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Free Planar Vibration of Structures 
Composed of Rigid Bodies and Elastic 
Beam Segments 
 

This article presents free vibration analysis of structures composed of rigid 

bodies connected with elastic beam segments. It is assumed that the mass 

centers of rigid bodies are not located on the neutral axes of undeformed 

elastic beam segments as well as rigid bodies perform planar motion in the 

same plane and their mass centers are located in that plane. For 

determination of natural frequencies of the system, modification of the 

conventional continuous-mass transfer matrix method has been performed. 

The elastic beam segments are treated as Euler-Bernoulli beams. 

Numerical examplе is presented.  
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1. INTRODUCTION 

 
Many engineering structures can be modeled with a 
system of rigid bodies connected with elastic am 
segments, hence, free vibration analysis of these models 
of structure are of crucial importance. Many papers deal 
with vibration analysis of the system composed of a 
single rigid body and two elastic beam segments [1-3] 
as well as of the system of cantilever beam with a rigid 
body attached to its free end [4-6]. In [7] two 
dimensional structures composed of two-part elastic 
beam-rigid body elements are analyzed by using 
transfer matrix and direct approach. Vibration of hybrid 
elastic beam carrying several elastic-supported rigid 
bodies is analyzed in [8]. All above references consider 
that the mass centers of the rigid bodies are located on 
the neutral axis of elastic beams.  

This paper presents the extension of the existing 
results of free vibration of structures of rigid bodies 
connected with elastic beam segments, but unlike 
existing results, in this paper mass centers of rigid 
bodies are not located on the neutral axes of elastic 
beam segments. Also, all elastic beam segments are in 
the same plane and during oscillations, rigid bodies 
perform planar motion. For determination of natural 
frequencies of the system, modification of the 
conventional continuous-mass transfer matrix method 
(CTMM) [9] has been performed. Performed 
modification of CTMM gives the coefficients of lower-
order determinant as compared to the determinant 
obtained in [9], which has importance in numerical 
analysis of the systems with a large number of elastic 
beam segments and rigid bodies.  Theoretical apporach 
of this paper is based on paper [10]. In this paper, the 
case when the left side of structure is clamped and the 
right side of structure is simply supported, is applied. 

But the beam is cantilevered and obtained results can be 
applied easily on any type of constraints on these places.       

 
2. SYSTEM MODELING AND EQUATIONS OF 

MOTION 

 
A system of rigid bodies (αi) connected by homogenous 
elastic beam segments (BSi) is shown in Fig. 1 [10]. Ci 
represents the mass center of body Vi, αi is the angle 
between the longitudinal axes of undeformed ad0jacent 
segments (BSi) and (BSi+1). Oi is the point of body (Vi) 
which represents the intersection point of the 
longitudinal axes of  undeformed adjacent segments 
(BSi) and BSi+1. Rigid bodies perform planar motions in 
the plane where elastic segments are positioned. wi(zi,t) 
presents the transverse displacement in the iy  direction 

and ui(zi,t)
 
presents the axial displacement in the zi 

direction, where zi axe coincide with the neutral axis of 
segment (BSi). 

 
Figure 1. Structures composed of rigid bodies connected 
with elastic beams 

The partial differential equations for bending and 
axial vibrations of the beam segments ( )iBS is [11]: 

( ) ( ) ( ) ,,,1,0,, nitzwAtzwIE iiiiiixi …ɺɺ ==+′′′′ ρ     (1) 

( ) ( ) ,,,1,0,, nitzuAEtzuA iiiiiii …ɺɺ ==′′−ρ             (2) 

where Ei presents modulus of elasticity, ( )ixI  is the 

cross-sectional area moment of inertia about axis ix  
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which passes trough center of the cross section,  Ai is  
the cross-sectional area, ρi is the mass density. The 
beam segments are modeled as the Euler-Bernoulli 
beams (rotary and shear effects are ignored) [11]. 
Deformations ui(zi,t)

  and wi(zi,t) as well as rotations 
w'i(zi,t) are small. 
 Using the separation of variables method, the 
displacements wi(zi,t) and  ui(zi,t) can be written as 

( ) ( ) ( ),, tTzWtzw iiii =    (3) 

( ) ( ) ( ),, tTzUtzu iiii =                                               (4) 

where Wi(zi) and Ui(zi) (i=1,...n) are the normal modes in 
bending and axial vibrations, respectively. According to 
(3) and (4), (1) and (2) can be rewritten as the following 
system of 2n+1

 
ordinary differential equations:  

( ) ( ) ,,,1,04
nizWkzW iiiii …==−′ ′′′                      (5) 

( ) ( ) ,,,1,02
nizUpzU iiiii …==+″                       (6) 

( ) ( ) ,02 =+ tTtT ωɺɺ                                                   (7) 

where ω is the natural frequency of vibration of the 
entire system and 

( )
.,,1,, 2224
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The relation between quantities ki and pi can be seen 
from (8).  
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I
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i

ix
i …==                                     (9)   

