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COMPRESSIBLE FLOW THROUGH SOLAR
CHIMNEYS WITH VARIABLE CROSS

SECTION - AN EXACT SOLUTION

Vladan D. Djordjević and Aleksandar S. Ćoćić

Abstract. Buoyancy driven, adiabatic and compressible flow in relatively
high solar chimneys is treated in the paper analytically by using one-dimen-
sional model of flow. General equations written suitably in a non-dimensional
form are used for a qualitative discussion pertaining to the mutual effects
of gravity, viscosity and varying cross section of the chimney. It is shown
that in case of low Mach number flow these equations possess exact solutions
obtainable by ordinary mathematical methods for any given chimney shape.
Also shown, and demonstrated on an example, is the procedure of evaluation
of the chimney shape that satisfies a condition imposed beforehand upon the
flow. For better insight into the role of various parameters the solutions are
presented in the form of power series expansions.

1. Introduction

It is well known that there are several ways to extract energy from the Sun.
One of them, to which much attention has been paid in literature recently, is the
production of energy in Solar chimney power plants (SCPP). A SCPP consists of
three main parts: collector, turbine(s) and chimney. Collector has a transparent
roof so that the ambient air is heated by solar radiation and flows through the
plant toward the chimney. The flow is driven by buoyancy and is strongly affected
by the chimney height. On its way out of the plant air passes through one or
several turbines and transfers its energy to them. The first plant of this type was
a pilot one and built in Manzanares, Spain, in 1982. Its operational characteristics
described in detail in Haaf et al. [4] and Haaf [3] were quite encouraging, so that
nowadays new SCPP projects are being proposed in several countries, in Australia,
Spain, Namibia, China, USA. They all belong to so-called large scale projects,
which means their typical dimensions are: chimney diameter and height 160m
and 1500 m, respectively, the collector diameter measured in kilometers, and the
expected power of 200 MW. For more details concerned with SCPP technology,
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with all benefits, but also with some drawbacks, see excellent reviewing papers by
Zhou and coworkers [9].

The air flow in SCCP belongs to the class of low Mach number flow. In a
large scale SCPP the flow is exposed to relatively large temperature and pressure
variations, so that compressibility of the air has to be taken into account. Reliable
calculation of the flow parameters in all constitutive parts of SCPP is crucially
important for its proper functionality. It is no wonder then that a large number of
papers has been published in related scientific literature recently. The most impor-
tant of them are cited in the aforementioned reviewing paper [9]. Among them we
will here mention just a few, directly related to our subject matter. In [7] and [5]
compressible flow in vertical tall chimneys of variable cross-section is treated by
one-dimensional (1-D) flow model. At that, the influence of wall friction, loss coef-
ficients and possible drag of obstructions upon flow characteristics is also included
into the analysis. Characteristics of the flow are expressed in terms of Mach num-
ber, and particular attention has been paid to the evaluation of pressure drop in the
chimney and the effect of variable cross-section (“flaring” effect). In [1] a compre-
hensive study of 1-D flow in all constitutive parts of a SCPP is presented, i.e., at the
inlet into the collector, collector itself, turbines, collector-to-chimney transition sec-
tion and the chimney with constant cross-section. This complex problem is solved
numerically. The obtained results enable reliable evaluation of flow characteristics
in the SCPP, and, based on that, enable the reliable estimation of some global
SCPP characteristics, like mass flow rate, maximum power extracted by turbines,
economically acceptable chimney heights, etc.

In this paper we confine ourselves to the flow in the chimney of variable cross-
section only. The flow is compressible, adiabatic and viscous, and driven by buoy-
ancy. As in [1] we use Mach number and Froude number as nondimensional de-
pendent variables instead of velocity and temperature. We show that the system
of nonlinear differential equations of the first order, that govern this flow, possesses
exact solutions which can be found by ordinary mathematical operations for an
arbitrary shape of the chimney. What is more, if additional condition is imposed
on the chimney flow, the chimney shape that satisfies this condition can be readily
found. We demonstrate that on the example of a chimney in which velocity is equal
in all of its cross-sections.

A brief remark on the role of analytically exact solutions! Analytically exact
solutions, if exists, used to be the most important source of information about
a problem, if not the only one. With the advancement of computer technology,
however, it must be admitted that they have lost much of their importance. But
still, exact solutions serve as a very useful tool to check the accuracy of several
approximate methods used, like asymptotic, numerical and empirical ones, and even
of experimental work, Also, we think that the role of exact solutions in revealing
the influence of the parameters that govern a problem is simply invaluable.
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2. Problem statement and governing equations

We treat the problem depicted in Fig. 1. Compressible adiabatic gas flow takes
place up a vertical, tall chimney with variable cross between stations 1-1 and 2-2
placed on the heights 𝐻1 and 𝐻2, respectively, above the ground. Diameter of
an arbitrary cross-section is denoted by 𝐷(𝑧), 𝑧 being the chimney axis pointing
upwards. The flow is exposed to the effects of gravity, viscosity and chimney cross-
section variations.

