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a b s t r a c t

We have developed EpDis and MassPred, extendable open source software tools that support bioinfor-
matic research and enable parallel use of different methods for the prediction of T cell epitopes, disorder
and disordered binding regions and hydropathy calculation. These tools offer a semi-automated installa-
tion of chosen sets of external predictors and an interface allowing for easy application of the prediction
methods, which can be applied either to individual proteins or to datasets of a large number of proteins.
In addition to access to prediction methods, the tools also provide visualization of the obtained results,
calculation of consensus from results of different methods, as well as import of experimental data and
their comparison with results obtained with different predictors. The tools also offer a graphical user
interface and the possibility to store data and the results obtained using all of the integrated methods
in the relational database or flat file for further analysis. The MassPred part enables a massive parallel
application of all integrated predictors to the set of proteins. Both tools can be downloaded from
http://bioinfo.matf.bg.ac.rs/home/downloads.wafl?cat=Software. Appendix A includes the technical
description of the created tools and a list of supported predictors.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Bioinformatics research often includes large-scale analyses of
different macromolecular attributes which provide for an
increased understanding of complex cellular processes. The aim
of these in silico approaches is to reduce research time and cost
by developing predictive methods to assist in improving experi-
mental approaches in biological research. Predicting protein struc-
ture and function are one of the central themes of proteomics. It
has been suggested that the major factors of epitope immunodom-
inance in the CD4+ T cell response are either the site within the 3D
structure of the protein antigen where the peptide antigenic deter-
minant (epitope) is located, or the amino acid (AA) composition of
the epitope (reviewed in [65]. There is also a strong correlation
between T-cell epitopes and structured (ordered) regions, suggest-
ing that nearby regions of structural instability (disorder) define
the ends of T-cell epitopes in experimental model antigens
[27,38]. Cytotoxic T-lymphocyte (CTL) epitopes were found to be
highly concentrated in the hydrophobic [33] and a-helical [63]
regions of HIV-1 proteins. In addition, selfpeptides with a high fre-
quency of hydrophobic residues, presented by the major histocom-
patibility complex (MHC) class I molecules, were found to be
concentrated in highly conserved regions of human proteins [19].
The observed positional biases of T-cell epitopes could originate
from cellular mechanisms involved in epitope processing, trans-
port and presentation [19,55], as well as unequal distribution of
bulky hydrophobic, polar and charged AAs in structured regions
as compared to unstructured protein regions [54]. Several attempts
aimed at predicting vaccine antigens have been based on the phys-
ical properties and composition of proteins, such as isoelectric
point, molecular weight, hydrophobicity, flexibility, mutability
and bulkiness [37]. Such attempts have also combined different
strategies for identifying T-cell epitopes, as the physical properties
of AAs and the chemical and molecular properties of peptides [20].
Dynamic conformational transitions in flexible proteins or protein
assemblages containing long intrinsically disordered protein
regions (IDPRs) are factors that potentially influence protein degra-
dation [58]; however, their relationship to epitope processing
remains unknown. Disorder predictions can help to improve the
recognition of a binding partner of certain proteins. Specialized
methods, [9,39], have been developed to identify protein regions
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that are unstructured in the unbound state and adopt a stable con-
formation in their bound state, referred to as molecular recognition
features (elements) (MORF, MORFs) or disordered binding regions,
respectively. Overlap between these regions and short eukaryotic
linear motifs (3–10 AA residues) revealed the correspondence to
functionally relevant interaction sites which have been shown to
play vital roles in eukaryotic regulation and signaling [41,5].

It is, therefore, of practical value for the research in disorder and
epitope prediction to have at one’s disposal different programs for
the prediction and comparative presentation of results. In this
paper, we describe two software tools, EpDis (Epitope in Disorder)
and MassPred (Massive Prediction) that have been developed to
support research examining the correlation between epitope posi-
tioning and protein disorder. In this chapter we will present a short
overview of categories of computational prediction methods
supported by EpDis-MassPred tools, and our motivation for
constructing such tools; chapter 2 includes a description of the
EpDis-MassPred architecture; chapter 3 provides an example of
its application; chapter 4 presents a short overview of existing
tools and chapter 5 presents discussion and conclusion.

1.1. Categories of computational predictions supported by EpDis-
MassPred tools

1.1.1. Protein disorder prediction
The identification of intrinsically unstructured (disordered) pro-

teins (IDPs) among molecules that fail to crystallize has challenged
the classical protein structure-to-function paradigm according to
which protein function depends on a well-defined three-
dimensional structure. Despite the lack of defined tertiary and/or
secondary structure under in vitro physiological conditions, pro-
teins that are fully or partially disordered play crucial functional
roles, acquiring a defined structure only when bound to other
molecules [61]. Due to their conformational plasticity and flexibil-
ity, disordered protein regions (IDRs) are engaged in high speci-
ficity/low affinity interactions with multiple unrelated partners
by utilizing different folding-induced secondary structural ele-
ments. The significance of disordered proteins as major regulators
of cell functions is reflected in their involvement in the pathogen-
esis of human diseases, such as cancer, cardiovascular diseases,
amyloidosis and neurodegenerative diseases [60]. The identifica-
tion of disordered regions from protein primary sequences reveals
protein domains that can form crystal structures and facilitates
functional annotation and further analysis of proteins. To this
end, many approaches to disorder prediction based on different
concepts, have been developed.

Propensity-based disorder predictors rely on the physicochem-
ical properties of amino acids, or on the concept of the physical
background of disorder, i.e. the CH plot, FoldIndex, PreLink, and
GlobPlot. Machine learning-based disorder predictors are founded
on training on data sets of disordered regions, characterized by
missing densities in protein X-ray datasets from PDB, or the
flexible regions obtained from nuclear magnetic resonance (NMR)
studies. PONDR VSL2B, DisEMBL, DISOPRED2, OnD-CRF and RONN,
which are included in the EpDis and MassPred tools, belong to this
category of predictors. Methods that rely on the propensity of pro-
tein regions to fold or unfold are based on the potential of amino
acids to establish or avoid contact with each other. Our software
includes the IUPred predictor which evaluates the energy resulting
from interactions between amino acid residues based on the inter-
residue contacts in globular proteins [15]. Predictors can also com-
bine different approaches. For example, the IsUnstruct method,
also included in our software, has adapted the Ising model from
statistical mechanics. The method applies dynamic programming
to the Ising model, using data from PDB files of proteins sorted
in the Disordered Residues Database, [32]. A more accurate
sequence-based classification of IDRs is a major challenge for link-
ing IDRs to their biological roles from the molecular to the systems
level.

