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This paper pays attention to develop a variable-order fractal derivative model 
for anomalous diffusion. Previous investigations have indicated that the medium 
structure, fractal dimension or porosity may change with time or space during sol-
ute transport processes, results in time or spatial dependent anomalous diffusion 
phenomena. Hereby, this study makes an attempt to introduce a variable-order 
fractal derivative diffusion model, in which the index of fractal derivative depends 
on temporal moment or spatial position, to characterize the previous mentioned 
anomalous diffusion (or transport) processes. Compared with other models, the 
main advantages in description and the physical explanation of new model are 
explored by numerical simulation. Further discussions on the dissimilitude such as 
computational efficiency, diffusion behavior, and heavy tail phenomena of the new 
model, and variable-order fractional derivative model are also offered.
Key words: anomalous diffusion, variable-order fractal derivative,  

stretced Gaussian distribution, porosity-gradient

Introduction

Nowadays, anomalous diffusion plays an important role in analysis of a variety of 
animate and inanimate systems [1, 2]. In most cases, the mean square displacement (MSD) of 
anomalous diffusion has been used to distinguish the diffusion characteristic [3, 4]. The MSD 
over time is usually expressed as < x2(t) > ∞ tp, in which 0 < p < 1 represents subdiffusion,  
p = 1 is Fickian diffusion, and p > 1 denotes superdiffusion. Subdiffusion has been observed in 
a variety of systems such as bromide transport process in a fractured granite aquifer [5], and 
contamination dispersion in groundwater or fractal systems [6, 7]. Meanwhile, superdiffusion 
exists in sediment transport, solute transport in fractured media and active motion in the biolog-
ical cells of animals [8-11], etc. 

In this field, lots of transport theories, such as multi-rate mass transfer model [12], 
continuous time random walk framework [13], fractional derivative model [14-16], and fractal 
derivative model [17-19] were proposed for anomalous diffusion/dispersion. Also, numerous 
experiment results illustrate that the solute transport in complex media may not keep at one 
single diffusive state [20, 21]. To accurately describe the transient diffusion processes, vari-
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able-order, and distributed-order fractional derivative diffusion models, along with tempered 
fractional derivative models, have been employed to capture these kinds of phenomena [15, 22-
24]. However, all of previously mentioned models are computationally expensive and difficult 
for mathematical analysis in most cases. Moreover, the additional model parameters are usually 
unavailable from experiments or measurement, and cause extra burdens in physical analysis. 
Hereby, this paper will make an attempt to overcome these problems by introducing a simple 
model to describe the transient diffusion processes, based on the fractal derivative model. 

The basic idea of fractal was introduced with the symbolic phrase mountains are not 
cones, bark is not smooth, nor does lighting travel in a straight line in Mandelbrot’s book The 
fractal geometry of nature. Mandelbrot hypothesizes that many natural phenomena are statisti-
cal fractals. Based on fractal structure of porous media, Chen [17] proposed a fractal derivative 
model and suggested potential applications on a variety of stretced Gaussian scaling phenom-
ena. Chen [18] and Sun et al. [25] improved the definition of fractal derivative and applied the 
fractal derivative model to characterize the water diffusion in unsaturated media. Previous re-
search illustrated that the fractal derivative model was simple and easy-to-solve compared with 
fractional derivative model and could suitably describe the well-documented experimental data 
which exhibited stretced Gaussian distribution. However, the fractal structure of porous media 
and porosity-gradient materials, usually changes with time or space and yields the transient 
diffusion behavior [15, 19, 26-29]. Therefore, it is necessary to generalize the presented fractal 
derivative model to address the transient diffusion behavior which changes with time, space or 
other conditions. Here we name the new model as variable-order fractal derivative model, in 
which the index of fractal derivative changes with time, space or other conditions, correspond-
ing to the influence of medium structure or heterogeneity variation. From physical viewpoint, 
the variable-order fractal derivative model means the time or space ruler varies with time or 
space during the solute diffusion or dispersion processes. Meanwhile, numerous experimental 
measurements illustrate that the geometrical structure of media varies significantly in different 
time or space scales, the variable-order index represents the time or space dependence of fractal 
characteristics.

Methodology

Definitions of the variable-order fractal derivative

The definition of fractal derivative can be written [30-32]:
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To characterize the time and space dependent physical process or system, we defines 
the variable-order fractal derivative:
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A more generalized definition which can be used to describe concentration-dependent 
diffusion, can be written:
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Since the variable-order fractional derivative model has been successfully used to 
describe transient dispersion, we will make a comparison between two models in characterizing 
anomalous diffusion or dispersion. In this paper, we adopt the most commonly used variable-or-
der fractional derivative of the Caputo type [33-35]. 