Equations describing such a flow within 1-D flow theory in this, or in a little
different form, can be found in several textbooks, see for example [8,10] and [2].
Written in differential form they read:

∙ equation of continuity

(2.1)
d𝜌

𝜌
+

d𝑣

𝑣
+

d𝐴

𝐴
= 0

∙ momentum equation

(2.2)
d𝑝

𝜌
+ 𝑣 d𝑣 + 𝑔d𝑧 +

𝜏𝑤𝒪 d𝑧

𝜌𝐴
= 0

∙ equation of state for an ideal gas

(2.3)
d𝑝

𝑝
− d𝜌

𝜌
− d𝑇

𝑇
= 0.

∙ energy equation

(2.4) 𝑐𝑝
d𝑇

𝑇
−𝑅

d𝑝

𝑝⏟  ⏞  
d𝑠

=
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Figure 1. Physical model for one-dimensional flow
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In here, 𝜌, 𝑣, 𝑝 and 𝑇 are basic flow quantities: density, velocity, pressure and
temperature respectively, 𝐴 = 𝜋𝐷2/4-cross-sectional area, 𝒪 = 𝜋𝐷-circumference
of an arbitrary cross-section, 𝑔-acceleration due to gravity, 𝑐𝑝-specific heat at con-
stant pressure, 𝑅-gas constant, 𝑠-entropy and 𝜏𝑤 = 𝑓 1

2𝜌𝑣
2-wall shear stress (𝑓 -

friction coefficient). As well known, friction coefficient depends on the Reynolds
number and on the relative roughness of the wall. At relatively high Reynolds
numbers 𝑓 asymptoticly tends to a constant value. In this case of flow Reynolds
numbers attain as a rule very high values, of the order of 108 [6], so we will consider
𝑓 as a constant in what follows.

For convenience we will introduce the Froude number: 𝐹 = 𝑣/
√
𝑔𝐷 and the

Mach number: 𝑀 = 𝑣/𝑐, where 𝑐 =
√︀
𝛾𝑝/𝜌 =

√
𝛾𝑅𝑇 is the speed of sound, into

equations (2.2) and (2.4). We get respectively:

(2.2’)
d𝑝

𝑝
+ 𝛾𝑀2 d𝑣

𝑣
+𝑀2

(︁
1 +

2

𝜆𝐹 2

)︁ 𝛾𝜆

2𝐷
d𝑧 = 0

(2.4’) 𝑐𝑝
d𝑇

𝑇
−𝑅

d𝑝

𝑝
= 𝑅𝑀2 𝛾𝜆

2𝐷
d𝑧,

where 𝜆 = 4𝑓 . In order to get some qualitative estimations concerned with the
behavior of flow in the chimney, we will treat equations (2.1), (2.2’), (2.3) and
(2.4’) as a system of algebraic equations for the “unknown” logarithmic derivatives
of basic physical quantities. Solving for them, we get:

(1−𝑀2)
d𝑣

𝑣
= 𝑀2

(︁
1 +

2

𝛾𝜆𝐹 2

)︁ 𝛾𝜆

2𝐷
d𝑧 − d𝐴

𝐴
(2.5)

(1−𝑀2)
d𝜌

𝜌
= −𝑀2

(︁
1 +

2

𝛾𝜆𝐹 2

)︁ 𝛾𝜆

2𝐷
d𝑧 +𝑀2 d𝐴

𝐴
(2.6)

(1−𝑀2)
d𝑝

𝑝
= −𝑀2

[︁
1 + (𝛾 − 1)𝑀2 +

2

𝜆𝐹 2

]︁ 𝛾𝜆
2𝐷

d𝑧 + 𝛾𝑀2 d𝐴

𝐴
(2.7)

(1−𝑀2)
d𝑇

𝑇
= −(𝛾 − 1)𝑀2

(︁
𝑀2 +

2

𝛾𝜆𝐹 2

)︁ 𝛾𝜆

2𝐷
d𝑧 + (𝛾 − 1)𝑀2 d𝐴

𝐴
.(2.8)

We also write down the same type of relations for some derived physical quantities,
like 𝑀 , 𝐹 , total temperature 𝑇0, total pressure 𝑝0 and entropy 𝑠. They are deduced
by taking logarithmic derivatives of their definitions, like

d𝐹

𝐹
=

d𝑣

𝑣
− 1

2

d(𝐷)

𝐷
,

d𝑀

𝑀
=

d𝑣

𝑣
− 1

2

d𝑇

𝑇
, etc.

and using equations (2.5)–(2.8). Taking into the account that d𝐴
𝐴 = 2d(𝐷)