1.1.2. Prediction of disordered binding regions
IDRs could act as flexible linkers or could have binding activity

through coupled folding and binding of short binding regions
(5–25 residues) located in longer IDRs, named (MoRFs [50] or dis-
ordered protein-binding regions (disordered binding regions) [39]
that function via binding to other macromolecules adopting a rigid
conformation upon binding. According to their structures in the
bound state, at least three types of MoRFs can be defined:
a-MoRFs, b-MoRFs, and i-MoRFs, which form a-helices, b-strands,
and structures without a regular pattern of the protein backbone.
Experimental methods for identifying MoRFs are costly and time
consuming, whichmakes computational methods useful for guiding
experimental analysis. Several tools for predicting MoRFs, are avail-
able for download or online use: a-MoRF-PredI [50], a-MoRF-PredII
[4], ANCHOR [39,12], MoRFpred [9], MFSPSSMpred [13] and DIS-
OPRED3 [22]. a-MoRF-PredII is a neural network-based predictor
which is limited to prediction of a-MoRFs. MoRFpred combines
annotation transfers by similarity to the output of a support vector
machine (SVM) model, that examines sequence conservation data,
AA physicochemical properties and predictions of intrinsic disorder,
relative solvent accessibility and residue flexibility. MFSPSSMpred
considers only sequences, which are preprocessed to enhance the
signal of local conservation within the IDRsequences, and is based
on position specific scoring matrices. DISOPRED3 is a program for
a precise disordered region prediction and annotation of protein-
binding sites within disordered regions. The first step is identifica-
tion of disordered residues through a consensus of the output gen-
erated by DISOPRED2 and two additional machine-learning
classifiers trained on large IDRs, and the second annotates them
as protein binders or non binders through an additional SVM classi-
fier trained on experimental data. The ANCHOR method for the pre-
diction of disordered binding regions, included in the EpDis and
MassPred tools, is focused on the prediction of MoRFs which bind
to globular proteins [39]. It follows the same idea that underlies
the IUPred disorder predictor [11], i.e., the unfavorable intrachain
interaction energies of disordered binding segments, combined
with the high energetic gain as a result of interaction with a globu-
lar protein partner. The ANCHOR statistical model was learnt from a
small set of chains, found to be unstructured in isolation, but struc-
tured in complex with their partners. ANCHOR attained the highest
level of sensitivity in the benchmark, performed by Jones and Coz-
zetto. The other programs in the benchmark were MoRFpred,
MFSPSSMpred and DISOPRED3 [22]. The overlap of disordered
protein-binding region prediction with predictions of linear interac-
tion motifs (LM) or linear peptide docking/binding sites help to
improve recognition of protein partners, which interact via
disorder-to-order transition sites [41,12], or potential phosphoryla-
tion sites [18]. Correspondence of epitope and disordered binding
region predictions with LM and experimentally verified epitopes
has been found in certain autoimmune and tumor-proteins, prefer-
entially associated with flanking regions of disordered binding
regions and LM [52]. The importance of flanking regions of linear
motifs is further supported by the observation that they are often
structurally conserved [5].

1.1.3. T cell epitope prediction
Cellular immunity, mediated by T-lymphocytes, is a central

mechanism of the adaptive immune response. T-cell epitopes are
peptides that have been released from antigenic molecules through
proteolytic mechanisms, and subsequently transported to the cell
surface, bound to chaperone-like receptors known as major histo-
compatibility complex (MHC) molecules, which present epitopes
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to T cells. Computer models of T-cell epitope prediction, based on
MHC-peptide binding, a fundamental step in epitope selection,
have been developed to complement expensive and time-
consuming experimentation. The large-scale computational
screening for T-cell epitopes, which are crucial components of
modern vaccines and immunotherapeutics, is the standard proce-
dure employed in the discovery of novel T-cell epitopes in infec-
tious diseases, cancer, autoimmunity and allergy [2].

T-cell epitope prediction methods can be broadly divided into
two categories: protein sequence-based and protein structure-
based [3,14,56]. Protein sequence-based methods use patterns in
peptide sequences with known binding affinities to certain MHC
types, together with a variety of fitting techniques [34,2,59,29,30,
18]. The structure-based methods use structural information on
epitope interactions with MHC molecules, such as peptide-MHC
docking of all possible core segments of the peptide into the MHC
protein, in order to predict the structures of the bound complexes,
and allow for machine-learning-based scoring to predict the pep-
tide binding affinities (reviewed in [3]). In contrast with
sequence-based methods, comparatively little work has been
undertaken to explore the structure-based methods for predicting
peptide binding affinities toMHCmolecules. Structure-basedmeth-
ods can currently be applied to allotypes that significantly differ
from allotypes which have been identified in experimental
peptide-MHC binding data, but have so far not been able to gain
an accuracy that is comparable to the top-ranked sequence-based
methods (reviewed in [35]). However, certain sequence-based
methods use some structural information, such as peptide-
contacting polymorphic MHC residues (MHC ‘‘pseudo-sequences”),
used in NetMHCpan and NetMHCIIpan [45–47,16,1], or MHC pock-
ets in TEPITOPE [57] predictors.

Two large-scale benchmark studies performed by Zhang et al.
[64] and Karosiene et al. [23] have demonstrated that NetMHCpan
and NetMHC, respectively, are among the best publicly available T
cell epitope predictors. Furthermore, NetMHCII and NetMHCIIpan
have been identified as the best predictors of single T-cell epitopes
within MHC class II epitope predictors [8]. The advantage of pan-
specific predictors, which makes them potentially suitable for
epitope-based vaccine design, is that they cover alleles for which
experimental data are unknown, and because they are capable of
dealing with HLA class polymorphisms. Given that peptide vacci-
nes incorporating a ’promiscuous’ T-cell epitope provide broad
spectrum immunogenicity, the pan-specific predictors are the best
choice since they cover the largest number of alleles among all
existing predictors.

A number of web-accessible integrated methods for T-cell epi-
tope presentation have been developed, as for example methods
that combine MHC class I binding prediction with proteasomal
cleavage data and results of TAP transport, but a large-scale bench-
mark by independent groups has not yet been performed for these
methods, [35].

However, the development of a tool for the systematic compar-
ison of different methods is necessary. Standardized data represen-
tation [14] or large and diverse training and blind datasets [36] are
needed to provide reliable performance benchmarks for epitope-
MHC binding predictors. Selection of epitopes predicted by differ-
ent methods increases the probability that the identified peptide is
a true epitope.

