some of the results in 
the implementation of big data analytics in CPM3 data sets. 

The reminder of the paper is structured as follows. In 
Section 2 we analyze the role of in-process measurements in 
CPMS and related research work in the field. Section 3 
presents CPM3 model, its data sets and big data analytics 
within this model. Finally, in Section 4 we provide concluding 
remarks and future work guidelines. 

2. In-process measurements in CMS 

In-process measurements represent the backbone of the 
CPMS and in particular in the generation of digital twins of 
manufacturing processes and resources. In [7], it was 
originally suggested that process/product models can be 
utilized for identification of root causes of problems in the 
product quality. The early works focused on dealing with the 
multi-stage character of manufacturing processes, where 
process parameters in one stage affect the quality in the 
downstream stages, resulting in often highly complex, 
nonlinear dependencies between process parameters and 
measurements of product quality [9]-[15]  

 

Fig. 1. Model based active control of process quality based on in-process measurements of the product and cyber-physical model of the error flow in the 
manufacturing process. 

The focus was on pursuing and exploiting a state space 
model form where role of the time index was played by the 
operation index, and coupling that form with advanced 
statistical estimation techniques to realize inverse mapping 

from quality measurements into the space of process 
parameters. The emphasis on the tractability of linear state 
space model form led to applications being limited to sheet-
metal assembly and machining of prismatic parts, where 
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kinematic effects and very simple part compliance effects 
could be modeled [16]-[18]. 

More recent work led to more elaborate utilization of the 
state space form of the model to realize on-line automatic 
compensation of quality errors based on in-process 
measurements of the workpiece [19]-[21]. Namely, modern 
manufacturing processes, such as manufacturing of 
semiconductor microelectronics, or roll-to-roll manufacturing, 
have a number of on-line adjustable process parameters that 
can be automatically adapted to counteract whatever quality 
problems are perceived in the process, as well as increased 
amounts of in-process measurements that give one 
unprecedented transparency into the process. In such an 
environment, at any stage of the manufacturing process, in-
process measurements collected up to that manufacturing 
stage can be used to estimate upstream process parameters via 
an inverse of the cyber-physical model of the flow of errors in 
the system (similarly to what we see in the early works in [9]-
[15]), which can then be used to predict effects of those 
parameters in the downstream operations and counteract those 
effects via controllable parameters in those operations (as 
illustrated in Fig. 1). As the manufacturing process progresses 
and as the workpiece moves through the system, the 
estimation of upstream process parameters and compensation 
of their effects via controllable parameters in the downstream 
operations continues, thus enabling continuous and intelligent 
utilization of often enormous amounts of data collected 
through in-process measurements.  

This paradigm was theoretically demonstrated using 
models of machining of prismatic automotive parts [19], [20], 
and lithography overlay in semiconductor manufacturing [22]. 
Incorporation of robustness to model and noise uncertainties, 

as enabled by the methods described in [23], should facilitate 
transition of this new paradigm of automatic multistage 
process control from a theoretical study into real-life industrial 
applications. 

When it comes to challenges associated with data analytics 
for quality measurements considered in this paper, the main 
problem is understanding the relations between process 
parameters and quality characteristics in prismatic and non-
prismatic parts, such as a turbine blade. Such models have not 
been developed yet and are dearly needed and are certain to be 
plagued by nonlinear dependencies and nonstationary noise 
characteristics. In addition, models relating process parameters 
to product quality characteristics can be utilized to feedback 
into the generation of measurement points so that those 
measurements can reflect the process characteristics and 
maximize controllability of the process, as suggested in [22]. 
Such considerations would greatly augment the purely 
functional approach to measurement generation described in 
our earlier publication [8]. 

3. Big Data Analytics in Cyber-Physical Manufacturing 
Metrology Model (CPM3)

Figure 2 represents the concept of our Cyber-Physical 
Manufacturing Metrology Model (CPM3) [8] that consists of 
the following elements: 1) Module for recognition of 
geometrical features (GF) from CAD/GD&T (Computer 
Aided Design/Geometrical Dimensioning and Tolerancing) 
model of the measurement part, 2) Intelligent inspection 
process planning (IIPP) module that generates inspection 
sequence, and 3) Module for measurement, analysis of the 
results, and generation of reports. 