𝐷 , we
obtain:

(1−𝑀2)
d𝑀

𝑀
= 𝑀2

(︁
1 +

𝛾 − 1

2
𝑀2 +

𝛾 + 1

𝛾𝜆𝐹 2

)︁ 𝛾𝜆

2𝐷
d𝑧 −

(︁
1 +

𝛾 − 1

2
𝑀2

)︁d𝐴
𝐴

(2.9)

(1−𝑀2)
d𝐹

𝐹
= 𝑀2

(︁
1 +

2

𝜆𝛾𝐹 2

)︁ 𝛾𝜆

2𝐷
d𝑧 − 5−𝑀2

4

d𝐴

𝐴
(2.10)

d𝑇0

𝑇0
= −(𝛾 − 1)

𝑀2

1 + 𝛾−1
2 𝑀2

2

𝜆𝛾𝐹 2

𝛾𝜆

2𝐷
d𝑧(2.11)
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d𝑝0
𝑝0

= −𝑀2

(︂
1 +

1

1 + 𝛾−1
2 𝑀2

2

𝜆𝐹 2

)︂
𝛾𝜆

2𝐷
d𝑧(2.12)

d𝑠 = 𝑅𝑀2 𝛾𝜆

2𝐷
d𝑧(2.13)

Equations (2.5)–(2.13) serve for a qualitative analysis of the flow in the chimney.
Obviously, effects of friction and gravity are superimposed in (2.5)–(2.10). If the
cross-section of the chimney contracts in the direction of the flow, the effect of the
contraction is also superimposed to these two, with the exception of Froude number
behavior for 𝑀2 > 5! Thus, in subsonic flow in contracting chimney 𝑣, 𝑀 and 𝐹
increase in the flow direction, while 𝑝, 𝜌 and 𝑇 decrease. If the cross-section of
the chimney extends in the flow direction, the effect of this extension is to partly
or fully cancel the effects of friction and gravity. This property of the equations
(2.5)–(2.10) can be very usefully exploited in practice, as will be shown later in the
paper. Supersonic flow in solar chimney is of no practical interest so far, and will
not be discussed further.

Independently of whether 𝑀 < 1 or 𝑀 > 1, 𝑇0 and 𝑝0 decrease in the flow
direction, 𝑇0 being not affected by the friction, while 𝑠 increases. These variations
of 𝑇0, 𝑝0 and 𝑠 are quite in accordance with our general knowledge of gas dynamics
phenomena [2,10].

3. Low Mach number flow

The flow in a solar chimney is characterized by relatively low velocities and
high temperatures, so that Mach number attains the values which are less than one
in all cross-sections of the chimney (for typical numerical values of various physical
quantities in the chimney, see [6]). Thus, we will now neglect all terms proportional
to 𝑀2 with respect to 1 in the derived equations. For convenience, we will also
introduce a nondimensional independent variable 𝑍 as:

𝑍 =
𝑧 −𝐻1

Δ𝐻
, Δ𝐻 = 𝐻2 −𝐻1; 0 6 𝑍 6 1.

Equations (2.9) and (2.10) become:

d(𝑀2)

d𝑍
= (𝑀2)2

(︁
1 +

𝛾 + 1

𝛾𝜆𝐹 2

)︁
𝛾𝜆

Δ𝐻

𝐷
− 2𝑀2

𝐴

d𝐴

d𝑍
,(3.1)

d(𝐹 2)

d𝑍
= 𝐹 2𝑀2

(︁
1 +

2

𝛾𝜆𝐹 2

)︁
𝛾𝜆

Δ𝐻

𝐷
− 5𝐹 2

2𝐴

d𝐴

d𝑍
(3.2)

and will serve as our new basic equations for the analysis to follow. For given
chimney shape 𝐴(𝑍) and chimney height Δ𝐻, equations (3.1) and (3.2) are to be
solved for prescribed, “initial” values of 𝑀 and 𝐹 in the cross-section 1-1:

(3.3) 𝑍 = 0 : 𝑀 = 𝑀1 and 𝐹 = 𝐹1.

One more physical boundary condition has to be satisfied, that the pressure at the
exit cross-section of the chimney 2-2 equals the ambient pressure 𝑝amb at the height
𝐻2 above the ground:

(3.4) 𝑍 = 1 : 𝑃 = 𝑃amb,
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where 𝑃 stands for the nondimensional pressure 𝑝/𝑝𝑎 (𝑝𝑎-atmospheric pressure).
Assuming conditions of the Standard atmosphere, ambient pressure reads:

𝑃amb =
(︁
1− 𝑘𝐻2

𝑇𝑎

)︁ 𝑔
𝑘𝑅

,

where 𝑘 = 6.5K/km is the temperature lapse rate in Standard atmosphere and 𝑇𝑎

is atmospheric temperature. Since in large SCPP 𝐻1 ≪ 𝐻2, we will for convenience
write ambient pressure as:

(3.5) 𝑃amb ≈
(︁
1− 𝑘Δ𝐻

𝑇𝑎

)︁ 𝑔
𝑘𝑅

.

