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The Influence of Geometric 
Configuration on Response of the 
Bucket Wheel Excavator Superstructure 
 

The planar response of the bucket wheel excavator superstructure is 

investigated by using a four degrees-of-freedom discrete dynamic model 

where truss-like substructures are employed to model the pillar with 

counterweight arm and bucket wheel boom. Excitation is due to the 

resistance-to-excavation. Four representative geometric configurations of 

the excavator are examined. The fundamental frequency of the system is 

most sensitive to the change of the geometric configuration, while the fourth 

mode frequency is the least sensitive. The maximum displacements and 

accelerations are observed when the bucket wheel boom is in its lowest 

position. 
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1. INTRODUCTION 

 

The movement of earth is an intrinsic part of the mining 

and construction industry. The increasing competition 

and cost of inputs motivate the need to improve 

productivity and efficiency, while maintaining high 

safety standard. Rising demand in the last decades has 

encouraged the production and use of larger, heavier 

and more efficient earthmovers, such as the bucket 

wheel excavator (BWE), [1] and [2]. Unfortunately, the 

progress in the improvement of the performance of 

BWE, especially their capacities, has not been equally 

followed by improvements in the analytical or 

computational methods. A good proof of this statement 

are relatively frequent failures of BWE [3] to [10].  

The current engineering codes and national 

standards used in calculations ignore the dynamic 

external load caused by resistance-to-excavation which 

is both significant and periodical. For example, the DIN 

22261 standard considers dynamic effects by the 

introduction of the so called equivalent loads. The 

intensity of the load is defined as the product of the 

static load and corresponding amplifying dynamic 

coefficient. While this leads to increased load intensity, 

the load is still deemed static. The analysis of the 

dynamic behavior of BWE is important in order to 

prevent the occurrence of resonance in the system, to 

create a basis to better analyze stress states in the 

structural elements of the system, and to facilitate the 

determination of lifetime of the excavator. 

The literature on the research on the dynamics of 

BWEs is relatively sparse. A review of papers dealing 

with various issues encountered in the modeling of 

BWE structure and external loads caused by the 

resistance-to-excavation is presented in [11] and [12]. 

The papers [13] and [14] discuss stability problem in the 

motion of the BWE excavating unit for the single mass 

oscillatory system, while papers [15] to [17] are 

dedicated to the problems of determination and 

measurements of natural frequencies of the bucket 

wheel excavators’ structures as well as their vibrations 

during mining process.  

This paper deals with the BWE SchRs 1760, whose 

geometric configuration is shown in Fig. 1. The goal of 

the presented study is to investigate modal 

characteristics and dynamic response of the 

superstructure to excitation from the resistance-to-

excavation. Participation of the system bending 

vibrations in horizontal plane, as well as torsional 

vibrations of the bucket wheel boom structure, in 

analyzed natural modes is practically insignificant, 

which allows for precise-enough description of the 

system dynamic behavior from an engineering accuracy 

point of view, by assuming that motion is constrained to 

the vertical plane. The employed approach is twofold. 

First, a model is developed to represent the external load 

induced by the resistance-to-excavation. Second, by 

reducing the vibrations of the bucket wheel excavator 

superstructure, an extremely complex system of coupled 

elastic bodies, to vibrations of the system with just four 

representative degrees of freedom (DOF), it is possible 

to adequately analyze the dynamic behavior of all of its 

relevant substructures.  

The developed models of excitation and BWE 

superstructure as well as obtained results were also used 

as basis for further research presented in [18]. 

 
2. MATHEMATICAL FORMULATION 

 
2.1 Modeling the loads induced by the  

resistance-to-excavation 

 

The external loads induced by the resistance-to-

excavation are determined via the use of a model that 

encompasses all relevant structural parameters and the 

duty cycle parameters that are essential for the analysis  
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Figure 1. Structural scheme of BWE Sch Rs 1760 / 5 x 32 with mobile conveyor: (1) lower structure with mechanism of 
transport crawler (vehicular base with caterpillar track), (2) pillar, (3) counterweight arm, (4) portal, (5) bucket wheel boom 
(BWB), (6) bucket wheel (BW), (7) mechanism comprising rope system for BWB hanging, (8) portal tie-rods (PTR), (9) 
counterweight

of the kinematics, cutting geometry, and defining 

external load of BW and BWB. A detailed presentation 

of the procedure is given in [12], and its validation, 

using the ideas expounded by Murray-Smith [19], is 

found in [3] and [20]. 