 

Fig. 2 Concept of Cyber-Physical Manufacturing Metrology Model (CPM3) 

All these modules are supported by data sets that transfer the 
information from outer world to the CPM3, as well as between 

CPM3 modules. Necessary CPM3 data sets (marked red in Fig. 
2) are: 1) Data set that represents the geometry of the 
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the shop-floor controllers and their transfer to servers, (b) 
data-to-information conversion – at this level previously 
acquired data are analyzed and transformed into useful 
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kinematic effects and very simple part compliance effects 
could be modeled [16]-[18]. 

More recent work led to more elaborate utilization of the 
state space form of the model to realize on-line automatic 
compensation of quality errors based on in-process 
measurements of the workpiece [19]-[21]. Namely, modern 
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utilization of often enormous amounts of data collected 
through in-process measurements.  
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inspection part in neutral format – in CPM3 IGES (Initial 
Graphics Exchange Specification) is chosen; this data set is 
within GF recognition module; 2) set containing the 
distribution of measuring points – within IIPP module, and 3) 
PTC Creo DMIS data set within module for measurement. 
From CPM3 point of view, these data sets represent big data 
sets that should be analyzed in order to extract relevant 
information for transfer from the preceding to the subsequent 
modules. Extracted information can be presented by optimal 
sets containing only unambiguous data necessary for the 
inspection at hand. 

Thus, in each CPM3 module corresponding sets should be 
processed in order to extract relevant information or to 
structure data. The elements of CPM3 modules that are 
directly based on application of big data analytics (BDA) 
methods are marked green in Figure 2. They refer to the 
extraction of relevant GFs parameters from IGES file, to 
generation of inspection sequence by extraction and 
structuring measurement points and to generation of CMM 
program. BDA application in one module indirectly influences 
all other elements of CPM3. Namely, extraction of information 
from one of the given sets and its representation through the 
relevant set has significant influence on the results of all 
downstream processes.  

3.1. Extraction of geometrical features from IGES  

Although IGES data set is clearly structured, it has to be 
processed in order to extract relevant information regarding 
metrological features (MF). Namely, MFs consist of one or 
more GFs of interest, i.e. GFs that present surfaces that should 
be inspected. On the other hand, depending on the CAD 
system that generated IGES file and on the developer that 
created CAD model, IGES usually contains redundant data 
about certain surfaces and lines. In addition, it contains the 
data regarding the entire geometry of the measured part 
including GFs that do not correspond to MFs and that do not 
have to be inspected. Thus from IIPP point of view, IGES 
contains big data that need analysis in order extract the 
parameters that are relevant for the MFs. 

An IGES file is composed of the following five sections: 
(1) start section, (2) global section, (3) directory entry section, 
(4) parameter data section, (5) terminate section. Geometric 
entities are defined in directory entry section and parameter 
data section and each entity is represented by certain code. 
The whole GF is presented through a set of structured entities. 
As an example, in Table 1 we provide a structure necessary 
for definition of surface of revolution (type 120), in this 
particular case cylinder, within IGES [24]. Similarly, other 
entities and GFs are defined. For example, rational B spline 
curve is represented by type 126 followed by spline 
parameters (knots, weights, control points).  

To enable measurement path planning it is necessary to 
analyze IGES data set and to extract relevant information. 
Namely, from IGES data, we have to extract surface 
parameters - information that is suitable input for IIPP 
module. For some GFs this process requires the calculation of 
surface parameters - example of cylinder parameters is 

presented in Table 2, while for others, such as spline, they are 
directly extracted.  