We show further that, in order to satisfy the exit boundary condition (3.5), it is not
necessary to solve differential equation (2.7). Instead, we may use the expression
for the mass flow rate: 𝑚̇ = 𝜌𝑣𝐴. By the help of the equation of state for an ideal
gas, it can be transformed into a nodimensional form:

(3.6) 𝑀̇ = 𝐷̃3/2𝑃𝑀2

𝐹
,

where 𝐷̃ = 𝐷/𝐷1 is nondimensional chimney diameter and 𝑀̇ = 𝑚̇
√
𝑔𝐷1

𝛾𝑝𝑎𝐷2
1𝜋/4

is
nondimensional mass flow rate. Application of the condition (3.4) now enables the
evaluation of 𝑀̇ :

(3.7) 𝑀̇ =
(︁𝐷2

𝐷1

)︁3/2𝑃amb𝑀
2
2

𝐹2
,

where 𝑀2 and 𝐹2 are Mach and Froude number, respectively, at the exit cross-
section of the chimney, which are evaluated by solving equations (3.1) and (3.2).
Since 𝑀̇ is constant according to continuity equation, pressure can now be found
in every cross-section of the chimney. Obviously, the solution of equations (3.1)
and (3.2), with boundary conditions (3.3), is the keystone of the problem under
consideration.

4. Exact solutions

We show in Appendix how the first integral (A.5) to the problem defined by
(A.1)–(A.3) is found. Returning to physical denotations: 𝑥 = 𝑀2, 𝑦 = 𝐹 2, etc., we
write

(4.1)
𝐹 2

𝑀2
=

𝐹 2
1

𝑀2
1

𝐷1

𝐷
− (𝛾 − 1)

Δ𝐻

𝐷
𝑍.

We further show that, by using definitions of Froude and Mach number, equation
(4.1) reduces to very simple form in which variable diameter of the chimney is
eliminated:

(4.2) 𝑐𝑝𝑇1 + 𝑔𝐻1 = 𝑐𝑝𝑇 + 𝑔𝑧.

One can easily identify equation (4.2) as the low Mach number version of the more
general energy equation in algebraic form, stated for the station 1-1 and a arbitrary



COMPRESSIBLE FLOW THROUGH SOLAR CHIMNEY - AN EXACT SOLUTION 221

station on the height 𝑧 above the ground

(4.3) 𝑐𝑝𝑇1 +
𝑣21
2

+ 𝑔𝐻1 = 𝑐𝑝𝑇 +
𝑣2

2
+ 𝑔𝑧.

It is noteworthy that (4.2) and (4.3) hold for the flow affected by viscosity also, al-
though viscosity is not explicitly present in these equations! This can be explained
in the following manner. In addition to terms already present in (4.2) and (4.3),
these equations should contain just one more term in our case-the work per unit
mass of the viscous forces. However, this work is zero because of the no-slip con-
dition that has to be fulfilled at the wall. Thus, (4.2) is an exact solution of the
problem considered herein, revealing the (adiabatic) temperature lapse rate in the
chimney to be: 𝑔/𝑐𝑝 = 9.77K/km, which is notably larger than in the surrounded
Standard atmosphere.

One more integral of the governing equations for 𝐷 = 𝐷1 = const. is derived
in Appendix, equation (A.6). Written in physical denotations it reads:

(4.4)
𝐹 2

𝑀2
=

𝐹 2
1

𝑀2
1

(︂
1 + 2

𝛾𝜆𝐹 2

1 + 2
𝛾𝜆𝐹 2

1

)︂ 𝛾−1
2

.

Equations (4.1) and (4.4) complete the solution of this problem.
For a chimney of arbitrary shape, an analytic solution can be also found. It is

determined by (A.8), where:

(4.5)
𝑎 =

𝛾𝜆Δ𝐻

𝐷(𝑍)
, 𝑚 =

(︁
𝐶1 −

𝛾 − 1

𝛾𝜆
𝑍
)︁
𝑎(𝑍),

𝐶1 =
𝐹 2
1

𝑀2
1

𝐷1

𝛾𝜆Δ𝐻
, 𝐶3 =

𝑎41
𝑀2

1

(︁
𝑎1

𝐹 2
1

𝑀2
1

)︁ 𝛾+1
𝛾−1

,

and:

(4.6) 𝑀2 =
𝑎4

𝑢(𝑍)
, 𝐹 2 =

𝑎5

𝑢(𝑍)

(︁
𝐶1 −

𝛾 − 1

𝛾𝜆
𝑍
)︁
.