Taking that k1 = k and ( )
2

11 kAIp ix= , from (8) and 

(9) it follows  
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and 

( ) 2
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k
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IE x

ρ
ω =                                                    (11)   

The general solutions of (5) and (6) can be expressed 
as [11] 
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3. BOUNDARY CONDITIONS       

                              
3.1 Boundary conditions at the left end beam 

segment 

 
Let the segment (BS1) be clamped at the left end B1,L. 
Based on this, following boundary conditions hold: 

( ) ( ) ( ) ,0,0,0,0,0,0 111 ==′= tutwtw                 (14)   

which, taking into account (3), (4), (12), (13), (14) can 
be written in the developed form as follows: 

( ) ( ) ,01311 =+ CC                                                    (15)   

( ) ( ) ,0141121 =+ CkCk                                            (16)   

( ) .015 =C                                                               (17)  

The following matrix relation can be formed: 

 [ ] [ ][ ]001 CTC =      (18) 

where 

[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ] ,T
1615141312111 CCCCCCC =

 
(19)     

[ ] ( ) ( ) ( )[ ] ,T
1612110 CCCC =

                           
    (20)    

[ ] .

100

000

010

001

010

001

0



























−

−
=T

                                            
 (21)    

  
3.2 Boundary conditions of the rigid body (Vi)  

 
The rigid body (Vi) is presented in Fig. 2 [10]. Ci

*

 and 
∗∗

iC represents the perpendicular projections of the 

mass center iC  to the directions iRi OB , and iLi OB ,1+ , 

respectively. 

 
Figure 2. Free-body diagram of the body (Vi) 

In further considerations the following quantities 
will be used to describe the material and geometric 
characteristic of the rigid bodies (Vi): body mass mi, 
mass moment of inertia about centroidal axis Ji, 

iiRi eCB =*
, , iLii aBC =1,

**
+ , iii dCC =* , iii bCC =** , 

( )1, = iRii lBO , ( )2,1 = iLii lBO + . The slopes of the 

displacements at the ends Bi,R and Bi+1,L of the segments 
(BSi) and (BSi+1) equal the angle of rotation of the body 
(Vi): 
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)(0,=),( 1 twtLw iii +′′
                             

                (22)  

or, in developed form: 

(
)

( ).
coshsinh
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(23)  

Further, according to the assumption on small elastic 
deformations of the beam segments, the displacement 
vector of point Oi determined based on the displacement 
of point Bi,R and the slope w'i(Li,t) reads 

( )

( ) ( )( ) ( ) .,,, ,

0

iiiiiiiRiii

ii

ktLujtLwOBtLw

OO
��

+′+=

=

       (24)  

Also, the displacement vector of point Oi 
can be 

expressed through the displacement of point Bi+1,L and 
deflection w'i+1(Li,t) as follows: 
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Equating (24) and (25) and taking dot product of such 

obtained expression by the ij
�

 and ik
�

, respectively, 

yields 
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or in the developed form 
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The angular acceleration and the acceleration of the 
mass center Ci of the body (Vi), respectively, is 

( ) ),(=)(0,= 1)4(1)2(1
2

1 tTCCktw iiiii ++++ +−′ ωε ɺɺ
 

(30) 

,= ,1,1 iLiiLBiCi CBaa ++ ×+ ε
���

                               (31) 

where LBia ,1+
�

 is the acceleration of point Bi+1,L and 

1= +iii i
��

εε . In (31) on account of assumption about small 

deformations of the segments, the term i iω ω× ×
� �

 

1,i L iB C+  which represents normal acceleration of the mass 

center Ci is ignored. In that case,
 11= ++ i

'
ii iw
�

ɺ
�

ω  is the 

vector of angular velocity of body (Vi). Now, Newton-
Euler differential equations of motion of the body is 

,

=

1)(1)()(
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( )1 ( 1) ( ) ( )(0, ) = sin cos ,i i i i t i a i i t i im w t a F F Fε α α+ +− − −ɺɺ
 
 (34) 

where Ft(i) and Ft(i+1) are the shear forces of beam 
segments (BSi) and (BSi+1), respectively, defined as: 

),,(= )()( tLwIEF i
'''

iixiit −                                      (35) 

.)(0,= 11)(11)( twIEF
'''

iixiit ++++ −                            (36) 

Fa(i) and Fa(i+1) are the axial forces of beam segments 
(BSi) and (BSi+1), respectively, defined as: 

),,(=)( tLuAEF i
'
iiiia                                             (37) 

),(0,= 1111)( tuAEF
'
iiiia ++++                                 (38) 

and, finaly, Mf(i+1) and Mf(i) are the bending moments of 
beam segments (BSi) and (BSi+1), respectively, defined as: 

),,(= )()( tLwIEM i
''
iixiif −                                    (39) 

).(0,= 11)(11)( twIEM
''
iixiif ++++ −                        (40) 

Based on above relations, (32)-(34) can be written in a 
developed form as follows: 
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Equations (23), (29), (30), (41), (42), and (43) can 
be written in the matrix form as follows: 