Table 1. IGES entities for definition of a cylinder 

Entity Place in the line of IGES  

1 1   2   3 5   6   7 73-80 

Line 
(generatrix) 

110 X1, Y1, Z1 
(start point) 

X2, Y2, Z2 
(end point) 

4 - Seq. 
number 

Line (axis) 110 X3, Y3, Z3 

(start point) 

X4, Y4, Z4 
(end point) 

5 - Seq. 
number 

Surface of 
revolution 

120 seq. no. 1, 
seq. no. 2 

α1, α2 - 
start and 
end angle) 

3 - Seq. 
number 

Direction 123 i1, j1, k1  
(unit vector) 

 18 - Seq. 
number 

Direction 123 i2, j2, k2  
(unit vector) 

 28-  Seq. 
number 

Table 2. Calculating cylinder’s parameters 

Feature Parameters  
 

Diameter � � ��X� � X��� � �Y� � Y��� � �Z� � Z��� 
Point on 
axis �� � ��; �� � ��;��� � ��;
Height � � ���� � ���� � ��� � �������� � ����
Axis 
direction � ��� �� ���
 
Figures 3a and 3b show examples of planar surface and 

cylinder parameters, which we will use to outline the process 
of MF parameters extraction. Each geometric feature is 
uniquely defined by the set of parameters with respect to the 
local coordinate system OXFYFZF and the coordinate system 
of a measuring part ОXWYWZW. These parameters could be: 
coordinates (X, Y, Z), diameter (D), height (H), width (a), 
length (b), vector of a primitive (n), parameter of a fullness of 
a feature (np). Vector n determines the orientation of primitive 
in a space. The position of a primitive is defined by the 
coordinates X0, Y0, Z0. The parameter of fullness is defined by 
the unit vector of X-axis of a feature: the value of a parameter 
np=1 implies a full feature and the value np=-1 implies an 
empty feature. The parameter of fullness and the vector of a 
feature will define the direction of a measuring probe access 
during the planning and simulation measurement path (Figures 
3c and 3d).  

3.2. Distribution of measurement points and path planning 

Measuring points set and inspection path are generated 
from parametric representation of MFs. CPM3 has different 
strategies for distribution of measurement points in regular 
(planar and quadric surfaces) and free form surfaces. In 
regular surfaces, CPM3 generates a set of measurement points 
using modified Hemmersley sequences [25, 26]. As an 
example, by this approach, N measurement points Pi(xi, yi, zi) 
on cylinder are generated using the relations (1) where R 
represent the radius, and h the height of cylinder. Examples of 
generated measurement points for planar surface and cylinder 
are presented in Figures 3c and 3d. Nevertheless obtained set 
of measurement points contains large amount of data that is 
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not appropriately structured. Further analysis of this data is 
necessary in order to obtain collision free measurement path 
during motion of measurement probe from one GF to the other 
within the same MF.  

From measurement points set we extract optimal collision 
free measurement path (Figure 3e) using ant colony 
optimization algorithm. Details regarding generation and 
optimization of measuring path are given in [25, 26]. 

 

Figure 3. Extraction of GF and generation of measuring path for parametric surfaces 

a)  b)  

Figure 4. a) a photo of turbine blade manufactured using additive 
manufacturing technology - Selective Laser Sintering; b) extracted control 
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For free form surfaces alternative approach for 
measurement points set generation is employed. In this kind of 
surfaces, it is necessary to define the number of control 
sections and number and distribution of measurement points in 
each section. 

 

 

Figure 5. Generation of Pro/DMIS file and simulation of measurement path.  

According to the findings from [27] we have selected 
uniform distribution of measurement points. In addition, it has 
been shown [27] that there is a non-linear (quadratic) 
functional correlation, expressed through regression relations 
between measurement error on one hand and number of 
control sections and measurement points in each section of the 
free form surface on the other.  

An example of measuring points set for turbine blade (free 
form surface) is presented in Figure 4. Details of algorithm for 
generation of collision free measurement path from 
measurement points are given in [8]. 