It can be shown that this solution of the general problem reduces in the special
case 𝐷 = 𝐷1 = const. to the previously derived solution described by (4.1) and
(4.4), as expected.

As noticed in the Introduction, we may impose a special requirement upon the
flow in the chimney and ask for the chimney shape that satisfies this requirement,
i.e., to treat the equations (2.5)–(2.10) as if d𝐴/𝐴 was an unknown variable. To
demonstrate this possibility we will ask for the shape of chimney in which the ve-
locity is equal in all of its cross-sections: 𝑣 = 𝑣1 = const. Since velocity increases in
the chimney of constant cross-section, as well known, keeping the velocity constant
will lessen the exit velocity, and thus will reduce the exit loss and improve the
efficiency of SCPP.

For d𝑣 = 0, we get from (2.5):

(4.7)
d𝐴

𝐴
= 𝑀2

(︁
1 +

2

𝛾𝜆𝐹 2

)︁ 𝛾𝜆

2𝐷
d𝑧.
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In here:

𝑀2 =
𝑣2

𝛾𝑅𝑇
=

𝑣21
𝛾𝑅𝑇1

𝑇1

𝑇
=

𝑀2
1

𝑇
and 𝐹 2 =

𝑣21
𝑔𝐷

=
𝑣21
𝑔𝐷1

𝐷1

𝐷
=

𝐹 2
1

𝐷̃

where: 𝑇
𝑇1

= 𝑇 and 𝐷
𝐷1

= 𝐷̃. Having in mind that: d𝐴
𝐴 = 2d𝐷̃

𝐷̃
and 𝑧 = 𝐻1+Δ𝐻𝑍,

equation (4.7) becomes:

(4.8) 𝑇
d(𝐷̃)

d𝑍
= 𝑀2

1

(︁
1 +

2𝐷̃

𝛾𝜆𝐹 2
1

)︁𝛾𝜆
4

Δ𝐻

𝐷1
.

Nodimensional temperature 𝑇 in an arbitrary cross-section of the chimney is de-
termined by equation (4.2) to be:

𝑇 = 1− 𝑔Δ𝐻

𝑐𝑝𝑇1
𝑍.

Thus, equation (4.8) is a linear equation with varying coefficients that determines
the shape of the chimney. The solution satisfying boundary condition: 𝐷̃(0) = 1
reads:

(4.9) 𝐷̃ =
(︁
1 +

𝛾𝜆𝐹 2
1

2

)︁(︁
1− 𝑔Δ𝐻

𝑐𝑝𝑇1
𝑍
)︁− 1

2(𝛾−1) − 𝛾𝜆𝐹 2
1

2
.

For the test case stated in [6] (Δ𝐻 = 1500m, 𝐷1 = 160m, 𝑣1 = 12.82m/s,
𝑇1 = 323K, 𝜆 = 4𝑓 = 0.003384) we get from here: 𝐷2 = 166.272m. If the friction
is neglected, the exit diameter becomes slightly lower: 𝐷 = 166.256m.

Since 𝑔Δ𝐻
𝑐𝑝𝑇1

𝑍 < 1, equation (4.9) can be expanded into binomial series:

(4.10) 𝐷̃ = 1+
1

2

(︁
1+

𝛾𝜆𝐹 2
1

2

)︁ 𝑔Δ𝐻

𝛾𝑅𝑇1
𝑍 +

2𝛾 − 1

2

(︁
1+

𝛾𝜆𝐹 2
1

2

)︁(︁ 𝑔Δ𝐻

𝛾𝑅𝑇1

)︁2

𝑍2 +h. o. t.,

where h. o. t. stands for higher order terms. Clearly, diameter of the chimney should
be flared in order to keep velocity constant as clearly deduced in [6].

Note the appearance of a new similarity parameter in (4.10): 𝑔Δ𝐻/𝛾𝑅𝑇1. It
is the ratio of the squares of the half of the initial velocity of a vertical projectile
necessary to reach the height Δ𝐻 above the ground, moving without friction, and
the speed of sound at the station 1-1.

5. Series expansions

In order to present the obtained results in a more suitable form and to get
more insight into the role played by different parameters, we will now expand the
solutions into binomial series, like the one shown by (4.10). We will do this first
for a chimney of constant cross-section: 𝐷 = 𝐷1 = const. For this case, the first
integral (4.1), taking into account the definitions of 𝑀1 and 𝐹1, can be written as:

(5.1)
(𝐹/𝐹1)

2

(𝑀/𝑀1)2
= 1− 𝑔Δ𝐻

𝑐𝑝𝑇1
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If this is inserted into (4.4), a single equation for 𝐹 is obtained, and 𝐹 routinely
into the following series expanded:

(5.2)
𝐹 2

𝐹 2
1

= 1 + (2 + 𝛾𝜆𝐹 2
1 )

𝑔Δ𝐻

𝛾𝑅𝑇1
𝑍 + h. o. t.