1.1.4. Hydropathy calculation
Separating the intervals of hydropathy (hydrophobicity/hydro

philicity) and plotting these intervals along a protein sequence facil-
itates the identification of putative structural features, such as
membrane-spanning regions, antigenic sites, exposed loops or bur-
ied residues. For the computation of hydropathy values of protein
regionswehave implementedstandardhydropathyplotsofproteins
with some improvements regarding data storage andmanipulation.
Hydropathy is calculated by scanningwith a sliding window, which
can be varied according to the expected size of the structural motif
under investigation. At each position in the protein, the sum of
hydropathy values (indexes) of all the AAs in thewindow, is divided
by the number of AAs in the window (average hydrophilic or
hydrophobic index). Implemented methods for hydropathy index
calculation, in EpDis-MassPred system, are based the twohydropho-
bicity AAs scales, commonly used in bioinformatic research, the
Kyte–Doolittle (KD) [26] and Hopp–Woods (HW) [17].

Introducing those methods in EpDis/MassPred tools enables
massive complex analysis of a large number of proteins, segrega-
tion of protein regions, visualization, overlapping with other cho-
sen motifs and keeping as intervals in a database, or result
storage in a format suitable for further analysis.

1.2. Motivation

In some fields of scientific enquiry, it is necessary to combine
results from different areas of research. For example, predictions
obtained by the use of different parameters and methods can
greatly improve the accuracy of predictions of the epitope, disorder
and disordered binding regions. Some disorder predictors, trained
on a data set of short segments of disordered regions, perform bet-
ter on shorter than on long disordered regions. To improve the reli-
ability of predictions and avoid overfitting of results, predictors
based on different principles should be combined. Therein lay
many problems for researchers: the use of various predictors is dif-
ficult due to inconsistent representation of results. This renders
them unsuitable for further analysis or comparison, even in the
case of a single protein.

Alternatively, one could use publicly available servers that
allow multiple predictions. Web-based predictions are easy to
use on a small scale, while large-scale predictions and a direct
comparison of different methods are difficult. In addition, some
predictors are time consuming. Furthermore, if access to a predic-
tor is possible only through web applications, it is problematic for
application on a large number of proteins. On the other hand, even
predictors that are available as stand-alone applications, are not
always suitable for application on several hundred or more pro-
teins. Moreover, they frequently require certain programming
skills for their installation, that most researchers do not have. In
research that includes the previously described characteristics of
proteins, it is common practice to combine the results related to
two or more required characteristics. Additionally, in order to
obtain quality data (e.g. through data mining), it is necessary to
apply a selected method to a large number of candidate proteins.
The inclusion of a large number of proteins slows down result
acquisition, complicates result visualization and analysis, necessi-
tating a capability to rapidly access all generated results for the
purpose of switching between proteins that are under analysis.

To overcome the above-mentioned obstacles and decrease
research time, we have developed two tools: EpDis (Epitope in
Disorder) and MassPred (Massive Prediction). Our tools enable
easy access and use of disorder, disordered binding, and T-cell epi-
topepredictors, and methods for hydropathy calculation, input
data processing, uniform display and storage of results, and result
preparation for further processing and analysis. The tools do not
favor one predictor over another. They allow for the simultaneous
use of a number of predictors.

The EpDis tool also provides a visual presentation of the results,
obtained either from a single method or as a comparative display
of results obtained by any of the supported methods. The parallel
display of different characteristics can help in determining correla-
tions between characteristics, as for example the relation of T-cell
epitopes and ordered or disordered regions of proteins, the extent
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of hydropathy of epitopes and certain regions in a protein, etc. It is
possible to include in thedisplayexperimental data about secondary
structures and T-cell epitopes. As a support for further analysis, the
developed system enables storage/retrieval of values obtained from
(predictors’) predictions in the relational database or files.

2. System architecture

The developed system consists of two components, EpDis and
MassPred, which can be used either independently or as integrated
subsystems offering a higher level of functioning. Both components
have been developed for the Linux operating system. The complete
system provides, among other things, semi-automated installation
of a selected set of predictors, the possibility to apply selected pre-
dictors to an individual protein or to an arbitrary set of proteins (a
mass application), storing of the obtained data in a variety of for-
mats suitable for further processing, and a visual representation
of the results. The system components can be accessed via GUI
or through the command interface. The organization of the system
is shown in Fig. 1.

Both components of the system can be relatively easily
expanded to support additional predictors or user-defined func-
tions. The list of predictors included in the current version (V4.0)
is presented in Appendix A and html documentation. All predictors
can be downloaded from the internet, while methods for calculat-
ing the hydropathy index have been written by the authors of this
paper. The first criterion for predictor selection was its availability
as a stand-alone application. The selected disorder predictors were
mainly those that performed well in CASP experiments (Critical
Assessment of Protein Structure Prediction experiments). The epi-
tope predictor system supports various versions of NetMHC/
NetMHCPan and NetMHCII/NetMHCIIPan, mainly because they
are freely available and have a proven accuracy. Both Masspred
and EpDis components of the system support the same set of pre-
dictors, but differ in their functions and objectives for which they
were designed.

2.1. MassPred

MassPred is a set of tools that provides easy predictor installa-
tion, application of predictors to input data and filtering of the
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Fig. 1. Global architecture of the EpDis-MassPred system.
results of predictor action. In the preparatory step for predictor
installation, the user must manually download the selected predic-
tors from the internet. After this point, MassPred provides scripts
for automated installation of the desired predictors and their
preparation for automatic execution. Predictors (any of the previ-
ously mentioned four types) are applied to the protein dataset,
which can be stored in one or more files or directories. Each file
can include one or more proteins in fasta format. MassPred takes
the contents of input files or directories, extracts every single pro-
tein and applies the desired predictors to the extracted proteins,
creating separate jobs for every pair (protein, predictor). The
created jobs can be simultaneously executed on a symmetric mul-
tiprocessor computer, or on computers with a multicore/multi-
thread processor architecture. MassPred itself does not perform a
parallel execution of a single predictor application to a single pro-
tein. After finishing the generated jobs, MassPred collects the
results and filters them in a TSV file format in order to prepare
the results in a form that can be used as an input in a load utility
program for loading results in RDBMS tables. By default, the results
are filtered for IBM DB2 RDBMS. MassPred can optionally produce
files with a set of SQL INSERT statements for loading data to (DB2
or some other) RDBMS. Additional filters are based on the inclusion
of only specific regions (ordered/disordered) and epitope (strong or
weak binding) types in the output, or the omission of binding affin-
ity, disorder probability and/or hydropathy level of each amino
acid in the processed protein. The MassPred mechanism for gener-
ating jobs for simultaneous execution is not restricted to supported
predictors. In fact, any program that takes a single protein
sequence in fasta format can be massively applied to set of
proteins.