The load due to the resistance-to-excavation, Fig. 2, 

is defined for the case where the pit face height (hE) is 

equal to the radius of the BW (rBW=6.125 m). By 

moving the tangential (RTi) and normal (RNi) 

components of the resistance-to-excavation to point G 

(the center of gravity of BW and drive unit) and using 

the in-house developed software RADBAG [3] and 

[20], the components of the principal force and moment 

vectors are computed and plotted in Fig. 3. 

The profiles of the forces and moments indicate the 

satisfaction of Dirichlet conditions and so they are 

expandable via Fourier series as 

 max min
max min

1 1
( ) ( ) sin( )

2
n

f f
f t f f n t

nπ

−
= + − Ω∑  (1) 

where { }, ,V Hf F F M∈ . 

The excitation fundamental circular frequency is 

given as 

 1 2
60

BW Bn n
π
 

Ω =  
 

, (2) 

where nBW=4.16 rev/min is the number of revolutions 

per minute of the BW and nB=14 is the number of 

buckets on the BW. 

 

Figure 2. The loads on buckets and the BW caused by the 
resistance-to-excavation 

2.2 Dynamic model of the superstructure 
 

The pillar with counterweight arm (PA) (Fig. 4a) and the 

BWB (Fig. 4b) are the most dominant of the structural 

elements of the superstructure in low frequency vibrations. 

This is attributable to their relatively small stiffness in 

comparison to that of the portal and the slewing platform. 

It is worth observing that [11] and [20] provide a detailed 

procedure to reduce the continuum model of the super–

structure to a discrete model of finite degrees of freedom. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Components of the external non-potential loads 
caused by the resistance-to-excavation: (a) vertical force, 
(b) horizontal force, (c) moment 
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Note that the mixed inertia coefficients of the model 

shown in Fig. 4a are equal to zero [11]. The potential 

energy is defined by using Clapeyron’s theorem and 

expressed as 

 

[ ][ ] [ ]

[ ][ ][ ]

1
1 2 1 2

1 2 1 2

1

2

1

2

T
PA PA

T
PA

U q q q q

q q k q q

δ
−

= =

=

, (3) 

where the elements of the flexibility matrix [ ]PAδ  are 

defined based on the response of the FEM model to a 

unit force applied on nodes 84 and 23. 

The flexural vibrations of the BWB in the vertical 

plane are described by generalized coordinate q4, which 

measures the perpendicular displacement of the BW 

center of gravity with respect to the longitudinal axis of 

the boom, Fig. 4b. The potential energy of the BWB is 

defined analogously to that of the PA as 

 2 2
4 44 4

44

1 1 1

2 2
BWBU q k q

δ
= = . (4) 

 
(a) 

 
(b) 

Figure 4. (a) Two DOF model of the PA, (b) Single DOF 
model of the BWB 

The dynamic model of the superstructure is finally 

set up as illustrated in Fig. 5 with the following 

assumptions: (1) the influence of the portal and lower 

structure which includes the mechanisms for motion are 

negligible during low frequency vibrations because of 

their high stiffness when compared to the stiffnesses of 

the other structural components; (2) the Young’s 

modulus of the ropes (PTR and the system for hanging 

the BWB) are linear and load independent; (3) the ropes 

are massless flexible elements (their masses are reduced 

in the corresponding nodes of the model); and (4) the 

soil is undeformable. 

In summary, the vibrations of the dynamic model 

around the position of stable equilibrium are described 

by four generalized coordinates: q1- the absolute 

displacement of the counterweight center of gravity, q2 - 

the absolute horizontal displacement of the pillar apex, 

q3 - the displacement of the point where the ropes of the 

hanging system are attached to BWB, perpendicular to 

the axial axis of the boom, and q4 - the displacement of 

the center of gravity of the BW with drive unit, 

perpendicular to axial axis of the BWB. 