The corresponding expansion for 𝑀 is obtained from equation (5.1):

(5.3)
𝑀2

𝑀2
1

= 1 + (𝛾 + 1 + 𝛾𝜆𝐹 2
1 )

𝑔Δ𝐻

𝛾𝑅𝑇1
𝑍 + h. o. t.

For 𝑍 = 1 the values for the Mach number 𝑀2 and the Froude number 𝐹2 at the
exit cross-section are obtained from (5.1) and (5.2), and then the nondimensional
mass flow rate can be obtained from (3.7) for 𝐷2 = 𝐷1. For that purpose the
ambient pressure (3.5) has to be expanded into a series also. We get:

(5.4) 𝑃amb = 1− 𝛾
𝑇1

𝑇𝑎

𝑔Δ𝐻

𝛾𝑅𝑇1
+ h. o. t.

Then:

(5.5) 𝑀̇ =
𝑀2

1

𝐹1

[︁
1− 𝛾

(︁𝑇1

𝑇𝑎
− 1− 𝜆

2
𝐹 2
1

)︁ 𝑔Δ𝐻

𝛾𝑅𝑇1
+ h. o. t.

]︁
.

Since in this case: 𝑀̇ =
𝑃1𝑀

2
1

𝐹1
, in accordance with the continuity equation, the

expansion for pressure 𝑃1 is easily deduced from equation (5.5). Then, we can also
evaluate the nondimensional pressure drop in the chimney to be:

(5.6) 𝑃1 − 𝑃amb = 𝛾
(︁
1 +

𝜆

2
𝐹 2
1

)︁ 𝑔Δ𝐻

𝛾𝑅𝑇1
+ h. o. t.

In dimensional form it looks like:
𝑝1
𝑝𝑎

(𝑝1 − 𝑝amb) = 𝜌1𝑔Δ𝐻 + 𝜆
Δ𝐻

𝐷1

1

2
𝜌21𝑣

2
1 + h. o. t.

For the already mentioned test case we get from here: 𝑃1 −𝑃amb = 0.10596. Thus,
the pressure drop in the chimney is 10.596 % of the atmospheric pressure. With
neglected viscosity is slightly lower: 10.577%.

For a chimney of variable cross-section the series representation of the solution
is derived in Appendix. At that, and due to simplicity, it is developed by solving
equation (A.7) by means of power series, and not by using the exact analytic
solution (A.8). Such a procedure suffices for our purposes. The solution represented
by (A.10), if converted into physical denotations: 𝑥 = 𝑀2, 𝑦 = 𝐹 2, etc., reads:

𝐹 2

𝐹 2
1

= 1 +
[︁
(2 + 𝛾𝜆𝐹 2

1 )
𝑔Δ𝐻

𝛾𝑅𝑇1
− 5 ˙̃𝐷0

]︁
𝑍 + h. o. t.(5.7)

𝑀2

𝑀2
1

= 1 +
[︁
(𝛾 + 1 + 𝛾𝜆𝐹 2

1 )
𝑔Δ𝐻

𝛾𝑅𝑇1
− 4 ˙̃𝐷0

]︁
𝑍 + h. o. t.(5.8)

Both, (5.7) and (5.8) represent slight, but reasonable generalizations of (5.2) and
(5.3), respectively, to the solution for the flow in a chimney of constant cross-
section. If we have in mind the special case of a chimney in which velocities in
every cross-section are equal, elaborated at the end of Section 4, we can find ˙̃𝐷0
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for this chimney by putting 𝐹 2 = 𝐹 2
1 /𝐷̃ in (5.7), or 𝑀2 = 𝑀2

1 /𝑇 in (5.8). In both
cases we get:

˙̃𝐷0 =
1

2

(︁
1 +

𝛾𝜆𝐹 2
1

2

)︁ 𝑔Δ𝐻

𝛾𝑅𝑇1
.

As expected, this is exactly the coefficient in front of 𝑍 in equation (4.10).
Finally, nondimensional mass flow rate is obtained by using equation (3.6) as:

𝑀̇ =
(︁𝐷2

𝐷1

)︁3/2𝑃amb𝑀
2
2

𝐹2
=

=
(︁𝐷2

𝐷1

)︁3/2𝑀2
1

𝐹1

[︁
1− 𝛾

(︁𝑇1

𝑇𝑎
− 1− 𝜆

2
𝐹 2
1

)︁ 𝑔Δ𝐻

𝛾𝑅𝑇1
− 3

2
˙̃𝐷0

]︁
+ h. o. t.