MassPred is a command line (shell) oriented system, without a
GUI interface. It also allows remote execution.

2.2. EpDis

EpDis is an open source software tool, published under the MIT
license, and developed to facilitate research for biologists and
immunologists. It offers simultaneous access to different predic-
tion methods, and combines and compares results obtained by
their application to the same input data. In addition to its ability
to access predictors, the tool offers the possibility of including
experimental data. Experimental data can be compared with pre-
dicted results, drawn and displayed. Their overlap with the results
of prediction is presented in the form of intervals.

EpDis is composed of components (as shown in Fig. 1) that
provide:

(a) an interface for data entry. Input data can be proteins or
experimental data (secondary structure, T cell epitopes,
and MHC binders). Entering the protein sequences can be
performed in several ways: from the fasta file containing
single or multiple proteins; from the relational database
table where each protein is in AA format along with its
unique identifier; by specifying a raw AA sequence, and after
acquiring a protein sequence with the specified identifier
from the UniProt database through a web interface. Entering
experimental data is based on the addition of an appropriate
XML file whose structure is in accordance with the pre-
defined XML scheme;

(b) processing of protein sequences by determining T-cell epi-
topes of different lengths, using one of the supported MHC
binding predictors;

(c) processing of protein sequences with determined disor-
dered/ordered regions, using one of the supported disorder
predictors;
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(d) hydropathy index calculation for peptides of different
lengths;

(e) processing of protein sequences by determination of disor-
derbinding regions using the ANCHOR predictor.

The main characteristics of the EpDis tools are as follows:

� It enables the execution of all supported prediction methods,
serial or parallel. For the rapid and efficient execution of predic-
tors, the tool provides two predefined strategies for caching the
results of prediction. The choice of strategy for caching depends
on the (user configurable) selected configuration. Local caching
is applied when the component of the tool that works with the
database is disabled, otherwise database caching is applied. The
benefit of caching is particularly evident in situations where
predictor execution takes a very long time or in cases where a
long protein sequence is the input. In subsequent requests for
an identical action, the results are obtained from the cache
without repetition of calculation.

� Modularity, configurability and extensibility. The addition and
use of new prediction methods, result analyzers and result plot-
ters are simple and straightforward. When properly added and
configured, the predictor is discovered automatically by the tool
on startup and is offered later for use.

� It enables visualization of the predictions in the form of charts
and their export to various graphic formats, such as PNG, PDF,
SVG, and EPS in high quality. Charts are customizable; there-
fore, the colors and annotations can be adjusted either in the
configuration files or during runtime.

� It enables export of the predictions into flat files in raw format
as the original output form of the used prediction method.

� It enables storing of the results of the predictions directly into
the relational database tables using commands generated by
the MassPred tool through the MassPred component. Tables
are designed to allow subsequent efficient querying, search
and comparisons of predictions, or the application of different
data mining and machine-learning techniques (see SQL DDL in
Appendix A and html documentation).

� All DML commands are initially generated according to the IBM
DB2 syntax, which is by default RDBMS in EpDis-MassPred sys-
tems. For rapid import, in the case of mass insertion MassPred
offers the use of the LOAD database utility which provides the
best performance results.

� It supports massive execution of the predictors on a large set of
proteins by use of the MassPred tool. EpDis utilizes MassPred
through the MassPred component, providing an easier specifi-
cation of input parameters and their forwarding to the
MassPred tool.

� Although EpDis supports combining simultaneous execution of
all supported methods, any of these methods can be used indi-
vidually. It is also possible to combine predictors from two arbi-
trary prediction areas of the four available (disorder prediction,
epitope prediction, disordered-binding prediction and,
hydropathy calculation), and to visualize the obtained results.

The Epdis tool is written in Java and consists of five basic mod-
ules (see in Appendix A).

Some examples of MassPred/EpDis applications are presented
in the next section.
3. Examples of application

In the examples of application of the MassPred and EpDis sys-
tems, the proteins EBNA1 (UniProt Acc: P03211) and p53 (UniProt
Acc: P04637), served as the input.
3.1. MassPred

MassPred, is a script oriented system. It is started by running
the script work.sh with two input parameters: name of the
MassPred application configuration file and the name of the fasta
file or directory which includes fasta files. For example,

/usr/local/masspred/work.sh configuration.ish

p03211.faa

The configuration file (configuration.ish) includes parameters
related to the current computer system (for example, the number
of concurrent CPUs), and parameters related to supported predic-
tors. An example of a configuration file is

CPU_NUMBER=8

WORK_HYDRO=yes

WORK_ISUNSTRUCT=yes

WORK_VSL2=yes

WORK_NETMHC_1_34A=yes

NETMHC_1_34A_ALLELE_FILE=NetMhc.3.4a.pseudo

NETMHC_1_34A_LENGTH_FROM=8

NETMHC_1_34A_LENGTH_TO=9

. . .

File p03211.faa includes the fasta version of protein(s) on which the
predictors are to be applied. The file can include one or more pro-
teins in fasta format. For example,

>gi|119110|sp|P03211.1|EBNA1_EBVB9 RecName:

Full=Epstein-Barr nuclear

antigen 1; Short=EBNA-1; Short=EBV nuclear antigen 1

MSDEGPGTGPGNGLGEKGDTSG

PEGSGGSGPQRRGGDNHGRGRGRGRGRGGGRPGAPGGSGSGPRHRDGV

RRPQKRPSCIGCKGTHGGTGAGAGAGGAGAGGAGAGGGAGAGGGAGGAG

GAGGAGAGGGAGAGGGAGGAG

GAGAGGGAGAGGGAGGAGAGGGAGGAGGAGAGGGAGAGGGAGGAGAGG

GAGGAGGAGAGGGAGAGGAGGA

GGAGAGGAGAGGGAGGAGGAGAGGAGAGGAGAGGAGAGGAGGAGAGGAG

GAGAGGAGGAGAGGGAGGAGA

GGGAGGAGAGGAGGAGAGGAGGAGAGGAGGAGAGGGAGAGGA

GAGGGGRGRGGSGGRGRGGSGGRGRGGS

GGRRGRGRERARGGSRERARGRGRGR

GEKRPRSPSSQSSSSGSPPRRPPPGRRPFFHPVGEADYFEYHQE

GGPDGEPDVPPGAIEQGPADDP

GEGPSTGPRGQGDGGRRKKGGWFGKHRGQGGSNPKFENIAEGLRALLA

RSHVERTTDEGTWVAGVFVYGGSKTSLYNLRRGTA

LAIPQCRLTPLSRLPFGMAPGPGPQPGPLRESIVC

YFMVFLQTHIFAEVLKDAIKDLVMTKPAPTC

NIRVTVCSFDDGVDLPPWFPPMVEGAAAEGDDGDDGDEG

GDGDEGEEGQE

>gi|89902357|ref|YP_524828.1| 50S ribosomal protein

L7/L12 [Rhodoferax ferrireducens T118]