 
2.3 Governing equations of motion 

 

The governing equations are derived on the assumption 

that the vibrations of the system around the position of 

stable equilibrium are sufficiently small that the 

geometric angles α, α1, α2, β and γ, depicted in Fig. 5, 
remain constant. 

The displacement of an arbitrary point on the i-th 

segment in the FEM response with a generalized 

coordinate q4=1.0 is obtained from an enlarged portion 

of Fig. 4b, which is depicted in Fig. 6. The displacement 

function for the segment can be written as 

 

1,0 ,4

1 1 1

1 1

( ) ( )i i q i x

i i i i i i
i i

i i i i

y x y x y

y y y x y x
x k x n

x x x x

=

+ + +

+ +

= = =

− −
= + = +

− −

, (5) 

where xi and xi+1 are coordinates of the start and end 

nodes of the segment, while yi and yi+1 are their 

respective displacements measured in the direction of 

generalized coordinate q4. Therefore, the corresponding 

displacement of an arbitrary point K on the i-th segment 

(see Fig. 6) for a given value of the generalized 

coordinate q4 is 44, )( qnxkqyy iixi +== , and its 

velocity is 44, )( qnxkqyy iixi ��� +== , where the 

overdot denotes derivative with respect to time. 

 

Figure 5. A planar discrete dynamic model for the superstructure 
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(a)             (b) 

Figure 7. (a) Plan of BWB velocities, (b) Velocities of the elemental mass of the i-th segment 

 

Figure 6. Local linearization of dynamic deflection line of 
BWB chord 

The overall velocity of the arbitrary point is a 

superposition of that due to the motion of the BWB 

supports (i.e., points E and A) and that due to the 

velocity of the generalized velocity 4q� . If the 

displacement of the hinge E in response to a unit 

displacement of generalized coordinate q2 is denoted by 

iE, then the velocity of the hinge is 2qiE � . Using Fig. 7, 

the absolute velocity of the arbitrary point on the i-th 

segment of the chord xiv ,  can be inferred and its square 

can be written as 

( )
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(6) 

The kinetic energy of the j-th BWB chord Tch,j is the 

sum of the kinetic energies of the segments and those of 

the concentrated masses Mi. The total number of 

segments is denoted by ns and each has a mass per unit 

length which is denoted by mi. The total number of 

concentrated masses Mi is denoted by ncm and they 

represent the masses of the truss webs, devices and 

equipment located on the boom, belt conveyor, 

conveyed material, pulleys and a portion of the mass of 

ropes for boom lifting. Hence, 
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where 
xix

xii vv
=

= 2
,

2  is the square of the velocity of the 

concentrated mass at node i. 

The system kinetic energy is given as 

 
4

2 2 2
, 1 1 2 2

1

1 1 1

2 2 2
ch j BW G

j

T T m v m q m q

=

= + + +∑ � � , (8) 

where the first term on the right-hand side is the kinetic 

energy of the entire chords, the second is the kinetic 

energy of the BW-with-drive-unit whose mass is 

denoted by mBW and the square of the velocity of its 

centre of gravity (i.e., point G in Fig. 7) is 

21

2
,

2

BB llx
xiG vv

+=
= , and the penultimate and last terms 

present kinetic energy of the PA. 

The extensions of the rope and the tie-rod (Figs. 8 

and 9) are given respectively as: 

 R B AB BCi l l∆ = ∆ + ∆ ,   (a)  

 T BCl∆ = ∆ ,   (b) (9) 

where 

 

( ) ( )2

4
3 1

2

1 cos

sin cos cos ,

AB E

B

l i q

q
q h p

l

α β

β β γ

∆ = − + +

+ + −
   (a)  

 2 1 1sin sinBCl p qα α∆ = − ,   (b)  