Expression for the nondimensional pressure 𝑃1 emerges from here as 𝑃1 = 𝐹1

𝑀2
1
𝑀̇ , so

that the pressure drop in the chimney can be also found. At that, if it is supposed
that diameter of the chimney varies slowly with height on the scale of 𝑔Δ𝐻/𝛾𝑅𝑇1,
as infered from (4.10), it can be readily shown that the same expression as for the
chimney of constant cross-section (5.6) is obtained. Of course this conclusion holds
for the first approximation only.

6. Conclusions

Briefly, we may draw the following conclusions:
∙ 1-D model of flow can be successfully applied for studying free convecting,

compressible, viscous flow in relatively high solar chimneys with variable
cross-section.

∙ What is more, it is shown that for low Mach number flow in the chimney
governing equations posses analytically exact solutions which can be found
by conventional mathematical methods for any given chimney shape.

∙ It is also shown that, if a specific condition is imposed upon the chimney
flow, the shape of the chimney satisfying this condition can be found.
This is demonstrated on the example of a chimney in which velocities are
equal in all of its cross-sections.

∙ Finally, all solutions are expanded into binomial series and first terms of
these series are evaluated. These simple analytic expressions, that offer
very good approximation to the problem considered, yield very useful
insight into the role of different parameters affecting the chimney flow.

Appendix A. Analytical solution of differential equations

1. We first write equations (3.1) and (3.2) with conditions (3.3) into a form
which is more suitable for mathematical operations to follow. We make following
substitutions: 𝑀2 = 𝑥, 𝐹 2 = 𝑦, 𝑍 = 𝑡, 𝛾𝜆Δ𝐻

𝐷 = 𝑎, 𝑀2
1 = 𝑥1, 𝐹 2

1 = 𝑦1 and d( )
d𝑡 = ˙( ),

and get:

𝑥̇ = 𝑎𝑥2
(︁
1 +

𝛾 + 1

𝛾𝜆𝑦

)︁
+ 4𝑥

𝑎̇

𝑎
(A.1)
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𝑦̇ = 𝑎𝑥𝑦
(︁
1 +

2

𝛾𝜆𝑦

)︁
+ 5𝑦

𝑎̇

𝑎
(A.2)

𝑡 = 0 : 𝑥 = 𝑥1, 𝑦 = 𝑦1.(A.3)

Dividing (A.1) and (A.2) with 𝑥 and 𝑦 respectively, and subtracting we obtain

𝑦̇

𝑦
− 𝑥̇

𝑥
= −𝛾 − 1

𝛾𝜆
𝑎
𝑥

𝑦
+

𝑎̇

𝑎
.

Introducing 𝑦
𝑥 = 𝑚, the equation for 𝑚(𝑡) becomes a linear one, with non-constant

coefficients:

𝑚̇− 𝑎̇

𝑎
𝑚 = −𝛾 − 1

𝛾𝜆
𝑎

General solution of this equation can be routinely found to be:

(A.4) 𝑚 =
(︁
𝐶1 −

𝛾 − 1

𝛾𝜆
𝑡
)︁
𝑎,

where 𝐶1 is a constant of integration. Conditions (A.3) give: 𝐶1 = 𝑦1

𝑥1

𝐷1

𝛾𝜆Δ𝐻 , so
that finally the solution of the problem is:

(A.5)
𝑦

𝑥
=

𝑦1
𝑥1

𝐷1

𝐷
− (𝛾 − 1)

Δ𝐻

𝐷
𝑡

This is the first integral of the problem under consideration.

2. One more integral is needed in order to complete the solution of the problem.
It can be particularly simply obtained in case of a chimney with constant cross-
section: 𝐷 = 𝐷1 = const. and 𝑎 = 𝑎1 = 𝛾𝜆Δ𝐻

𝐷1
= const. Dividing (A.1) with (A.2)

in this case, we get:

d𝑥

d𝑦
=

𝑥
(︀
1 + 𝛾+1

𝛾𝜆𝑦

)︀
𝑦
(︀
1 + 2

𝛾𝜆𝑦

)︀ .
Variables are separated in this equation, so the solution is obtained by quadratures,
to be:

𝑥 = 𝐶2𝑦
𝛾+1
2

(︁
𝑦 +

2

𝛾𝜆

)︁− 𝛾−1
2

,

or, when 𝐶2 is determined from (A.3):

(A.6)
𝑥

𝑥1
=

𝑦

𝑦1

(︂
1 + 2

𝛾𝜆𝑦1

1 + 2
𝛾𝜆𝑦

)︂ 𝛾−1
2

.

Integrals (A.5) and (A.6) fully determine the solution of the problem.