MAFDKDAFLTALDSMTVMELNDLVKAIEEKFGVSAAAMSAPAAGGAVAA

VAEEKTEFNVVLLEAGAAKVS

VIKAVREITGLGLKEAKDMVDGAPKNVKEGVSKVDAEAALKKLLDAGA

KAELK

. . .

After execution, Masspred creates a directory with the added suffix .
out to the name of the input file. The directory contains gzipped files
with results for every required prediction. For example, for the part
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of the configuration file shown above, a directory p03211.faa.out
was created with the following files:

� epitope_success.load.gz - gzipped file with the predicted data
from the epitope predictors,

� hydro.load.gz - gzipped file with calculated hydrophobicity val-
ues for every AA,

� region_success.load.gz - gzipped file with the predicted data
from the disorder predictors.

All files are in TAB separated format and prepared for loading
into RDBMS. For example, the content of region_success.load file is
119110
 P03211.1
 p03211
 1
 413
 D
 IsUnstruct
119110
 P03211.1
 p03211
 414
 414
 O
 IsUnstruct
119110
 P03211.1
 p03211
 415
 480
 D
 IsUnstruct
119110
 P03211.1
 p03211
 481
 541
 O
 IsUnstruct
119110
 P03211.1
 p03211
 542
 554
 D
 IsUnstruct
119110
 P03211.1
 p03211
 555
 613
 O
 IsUnstruct
119110
 P03211.1
 p03211
 614
 641
 D
 IsUnstruct
89902357
 YP_524828.1
 p03211
 1
 55
 D
 IsUnstruct
89902357
 YP_524828.1
 p03211
 56
 84
 O
 IsUnstruct
89902357
 YP_524828.1
 p03211
 85
 123
 D
 IsUnstruct
119110
 P03211.1
 p03211
 1
 479
 D
 VSL2b
119110
 P03211.1
 p03211
 480
 497
 O
 VSL2b
119110
 P03211.1
 p03211
 498
 498
 D
 VSL2b
119110
 P03211.1
 p03211
 499
 541
 O
 VSL2b
119110
 P03211.1
 p03211
 542
 553
 D
 VSL2b
119110
 P03211.1
 p03211
 554
 606
 O
 VSL2b
119110
 P03211.1
 p03211
 607
 641
 D
 VSL2b
89902357
 YP_524828.1
 p03211
 1
 5
 D
 VSL2b
89902357
 YP_524828.1
 p03211
 6
 36
 O
 VSL2b
89902357
 YP_524828.1
 p03211
 37
 44
 D
 VSL2b
89902357
 YP_524828.1
 p03211
 45
 84
 O
 VSL2b
89902357
 YP_524828.1
 p03211
 85
 123
 D
 VSL2b
3.2. EpDis

The EpDis user interface panel is divided into two parts, referred
to as Execution (displayed in Fig. 2) and MassPred (displayed in
Fig. 3). The generated screen with visualized results is presented
in Fig. 4.

3.2.1. Execution module
The execution module offers loading of protein sequences in

four ways, as described above and presented in Fig. 2, part A;
accessing eight, currently supported, disorder prediction methods
and one disordered bindingmethod (Fig. 2, part B); accessing seven
T-cell prediction methods (Fig. 2, part C), and accessing methods
that calculate peptide hydropathy (Fig. 2, part D). Disorder predic-
tors, apart from the protein sequence, do not require specification
of other parameters. Prediction methods for T-cell epitope detec-
tion (based on MHC binding affinities) require parameter specifica-
tion that depends on the prediction method. For each epitope
predictor there is a form with a corresponding drop-down list of
available alleles, peptide length, binding threshold and window
length. The user can choose only those parameter values for which
the selected predictor can carry out predictions. For hydropathy
scoring, it is also possible to choose the window length, which
can be the same as peptide length (in that way it is possible to
compare the hydropathy score with the binders and non binders),
or any length between 8 and 19 AA. From the menu item ‘Experi-
mental’, a user can view the existing experimental data or add a
new set of data (explained in details in the documentation). New
sets can be added by selecting the existing XML file using File
Browser. The structure of the XML file must be compliant with
the predefined XML scheme. The user can observe the structure
of the added experimental results and delete them. Deletion of a
selected set will remove the XML file containing it from the file
system.

3.2.2. MassPred module
This module enables the running of the MassPred tool from gra-

phic mode. Turning on this component is optional and config-
urable. Apart from extending the functionalities of EpDis, the
main purpose of this module is to facilitate the use of the MassPred
tool itself, by allowing the user to specify its parameters simply by
selecting the target predictors. The MassPred module has a prede-
fined default configuration, but it allows storing and loading of a
custom configuration as well. After execution of MassPred, the out-
put is redirected and displayed to the user in the separate window.
The interface for the MassPred module is shown in Fig. 3.

3.2.3. Visualization of the result
A special part of the execution module is the visualization sub-

module. For each prediction method there are corresponding
classes whose instances are responsible for interpreting and dis-
playing the prediction results. The visual presentation of the out-
put after applying selected predictors on the individual protein is
shown in Fig. 4 through an example of the human tumor suppres-
sor proteinp53, (UniProt Acc: P04637), involved in the control of
cell-cycle and apoptosis. The first panel (PART A in the figure) rep-
resents the output of all chosen disorder predictors along with the
experimentally determined structure, if defined for a certain pro-
tein. For disorder prediction, the output is the probability score,
indicating the likelihood of the residue to be a part of the disorder
region along each position in the protein sequence. Residues with a
score above the horizontal threshold line are predicted to be disor-
dered and with a score below the threshold line are predicted to be
ordered. The tool provides the utility of identifying a consensus
among all of the chosen predictions. The comparison of predictions
helps to identify the possible omission and mismatch or the most
accurate prediction if the experimental data are included. The out-
put of the disorder binding region predictor (ANCHOR) could also
be represented in the PART A in the figure. Adding experimental
data enables the evaluation of the quality of the results obtained
by the selected predictor, or analysis of the position of the ele-
ments of an experimentally verified structure within a protein.
The elements of secondary or disordered structure (experimentally
verified) in this example are shown as a horizontal line in three
colors for each type of structure: red represents disorder, black
represents experimentally determined order and an unknown
structure is shown in gray (Fig. 4A).