The properties of the fractal derivative 

In order to investigate the properties of fractal derivative, we firstly consider the fol-
lowing functions:
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The fractal derivative of previous functions can be stated:
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Laplace transform of time fractal derivative:
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According to the property of Laplace transform:
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Hereby, the final Laplace transform expression of time fractal derivative is written:
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The variable-order fractal derivative  
advection-dispersion equation model

We consider the variable-order fractal derivative advection-dispersion equation model 
with the governing equation is stated:
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where α(x, t)∈(0,2), β(x, t)∈(0,1], and x∈Ω, t > 0, with boundary condition:
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and initial condition:

 ( ,0) ( , ), 0u x w x t t= =  

Here, u(x, t) means the solute concentration, f(x, t) – the source or absorption term, 
A and D – the flow velocity and the diffusion coefficient, respectively, Ω – the spatial domain, 
and ∂Ω is along the boundary. Moreover, α(x, t) and β(x, t) denote orders of the time and space 
fractal derivatives which relate to time and space, respectively. 

The variable-order fractional derivative anomalous diffusion model is given by [15]:

 
( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )( , ) ( , )
x t x t x t

x t x t x t

u x t u x tA u x t D f x t
t x x x

α β β

α β β

 ∂ ∂ ∂ ∂
= − + + ∂ ∂ ∂ ∂ 

 (6)

where α(x, t)∈(0,2), β(x, t)∈(0,1], and x∈Ω, t > 0, with boundary condition:
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 ( ,0) ( , ), 0u x w x t t= =  

in which α(x, t) and β(x, t) denote fractional derivative orders of time and space, respectively. The 
other symbols and parameters are with same physical interpretations in eq. (5). Here we should 
notice that the eqs. (5), and (6) reduce to the classical advection-dispersion equation model when  
α(x, t) = β(x, t)=1:
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The reason why we compare the fractal derivative model eq. (5) and fractional derivative 
model eq. (6) is that α(x, t) < 1 and β(x, t) = 1 represents a subdiffusion while α(x, t) = 1 and β(x, t) < 1 
describes superdiffusion in both of models. However, the differences between two models are also 
obvious; fractal derivative is a local operator while fractional derivative is a global operator. Fractal 
derivative term represents the influence of geometrical structure on diffusion behavior by using the 
time or space rule, and fractional derivative term characterizes the history dependency and non-lo-
cality of particle random movement in heterogeneous media by employing convolution operator.

To illustrate main features of variable-order fractal derivative model, we first investi-
gate a time fractal derivative model with the governing equation expressed:
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Figure 1 shows the break through 
curves with fractal derivative α(x, t).

Clearly it can be seen transient of 
dispersion behavior from superdisper-
sion (α = 1.4) to normal dispersion (α = 
1.0) then subdispersion (α = 0.6) in the 
time interval t∈(0,10]. Here we should 
emphasize that time fractional derivative 
model describes subdispersion in most 
cases, while the time fractal derivative 
model could describe both super and 
subdispersion with α(x, t)∈(0, 2). The 
theory and application aspects on fractal 
derivative model in describing anoma-
lous diffusion have been investigated in 
references [17, 18, 25].

Numerical results

In this section, we focus on the time 
variable-order fractal derivative and the time variable-order fractional derivative diffusion 
equation models which describe anomalous diffusion. For simplicity, we pay our attention to 
a 1-D diffusion problem. The time variable-order fractal derivative model is given by:
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The time variable-order fractional derivative equation is stated: 
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in the eq. (10), [∂α(x,t)u(x,t)]/∂tα(x,t) represents the variable-order fractional derivative of the Ca-
puto type.