3.3. Generation of PTC Creo DMIS file 

Inspection sequence obtained from IIPP module is in the 
point-to-point form, and it does not represent suitable input for 
CMM. However, this form can be readily imported in 
CAD/CAM software. In CPM3 we opted to use CMM module 
of PTC Creo. After importing the points on the inspection 
sequence into this module, the CMM path can be simulated 
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inspection part in neutral format – in CPM3 IGES (Initial 
Graphics Exchange Specification) is chosen; this data set is 
within GF recognition module; 2) set containing the 
distribution of measuring points – within IIPP module, and 3) 
PTC Creo DMIS data set within module for measurement. 
From CPM3 point of view, these data sets represent big data 
sets that should be analyzed in order to extract relevant 
information for transfer from the preceding to the subsequent 
modules. Extracted information can be presented by optimal 
sets containing only unambiguous data necessary for the 
inspection at hand. 

Thus, in each CPM3 module corresponding sets should be 
processed in order to extract relevant information or to 
structure data. The elements of CPM3 modules that are 
directly based on application of big data analytics (BDA) 
methods are marked green in Figure 2. They refer to the 
extraction of relevant GFs parameters from IGES file, to 
generation of inspection sequence by extraction and 
structuring measurement points and to generation of CMM 
program. BDA application in one module indirectly influences 
all other elements of CPM3. Namely, extraction of information 
from one of the given sets and its representation through the 
relevant set has significant influence on the results of all 
downstream processes.  

3.1. Extraction of geometrical features from IGES  

Although IGES data set is clearly structured, it has to be 
processed in order to extract relevant information regarding 
metrological features (MF). Namely, MFs consist of one or 
more GFs of interest, i.e. GFs that present surfaces that should 
be inspected. On the other hand, depending on the CAD 
system that generated IGES file and on the developer that 
created CAD model, IGES usually contains redundant data 
about certain surfaces and lines. In addition, it contains the 
data regarding the entire geometry of the measured part 
including GFs that do not correspond to MFs and that do not 
have to be inspected. Thus from IIPP point of view, IGES 
contains big data that need analysis in order extract the 
parameters that are relevant for the MFs. 

An IGES file is composed of the following five sections: 
(1) start section, (2) global section, (3) directory entry section, 
(4) parameter data section, (5) terminate section. Geometric 
entities are defined in directory entry section and parameter 
data section and each entity is represented by certain code. 
The whole GF is presented through a set of structured entities. 
As an example, in Table 1 we provide a structure necessary 
for definition of surface of revolution (type 120), in this 
particular case cylinder, within IGES [24]. Similarly, other 
entities and GFs are defined. For example, rational B spline 
curve is represented by type 126 followed by spline 
parameters (knots, weights, control points).  

To enable measurement path planning it is necessary to 
analyze IGES data set and to extract relevant information. 
Namely, from IGES data, we have to extract surface 
parameters - information that is suitable input for IIPP 
module. For some GFs this process requires the calculation of 
surface parameters - example of cylinder parameters is 

presented in Table 2, while for others, such as spline, they are 
directly extracted.  

Table 1. IGES entities for definition of a cylinder 

Entity Place in the line of IGES  

1 1   2   3 5   6   7 73-80 

Line 
(generatrix) 

110 X1, Y1, Z1 
(start point) 

X2, Y2, Z2 
(end point) 

4 - Seq. 
number 

Line (axis) 110 X3, Y3, Z3 

(start point) 

X4, Y4, Z4 
(end point) 

5 - Seq. 
number 

Surface of 
revolution 

120 seq. no. 1, 
seq. no. 2 

α1, α2 - 
start and 
end angle) 

3 - Seq. 
number 

Direction 123 i1, j1, k1  
(unit vector) 

 18 - Seq. 
number 

Direction 123 i2, j2, k2  
(unit vector) 

 28-  Seq. 
number 

Table 2. Calculating cylinder’s parameters 

Feature Parameters  

 

Diameter � � ��X� � X��� � �Y� � Y��� � �Z� � Z��� 
Point on 
axis �� � ��; �� � ��;��� � ��;
Height � � ���� � ���� � ��� � �������� � ����
Axis 
direction � ��� �� ���
 