1= +iiRiiL CTCT                                                   (44) 

where Ci = [C1(i) C2(i) C3(i) C4(i) C5(i) C6(i)]
T

, 
Ci+1 = [C1(i+1) 

C2(i+1) C3(i+1) C4(i+1) C5(i+1) C6(i+1)]
T. Finally, based on 

equations (44), the following recurrence relation can be 
written as 

1,,1,=,=1 −+ niiii …CTC                             (45) 

where 66x
i RT ∈  is transfer matrix between the 

integration constants for beam segments (BSi) and 
(BSi+1) determined as 

1,,1,=,= 1 −−
niiLiRi …TTT                               (46) 

After n-1 successive application of the reccurence 
relation (45), it can be obtained:  

.= 00121 CTTTTC ⋯−− nnn                                   (47) 

 
3.3 Boundary conditions at the right end beam 

segment 
 

Let the segment (BSn) be simply supported at the right 
end Bn,R. Based on this, following boundary conditions 
hold: 

( ) ( ) ,0,,0, =′′= tLwtLw nnnn                               (48)   

which, taking into account equations (3), (4), (12), (13), 
(48) can be written in the developed form as follows: 
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The following matrix relation can be formed: 

,= 13×OCT nn                                                      (51) 

where 
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3.4 Frequency equation and mode shapes 

 
Taking into account (47), it follows from (51) that 

130 = ×OTC                                                         (55) 

where 33×∈ RT  represents overall transfer matrix 
determined by the following expression: 

.011 TTTTT ⋯−= nn                                              (56) 

Eq. (53) represents a matrix form of the 
homogeneous system of equations for unknown 
components of the matrix 0C . In order that this system 

can have non-trivial solutions, it is needed to hold that 

.0=det T                                                              (57) 

 
4. NUMERICAL EXAMPLE 

 
In this example, rigid body with two elastic beam 
segments is considered (Fig. 3). The beam segments 
have circular cross section and the rigid body has square 
cross section. The following values of the system are 
used: Young's modulus E1 = E2 = 2.069×1011

N/m2, mass 
destiny ρ1 = ρ2 = 7500 kg/m3, diameters of the beam 
segments D1 = D2 = 0.05m, length of the beam segments 
L1 = L2 = 1m, mass of the rigid body m = 50kg, 
dimension of the rigid body a = 0.3m.  

The first four mode shapes are presented in Figures 
4, 5, 6, 7. Figure 8 shows the effect of angle α on the 
first four coefficients k. The characteristic equation for 
angle α = π/4 is presented in Figures 9, 10, 11, 12. 
Determined coefficients k from these figures, as well as 
first four lowest natural frequencies ω are presented in 
table 1.  

 
Figure 3. Rigid body with two elastic segments 

 
Figure 4. The first mode shape 

rk  
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Figure 5. The second mode shape 

 
Figure 6. The third mode shape 

 
Figure 7. The fourth mode shape 
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Figure 8. The effect of angle α on the coefficients k 
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Figure 9. Characteristic equation (determination of k1) 
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Figure 10. Characteristic equation (determination of k2) 
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Figure 11. Characteristic equation (determination of k3) 
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Figure 12. Characteristic equation (determination of k4) 

Table 1. The first four natural frequency of the system 

Mode k ω [rad/s] 
1 1.24 89.46 
2 3.16 580.96 
3 4.57 1215.08 
4 7.22 3032.83 

 
5. CONCLUSION  

 

Free vibrations of structures composed of rigid bodies 
connected with elastic beam segments are presented in this 
paper. It is assumed that mass centres of rigid bodies are 
not located on the neutral axes of elastic beam segments. 
For determination of natural frequencies of the system, 
modification of the conventional continuous-mass transfer 
matrix method (CTMM) [9] has been performed. The 
matrix T can be formed by using software tools like 
MatLab and Mathematica. Also, using the procedure 
developed in this paper, with the help of software tools, it 
can be found easily the solution of equation .0=det T in 
the analytical form. This provides possibility to analyze 
dependence on frequencies of any parameter of a given 
system. Numerical example is provided in order to 
represent possibilities of the developed procedure.   
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АНАЛИЗА СЛОБОДНИХ РАВАНСКИХ 

ОСЦИЛАЦИЈА СТРУКТУРА 

САСТАВЉЕНИХ ОД КРУТИХ ТЕЛА И 

ЕЛАСТИЧНИХ ГРЕДНИХ СЕГМЕНАТА 

 

Н. Радовановић, Н. Зорић, Н. Тришовић,  

А. Томовић 

 
Овај рад представља анализу слободних вибрација 
структура састављених од крутих тела међусобно 
спојених са еластичним гредама. Претпоставља се 
да се центри маса крутих тела не налазе на 
неутралној оси недеформисаног еластичног гредног 
сегмента као и да крута тела врше равно кретање у 
истој равни и да се њихови центри маса налазе у тој 
истој равни. За одређивање фреквенција система, 
модификација класичне "CTMM" методе је 
употребљена. Еластични гредни сегменти се 
третирају као Ојлер-Бернулијеве греде. Приказан је 
нумерички пример.     

 