3. Analytical solution for a chimney with variable cross-section can also be
obtained. If 𝑦 is eliminated by 𝑦 = 𝑚𝑥 from (A.1), this equation becomes a single
nonlinear equation with non-constant coefficients for 𝑥(𝑡):

𝑥̇ = 𝑎𝑥2 +
𝛾 + 1

𝛾𝜆

𝑎

𝑚
𝑥+ 4

𝑎̇

𝑎
𝑥,
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where 𝑎/𝑚 depends on 𝑡 only and is determined by (A.4). Substitution 𝑥 = 𝑎4/𝑢(𝑡)
converts this equation into a linear, non-homogeneous one:

(A.7) 𝑢̇+
𝛾 + 1

𝛾𝜆

𝑎

𝑚
𝑢 = −𝑎5,

and the solution of this equation is routinely obtained to be:

(A.8) 𝑢 =
(︁𝑚
𝑎

)︁ 𝛾+1
𝛾−1

[︂
𝐶3 −

∫︁ 𝑡

0

𝑎5
(︁𝑚
𝑎

)︁− 𝛾+1
𝛾−1

d𝑞

]︂
,

where 𝐶3 is the constant of integration. Application of boundary condition:

𝑡 = 0 : 𝑢 =
𝑎41
𝑥1

yields:

𝐶3 =
𝑎41
𝑥1

(︁𝑥1

𝑦1

)︁ 𝛾+1
𝛾−1

𝑎
𝛾+1
𝛾−1

1 .

Thus, for given shape of the chimney, 𝑢(𝑡) is determined by (A.8), and then

(A.9) 𝑥 =
𝑎4

𝑢
, 𝑦 = 𝑚𝑥 =

𝑎5

𝑢

(︁
𝐶1 −

𝛾 − 1

𝛾𝜆
𝑡
)︁
.

This is the solution of the general problem.
For practical applications this solution might be a little to complicated. As an

alternative we now derive a solution of (A.7)–(A.9) in a form of power series in 𝑡.
For that purpose we first expand chimney diameter in such series:

𝐷̃ = 1 + ˙̃𝐷0𝑡+
1

2
¨̃𝐷0𝑡

2 + h. o. t.

where
˙̃𝐷0 =

d𝐷̃

d𝑡

⃒⃒⃒
𝑡=0

, ¨̃𝐷0 =
d2𝐷̃

d𝑡2

⃒⃒⃒
𝑡=0

, etc.

Then

𝑎 =
𝛾𝜆Δ𝐻

𝐷
=

𝑎1

𝐷̃
= 𝑎1

(︀
1− ˙̃𝐷0𝑡+ h. o. t.

)︀
, 𝑎1 =

𝛾𝜆Δ𝐻

𝐷1
, etc.

We look for a solution of (A.7) in the form:

𝑢 = 𝑢0 + 𝑢1𝑡+ 𝑢2𝑡
2 + h. o. t.,

insert this into (A.7) and get by applying the boundary condition and equating
terms of like powers of 𝑡 on both sides of the equation:

𝑢0 =
𝑎41
𝑥1

, 𝑢1 = −𝑎51

(︁
1 +

𝛾 + 1

𝛾𝜆𝑦1

)︁
, etc.

Thus:

𝑢 =
𝑎41
𝑥1

− 𝑎51

(︁
1 +

𝛾 + 1

𝛾𝜆𝑦1

)︁
𝑡+ h. o. t.
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The solution of the problem in the form of the series expansion is now obtained
from (A.9) to be:

(A.10)

𝑥

𝑥1
= 1 +

[︁
𝑎1𝑥1

(︁
1 +

𝛾 + 1

𝛾𝜆𝑦1

)︁
− 4 ˙̃𝐷0

]︁
𝑡+ h. o. t.

𝑦

𝑦1
= 1 +

[︁
𝑎1𝑥1

(︁
1 +

2

𝛾𝜆𝑦1

)︁
− 5 ˙̃𝐷0

]︁
𝑡+ h. o. t.
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СТИШЉИВО СТРУJАЊЕ КРОЗ СОЛАРНИ
ТОРАЊ ПРОМЕЊИВОГ ПОПРЕЧНОГ

ПРЕСЕКА - ТАЧНО РЕШЕЊЕ

Резиме. У овом раду се разматра аналитичко решење за случаj jедно-
димензиjског узгонског, адиjабатског и стишљивог струjања у релативно ви-
соким соларним торњевима. Oсновне jедначине написане у погодном безди-
мензиjском облику се користе за квалитативну дискусиjу ефеката гравитациjе,
вискозности (трења) и промене попречног пресека торња. Показано jе да у слу-
чаjу спорих струjања, са малим вредностима Маховог броjа, jедначине имаjу
тачна решења. До њих се долази стандарним математичким поступцима, и то
за било коjи облик торња. Такође jе, на погодно изабраном примеру, предста-
вљена процедура за одређивање облика торња тако да одговараjући услов коjи
се намеће као карактеристика струjања буде задовољен. Ради бољег увида
у улогу одговараjућих параметара, решење jе такође представљено и у виду
степеног реда.
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