Figures 3a and 3b show examples of planar surface and 

cylinder parameters, which we will use to outline the process 
of MF parameters extraction. Each geometric feature is 
uniquely defined by the set of parameters with respect to the 
local coordinate system OXFYFZF and the coordinate system 
of a measuring part ОXWYWZW. These parameters could be: 
coordinates (X, Y, Z), diameter (D), height (H), width (a), 
length (b), vector of a primitive (n), parameter of a fullness of 
a feature (np). Vector n determines the orientation of primitive 
in a space. The position of a primitive is defined by the 
coordinates X0, Y0, Z0. The parameter of fullness is defined by 
the unit vector of X-axis of a feature: the value of a parameter 
np=1 implies a full feature and the value np=-1 implies an 
empty feature. The parameter of fullness and the vector of a 
feature will define the direction of a measuring probe access 
during the planning and simulation measurement path (Figures 
3c and 3d).  

3.2. Distribution of measurement points and path planning 

Measuring points set and inspection path are generated 
from parametric representation of MFs. CPM3 has different 
strategies for distribution of measurement points in regular 
(planar and quadric surfaces) and free form surfaces. In 
regular surfaces, CPM3 generates a set of measurement points 
using modified Hemmersley sequences [25, 26]. As an 
example, by this approach, N measurement points Pi(xi, yi, zi) 
on cylinder are generated using the relations (1) where R 
represent the radius, and h the height of cylinder. Examples of 
generated measurement points for planar surface and cylinder 
are presented in Figures 3c and 3d. Nevertheless obtained set 
of measurement points contains large amount of data that is 
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not appropriately structured. Further analysis of this data is 
necessary in order to obtain collision free measurement path 
during motion of measurement probe from one GF to the other 
within the same MF.  

From measurement points set we extract optimal collision 
free measurement path (Figure 3e) using ant colony 
optimization algorithm. Details regarding generation and 
optimization of measuring path are given in [25, 26]. 

 

Figure 3. Extraction of GF and generation of measuring path for parametric surfaces 

a)  b)  

Figure 4. a) a photo of turbine blade manufactured using additive 
manufacturing technology - Selective Laser Sintering; b) extracted control 
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For free form surfaces alternative approach for 
measurement points set generation is employed. In this kind of 
surfaces, it is necessary to define the number of control 
sections and number and distribution of measurement points in 
each section. 
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form surface) is presented in Figure 4. Details of algorithm for 
generation of collision free measurement path from 
measurement points are given in [8]. 

3.3. Generation of PTC Creo DMIS file 

Inspection sequence obtained from IIPP module is in the 
point-to-point form, and it does not represent suitable input for 
CMM. However, this form can be readily imported in 
CAD/CAM software. In CPM3 we opted to use CMM module 
of PTC Creo. After importing the points on the inspection 
sequence into this module, the CMM path can be simulated 
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(Fig. 5). PTC Creo translates point-to point path into 
Pro/DMIS (.ncl) format that is transferred into control data list 
for selected CMM by selecting the appropriate post-processor. 

4. Conclusion 

During generation of CPM3 framework we have faced a 
number of issues referring to the big data analysis, i.e. 
extraction of useful information from data sets, and finding the 
relevant structure from unstructured data sets. The first 
problem represented the extraction of GFs’ parameters from 
neutral CAD format. We solved this problem by generation of 
the base of rules containing analysis approaches for each 
particular GF type and its parameters.  

More complex problem was the structuring of measurement 
points obtained from GFs and generation of optimal 
measurement path. In regular surfaces, measurement points 
were selected using Hemmersley sequences, while extraction 
of optimal measurement points from free form surfaces 
required more sophisticated approach. In free form surfaces 
regression analysis using ANOVA was employed to obtain the 
number of control sections and measurement points. 
Nevertheless, in both cases obtained measurement points set 
was unstructured and inconvenient for generation of 
measurement path. To generate optimal measurement path, we 
had to find the spatial structure of points in the set using ant 
colony optimization. 

Our future work will consider the development of CPM3 
modules that would enable the generation of virtual models of 
the parts using measurement results and their connection to 
the downstream and upstream processes in CPMS. 
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