Since the analytical solutions of eqs. (9) and (10) can not be obtained, here employs an 
implicit finite difference scheme to numerically solve the previous equations. It can be proved 
that this numerical scheme is convergent, stable without preconditions for the variable-order 
fractal derivative and fractional derivative equations [36, 37].
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Figure 1. The dimensionless breakthrough curves of 
fractal derivative model at spatial location x = 4:  
(1) breakthrough curve with α = 0.6, (2) α = 1,  
(3) α = 1.4 – 0.8t, and (4) α = 1.4 



Liu, X., et al.:  A Variable-Order Fractal Derivative Model for Anomalous Diffusion 
56 THERMAL SCIENCE: Year 2017, Vol. 21, No. 1A, pp. 51-59

For easy-to-implement and simplicity purpose, this study only investigates vari-
able-orders with linear function of space or time. Solute concentration evolution curves ob-
tained by variable-order fractal derivative model with space dependent index α(x) = 0.6 + 0.08x  
are presented in figs. 2(a) and 2(b). The space dependent index means that the geometrical 
structure or physical property of considered area is space dependent, which yields different dif-
fusion behavior. The observation confirms that larger value of fractal derivative index produces 
faster decay of solute concentration. For example, generally speaking, solute concentration in 
left spatial domain, x∈[0, 5), diffuse slowly than that in right spatial domain x∈(5, 10]. In ad-
dition, it is clear that the solute diffusion curve at spatial point (x = 7.5) exhibits superdiffusion 
feature, while the diffusion curve at (x = 2.5) is more like the subdiffusion phenomenon, from 
the observation of fig. 2(b). However, here we should point out that the solute diffusion curve 
obtained by using variable-order fractal derivative model is different with that of constant-order 
model, even though the fractal index is same at certain spatial points. The main reason is that 
the different fractal derivative indexes nearby influence the diffusion behavior of solute trans-
port at present position.
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Figure 2. Solute diffusion curves obtained by using variable-order fractal derivative diffusion equation 
model (9) with diffusion coefficient D = 1.0

To explore the main property of variable-order fractal derivative model with time-de-
pendent index, we make a comparison with variable-order fractional derivative model. There 
are many time-dependent factors such as medium structure or saturation, influence the diffusion 
behavior in solute transport. Hereby, time-dependent fractal derivative model has great appli-
cation potentials in solving the real-world engineering problem. The solute diffusion curves 
obtained by using time-dependent fractal derivative and fractional derivative model with de-
creasing and increasing index functions are drawn in figs. 3(a) and 3(b). Generally speaking, the 
solute concentration evolution curves of variable-order fractal derivative model with α(t) ≤ 1, 
show a clear subdiffusion feature which can be easily observed in comparison with the classical 
model with α(t) = 1. Meanwhile, fractal derivative model predicts a faster decay trend of sol-
ute concentration at the tail part, compared with fractional derivative model, fig. 3(a). Those, 
figs. 3(b) and 3(c) also show that the differences of numerical results of variable-order fractal 
derivative and fractional derivative models are not significant, which means both models can 
commendably describe the experimental data in many cases.

To test the computational efficiency of fractal derivative and fractional derivative mod-
els in numerical simulation, we make a comparison of computation cost with different time steps. 
Obviously, the computation cost of fractal derivative model is much lower than that of fractional 
derivative model, from the observation in tab. 1, with the computer Intel(R) Core (TM) i5-5490 
CPU@3.30GHz. In addition, tab. 1 also tells us that the computation cost of fractal derivative 
model linearly increases with the number of nodes, but that of fractional derivative model in-
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creases dramatically with node number. The main reason lies that the fractal derivative is a local 
operator, while the fractional derivative is a global operator from mathematical viewpoint.
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Figure 3. Solute concentration 
evolution curves of variable-order 
fractal derivative model (9) and 
fractional derivative model (10) at  
x = 5.0, diffusion coefficient D = 1.0, 
and flow velocity A = 1.0 

Table. 1. Comparison results of the computation cost of fractional and 
fractal derivative models with flow velocity A = 1.0 and dispersion 
coefficient D = 1.0; fractal and fractional derivative orders are α = 0.65.

Nodes 10 100 500 1000
Fractional model [s] 0.177984 1.647346 20.922217 74.523884
Fractal model [s] 0.070087 0.507919 2.598602 10.295587

Conclusion 

This paper introduces the main concept of variable-order fractal derivative and its 
application in anomalous diffusion modeling. From a statistical physics viewpoint, fractal de-
rivative diffusion model is a local model, underlies the stretced Gaussian process, while the 
fractional derivative model corresponds to the Levy stable process. According to the compar-
ison results, both of the variable-order fractal derivative and fractional derivative models can 
capture transient dispersion in heterogeneous media. But the variable-order fractal derivative 
model is simple to analyze and computational efficient for numerically calculation. The appli-
cation potentials of variable-index fractal derivative model include a great variety of mass dif-
fusion or transport, also heat conduction process in porosity-gradient structure, spatial or time 
dependent heterogeneous media.
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