On the right side of this graph is a table (Fig. 4B) of exported
intervals for each prediction. It is possible to choose what is to
be presented, whether intervals of ordered or of disordered parts
of a protein. The table also contains intervals of matched predic-
tions (consensus) of all predicted disordered and ordered regions,
as well as intervals overlapping with experimentally proven sec-
ondary structural elements presented as intervals, if available.
Below the disorder predictions there are intervals that contain pre-
dicted MHC binding peptides (T cell epitopes), experimentally ver-
ified naturally processed T-cell epitopes or experimentally verified
MHC binding peptides, and hydrophobic intervals. Finally, an inter-
section of all intervals is presented fromwhich we can see whether
the epitopes are located in the corresponding region of the protein.
One can simply click on a predictor’s name in the table display and
see the results of the predictor in the original form in textual
format.

The visualization also contains a representation of hydropathy
for each peptide (of selected size) in sequence, calculated using



Fig. 2. Execution tab of the EpDis tool.

Fig. 3. An interface for MassPred module.
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the Kyte–Doolittle or Hopp–Woods scales (Fig. 4C). Peptide
hydropathy, is calculated as the average value of hydropathy of
each amino acid in the peptide according to selected scale.
In the case of the MHC binding peptides (T-cell epitopes) pre-
diction, the predictions are shown for all peptides of chosen size,
where the basic value that is taken into consideration is 1 – log50 k
(aff) (normalized value for the binding affinity of a peptide to
specific molecules of MHC classes I or II). Programs perform
binding-affinity predictions for peptides of various sizes. Depend-
ing on the predicted affinity value, the peptides are classified as
non-epitopes (below the blue line), weak (above the blue and
below the green line) or strong epitopes (above the green line)
(Fig. 4D). Experimentally verified T-cell epitopes are represented
as red lines in the actual length of the epitope, along the protein
sequence (Fig. 4, part D), while the blue line stands for experimen-
tally determined MHC binding peptides. Each graphic can be indi-
vidually exported. Experimentally validated epitopes (from
Tantigen database), binding to A⁄0201 allele or A2 serotype were
found to be prevalently hydrophobic, as shown in Fig. 4D.

3.2.4. The combined usage of methods for the disorder, disordered
binding region and T-cell epitope prediction

The principles of the combined usage of different methods in
the field of protein structure/function analysis are described by
various authors, frequently using the example of human p53,
which is one of the most complex IDPs. Comparing several disorder
predictors, optimized for various typical lengths of disorder, and
disordered binding region – prediction by ANCHOR, Meszaros
and colleagues gave a profile of p53 disordered binding regions
encompassing short linear binding motifs [40]. Huart and Hupp
have shown that p53 long disordered regions were enriched in
potential disorder-based binding motifs which overlap numerous
sites of post-translational modifications, and suggested how amino
acid modifications evolved to regulate dynamically the p53 inter-
actome [18]. One mechanism by which the p53 protein exerts its
antiproliferative activity is by inducing the transcription of genes
that control cell growth through the interaction with transcription



Fig. 4. An example of the EpDis-MassPred application for human tumor suppressor protein p53 (UniProt Acc No: P04637). The application displays data on: (A) Disorder/
order prediction, obtained using DISOPRED2, OnD-CRF, DisEMBL_Remark465 and IsUnstruct predictors. Residues with a score above the horizontal threshold line are
predicted to be disordered and with a score below the threshold line are predicted to be ordered (shown in different colors for different predictors). The red boxes above the
middle line represent experimentally characterized regions of disorder (from DisProt database), while order is defined as determined secondary structure (from UniProt
database) is represented by black boxes indicating both a-helical and b structures. (B) Intervals of predicted ordered regions, epitopes and hydrophobic regions (according to
Kyte–Doolittle AA scale). (C) Hydropathy calculation, according to Kyte–Doolittle AA scale. (D) Nonamer epitope prediction for A⁄0201 allele, using NetMhcpan T cell epitope
predictor. The experimentally validated epitopes, were represented as HLA I ligands (blue bars) and as CD8+ T cell-inducing (red bars). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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factors or activators or inhibitors of p53’s transactivation function.
Many of these interactions have been mapped in the p53 sequence
(reviewed in [51]), Fig. 5A. Fig. 5B shows EpDis-MassPred applica-
tion of the outputs of several disorder prediction methods, while
Fig. 5C and D display EpDis-MassPred application of the output
of disordered binding region – predictor ANCHOR, and experimen-
tally verified T-cell epitopes (Tantigen database) [6] [21],
respectively.

The p53N-terminal region (residues 1–101) contains two tran-
scriptional activation domains (TAD1, residues 1–42 and TAD2,
residues 43–63) and the polyproline subdomain, important for
the apoptotic activity of p53 (PP, residues 62–91). TAD interacts
with TFIID, TFIIH, Mdm2, RPA, CBP/p300 and CSN5/Jab1 among
many other proteins. The segment between residues 17–27 binds
to p53 ligand ubiquitin ligase (MDM2), residues 33–56 binds to
replication protein A (RPA 70N), residues 47–55 binds to Tfb1 sub-
unit of transcription activation II H (TFIIH) and residues 45–58
binds to the B subunit of RNA polymerase II, as represented in
the structure complexes in PDB (Fig. 5A). All analyzed disorder-
prediction methods, (Fig. 4B and C) exhibit a lower score (a dip
in the prediction profile) in these binding regions, however to a
varying degree, as observed also by Meszaros and coworkers. Some
methods, such as VSL2B (trained on both long and short disorder
sequences) predict the whole interacting region to be disordered,
giving one extended dip covering approximately residues 17–70,
while RONN and OnD-CRF react to the presence of transient struc-
ture by assigning a score close to a threshold of 0.5, meaning that
they cannot correctly classify these regions as ordered or disor-
dered. DISOPRED2, IUPred-L, IsUnstruct or DisEMBL_Remark465
and PONDR VL-XT give two distinct dips in this region – first, cor-
responding to the MDM2 binding region and the second, corre-
sponding to other three, overlapping ligand-binding regions. TAD
was shown by NMR to be populated with preformed structures
which fold upon binding to their ligands. MDM2, RPA70N [18],
and Tfb1 [7] binding sites form amphiphatic a-helices via the
interaction with their structured partners. The high-confidence
predictions of ANCHOR covering these binding regions in the N-
terminal domain, Fig. 5C, is the strongest prediction-level evidence
for the presence of disordered binding regions (as opposed to
coiled-coil region or a short collapsed structure) [40].

All analyzed disorder prediction methods assign a relatively low
score to the majority of the central DNA binding domain (DBD) of
p53 (spanning residues 102–292), Figs. 4A and 5B. The validity of
the prediction can be ascertained through the solved secondary
structure, with numerous b-strands in the domain region, Fig. 5B
(UniProt database). Segment around residues 150–190, with disor-
der scores above the threshold line, according to the majority of
predictors, could be a disordered region connecting two structured
domains within DBD. The high-confidence predictions of ANCHOR
points towards two putative disordered binding regions at the bor-
derlines of DBD, Fig. 5C, overlapping the protein kinase CHK2
motifs [18] and secondary structural elements. The regions in the
DNA binding domain, represented by structure complexes in the
PDB, include interactions with p53 endogenous partners: DNA,
the BRCT domain of 53BP1 and the SH3 domain of 53BP2, Fig. 5A.

The C-terminal region (residues 293–393), which is prevalently
disordered, has a high consensus between different prediction
methods concerning the non-interacting disordered regions. In
the tetramerization region (TD, residues 325–356) and the regula-
tory domain (RD), residues 363–393), that is able to bind to a mul-
titude of different partners, all methods react with a lower score, (a
dip in the disorder prediction profile). The presence of disordered
binding regions is supported by the high confidence of ANCHOR
prediction, and the presence of b-strand (residues 326–333) and
an a-helix (residues 335–354) structure in TD. The overlapping
p53 regions that mediate interactions with several functional



Fig. 5. Summary of p53 interactions, structure, predicted disordered binding sites and experimentally validated T-cell epitopes. (A) TAD1 and TAD2 – the N-terminal
transcriptional activation domains; PP – the polyproline subdomain; DBD - the central DNA binding domain; NLS – the nuclear localization signal, TD – the tetramerization
domain; NES – the nuclear export signal, and RD – the regulatory domain. The known biologically relevant binding sites on human p53, represented in structure complexes in
the PDB, (from [51]), are shown with colored boxes, labeled with the name of the binding partner. The red boxes above the middle line represent experimentally characterized
regions of disorder (from DisProt database), while the order (determined secondary structure from UniProt database) is represented by black boxes. (B) The disorder
prediction outputs from VSL2B, IUPred-L, RONN and PONDR VL-XT predictors (generated with EpDis-MassPred tools). (C) The disordered binding regions, predicted by
ANCHOR (generated with EpDis-MassPred tools). (D) The experimentally validated epitopes, represented above the middle line, are HLA-I epitopes. HLA-I ligands are shown
with blue bars, while CD8+ T cell-inducing epitopes are shown with red bars. CD4+ T cells-inducing HLA-II epitopes are represented with green bars below the middle line
(from Tantigen database). The central, ordered DNA binding domain is shown in transparent pink and experimentally verified disordered binding regions are shown in
transparent green while the rest of the protein is disordered and is shown in white. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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regulators, predicted as disordered binding regions by ANCHOR,
were mapped to the C-terminal end of p53 from residues 374 to
388, including the protein kinase cyclin A, deacetylase sirtuin, the
activator CBP, or repressor S100bb. This p53 region displays all three
major secondary structure types, becoming a helix when binding
to S100bb, a sheet when binding to sirtuin, and a coil with two dis-
tinct backbone trajectories when binding to CBP and cyclin A2 [51].

Naturally processed and presented wt p53 HLA-I epitopes,
known, so far, to induce CTL in preclinical and clinical studies
(reviewed in [48] and in Tantigen database), were found in ordered
or order/disorder transition regions, defined by the majority of
analyzed disorder predictors and ANCHOR, respectively, Fig. 5B–D.
Notably, epitopes are concentrated in the DBD and disordered
binding regions and linear motifs, and absent in the extremely
disordered regions: 1–24 and 58–99 in TAD, or 272–321 in the
C-terminal domain. An exception is naturally processed epitope
68–73, on the borderline of the disordered PP domain. However,
this epitope partly overlaps the PXXP motif in PP domain, which
binds directly to the transcriptional coactivator p300 [10]. High-
affinity binding HLA-A2 peptide, 25–35, located at the borderline
of the MDM2 binding region (residues 15–29), was not found to
be naturally processed and presented to CTL (Chikamatsu and
DeLeo, unpublished results, cit. [21], although experiments with
synthetic peptide 25–35 have shown that this epitope is not
deleted from the normal immune repertoire [49].

All naturally processed CD4+ T helper determinants (Tantigen
database; [6] (except p5325–35 epitope) are located in the DNA
binding domain, defined as ordered by the majority of disorder
predictors. p53 CD4+ epitopes were also found to overlap the picks
in the ANCHOR profile. As for p5325–35, previous studies strongly
discounted the possibility that this peptide might act as naturally
processed cytotoxic or helper T cell epitope, although it was found
to be a high-affinity binding HLA-A2 peptide. This epitope is on the
borderline of the region 15–29, with high confidence of ANCHOR
prediction Fig. 5C, which undergoes disorder-to-order transition
upon binding to MDM2 [62]. The reason why epitope 25–35 was
not found to be naturally generated in several experimental stud-
ies, could be because poorly expressed under natural conditions.
The p5325–35 peptide was found to be naturally presented, in autol-
ogous dendritic cells transfected with wt or mutant p53 cDNA,
inducing CD4+ T cells, restricted, at a minimum, with HLA-DR7
and -DR11 alleles [21]. Immunization with a p53 overlapping syn-
thetic long peptides (SLP vaccine), which are supposed to be exoge-
nously processed and presented by APC, induced p53-specific Th
immune responses (although dominated by Th2 cytokines) in ovar-
ian cancer patients [28]. The most immunogenic was the central
part 116–248. According to the report by van der Burg and col-
leagues (citated by [21] for colon cancer subjects, CD4+ T cell pro-
liferative response to 30-mer peptides grouped in pools,
corresponding to residues 1–142, 129–270 and 257–393, was max-
imal against 129–270 pool, whereas unresponsive to 1–142 pep-
tide pool. These results confirmed that the most immunogenic
part of the wt p53, inducing HLA-II specific response in humans,
is the central, DNA binding domain with predominantly ordered
structure, as discussed previously for HLA-I immune response to
wt p53 epitopes. The positional biases of T-cell epitopes in ordered
protein regions and borderlines of predicted disordered binding
sites or protein-binding linear motifs, observed for p53, is reminis-
cent of the results obtained using an EpDis tool on several tumor-
associated antigens and systemic nuclear autoantigens [52]. These
positional biases could originate from a higher percentage of bulky
hydrophobic, polar and charged amino acids in structured regions
and epitopes as compared to unstructured regions of proteins and
non-epitopes or to a high proteolytic sensitivity of disordered
regions, and might influence the capture of antigens, their process-
ing and subsequent epitope presentation and immunodominance.
4. Related work

We have already discussed different (single) predictors for the
disorder, disordered binding, T cell epitope prediction and
hydropathy calculation. However, there are tools that combine dif-
ferent predictors. To our knowledge, there are several disorder
meta predictors (which combine more disorder predictors) like
GeneSilicoMetaDisorder [25], MFDp [43], and MeDor [31]. The first
one does not have a stand alone application and cannot be used for
a large scale analysis. The other two include a subset of predictors
that are already involved in EpDis-MassPred system. For the pre-
diction of disorder-binding regions, there is an ANCHOR server.
The server includes IUPred disorder predictor for comparative
analysis of disorder and disordered binding regions. Both predic-
tors are included in EpDis-MassPred system. Moreover, EpDis-
MassPred system enables comparative analyses of the ANCHOR
predictions with wider sets of disorder predictors. For MHC bind-
ing prediction there are very valuable tools: IEDB MHC I and IEDB
MHC II binding prediction tools (http://tools.immuneepitope.org/
main/tcell/) which offer a combination of the most widely used
MHC binding predictors. The tools are available as servers, as well
as stand alone applications. Models in these tools are regularly
updated with new data. However, these tools are intended for
MHC binding prediction only and the comparison of different
MHC binding predictors. The outputs of these tools are suitable
for import into the database and thus a possible large-scale analy-
sis, but for further research certain computer and programming
skills are required. EpDis-MassPred system and IEDB tools, both
involve overlapping set of MHC binding predictors. In fact, to
expand a set of MHC binding predictors we included models from
these tools in EpDis-MassPred tools that were not available as a
stand alone application elsewhere (models to predict MHC class I
binding epitope: ann [44], smm [53], smmpmbec [24]).

None of the described tools offer the possibility of combining
various characteristics of the protein, or a comparative overview
of the different characteristics. The tools which include MHC bind-
ing predictors do not offer a visual representation of the results.
Furthermore, none of the existing tools offer the possibility of
entering a known (experimentally determined) characteristic
(not necessarily related to the same characteristics they are deter-
mining). Finally, none of the existing tools enable massive parallel
application of any integrated predictors, or storing results into
relation database.
5. Discussion/Conclusion

At present, there is a large number of T-cell epitope or disor-
dered region prediction softwares which, although of high accu-
racy, cannot be considered as fully reliable. To overcome the
problem of overfitting to certain data, several predictors based on
different methodologies should be used. The potential of prediction
software is considerable when there are enough data to build a
good model, which increases the need for improved tools for large
scale analyses as well as further refining of existing methods for
their combined use.

In this paper, we described a system which consists of two tools
suitable for answering important questions through a bioinformat-
ics approach. The developed system is intended to be used by
researchers who study the structure of proteins, the properties of
disordered proteins and the characteristics and position of T-cell
epitopes in a protein. The system currently includes support and
use of predictors for disordered regions, disordered-binding
regions, MHC binders and T-cell epitope identifiers, and methods
for calculating hydropathy. The system is flexible and can be easily
extended with new functionalities, and is very useful for preparing

http://tools.immuneepitope.org/main/tcell/
http://tools.immuneepitope.org/main/tcell/
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data for large-scale analysis. For all available predictors outputs/
results are displayed and stored in a uniform format suitable for
further analysis. The system allows for easy input of experimental
data linked to various structural aspects of proteins, such as disor-
dered/ordered regions, T-cell epitopes, hydrophobic/hydrophilic
regions, or any other structural features. This allows for a compar-
atively effortless comparison of results obtained from different
predictors and with experimental data, parallel use different pre-
dictors and assessment of the quality of results acquired by differ-
ent predictors. Our system can serve as a basis for the development
of novel methods or meta-predictors, can reduce the time required
for data collection and analysis, and provides a platform that
makes the addition of new methods and the creation of combina-
tions with existing methods straightforward. The system allows for
multiple (mass) launching of predictors on more fasta files with an
arbitrary number of proteins. The developed tools simplify and
enhance the time-consuming task of assessing and comparing dif-
ferent types of prediction methods. The only shortcoming of the
tools, presented here, is related to difficulties in installing some
of the predictors, as the installation of external predictors is
required. Due to licensing issues, we could not include the stand-
alone versions of these methods in our tools; however, this prob-
lem is circumvented and semi-automated by the use the MassPred
tool (a detailed explanation is provided in the manual, along with
all of the difficulties that were encountered when installing the
predictors, together with explanations on how to overcome them).
EpDis comes with an easy installer and it is enough to simply fol-
low all of the steps for installation (detailed instructions for setting
up the configuration file are provided with the tool).

Over the past 3 years we have used these tools exhaustively for
various tasks. The complete system has proven to be robust, scal-
able and fault free. It has been used in different research scenarios
with different input data on different Ubuntu Linux machines. The
largest task was to determine disordered regions in the dataset
with more than 8,500,000 proteins downloaded from NCBI, on
48 CPU core computers. The investigation of the correlation
between predicted disordered protein regions and the occurrence
of epitopes in these regions, hydropathy properties of epitopes
and nonepitopes within the ordered and disordered regions was
presented in Mitić et al. [42]. Our research was conducted on
619 proteins and a total of 1986 alleles of both MHC classes
(1469 for MHC class I, and 517 for MHC class II), which would
not have been feasible without the tools described in this paper.
Comparing results of epitope and disorder, and disordered binding
region predictions with experimentally verified epitopes and sec-
ondary structural elements, T cell epitope instances could be
enriched with information of structural instances, which could
facilitate the understanding of the role that protein structure and
function may have on the development of immune response [52].

In future we plan to expand the system with new functionali-
ties, and to enable downloading proteins from the NCBI database
through a web interface as we have done for the UNIPROT
database.
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