 'B C BCl l≈ ,   (c) (10) 

iB is the number of lines that connect the tip of portal to 

the BWB, and p is the displacement of the portal tip 

(node B, Fig. 9b) which is a consequence of the rotation 

of the portal around the hinge D. Based on the 

satisfaction of moment equilibrium conditions around 

the hinge D, it can be expressed as the linear 

combination of the generalized coordinates of the 

system: 
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Figure 8. Plan of superstructure displacements 

 

(a) 

 

(b) 

 

(c) 

Figure 9. Displacements of model reference nodes:  
(a) nodes A and G, (b) node B, (c) node C 

 1 1 1 1
1 2 3 4

1 1 1 1

a b c d
p q q q q

e e e e
= + + + , (11) 

where 

 1 1 2 1sin sin sinT Ra c ucα α α= − ,   (a)  

 ( ) ( )1 1 cosB Rb i uc r α β= − + ,   (b)  

 1 sinB Rc i uc β= ,   (c)  
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2 2

1 2sinR Te u c c α= + ,   (e)  

 2cos sinBu i γ α= − .   (f) (12) 

Substituting Eq. (11) into Eqs. (10) yields 

 1 2 3 4ABl aq bq cq dq∆ = + + + ,   (a)  

 1 2 3 4BCl eq fq gq hq∆ = + + + ,   (b) (13) 

where 
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In view of Eqs. (13), Eqs. (9) can be rewritten as 
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( ) ( )
1 2

3 4 ,
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B B
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 1 2 3 4T eq fq gq hq∆ = + + + .   (b) (15) 

The stiffness of the rope in the system for hanging 

the BWB cR and the portal tie-rod cT are defined as 

 
( ) ( )

( )
( )

R T R T
R T

R T

E A
c

l
= , (16) 

where ER(T) is the modulus of elasticity of rope (tie-rod), 

AR(T) is the cross section of rope (tie-rod), 

lR=iBlAB+lBC+l0 is the total length of rope (with the 

constant l0 being the rope length from the tip of the 

portal to the device which equalizes forces in ropes of 

two parallel systems of BWB hanging), and lT=lBC is the 

tie-rod length. 

Noting that there are two identical and parallel 

systems for hanging the BWB with the device which 

equalizes forces in the ropes and two identical and 

parallel PTR, the total potential energy of each 

subsystem (i.e., ropes and PTR) is given as: 

 2
R R RU c= ∆ ,   (a)  

 2
T T TU c= ∆ .   (b) (17) 

The total potential energy of the system U is simply 

the sum of the potential energy of the subsystems, and it 

is written as 

 PA BWB R TU U U U U= + + + , (18) 

Using Fig. 10, the virtual work of non-potential 

active loads is given as 
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 (19) 

from which the generalized non-potential forces of the 

system are obtained as 

 1 0Q = ,   (a)  
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Figure 10. Non-potential loads of the model 

In view of forces and moment expressions given in 

Eq. (1), the vector of generalized non-potential forces is 

written as 
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The application of Lagrange’s principle, with the 

energies (i.e., Eqs. (8) and (18)) and the non-potential 

force vector, Eq. (21), yields a system of governing 

differential equations which are symbolically expressed 

as 

 [ ]{ } [ ]{ } { }m q k q Q+ =�� , (24) 

and they describe the system vibrations in the vertical 

plane. 

To permit a detailed analysis of the system beyond 

the natural frequencies and modal matrices, the 

following metrics are introduced to measure the 

participation of the substructures in particular mode 

shapes: 

 PA
PA

U
u

U
= ,   (a)  

 BWB
BWB

U
u

U
= ,   (b)  

 R
R

U
u

U
= ,   (c)  

 T
T

U
u

U
= .   (d) (25) 

Attention is given to the forced vibration response 

because free vibration responses are quickly attenuated 

in practice due to damping. The particular solution to 

the governing equations in the out-of-resonance region 

is assumed as 

 { } ( ){ } ( ){ }0
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q a a n t
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=
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This expression is substituted into Eq. (24) to the 

term its coefficients the use of which permits the 

expression of the system acceleration and displacement 

as 
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where ( )[ ] [ ] ( ) [ ]mnknR
2Ω−=Ω . 

The displacement of the BW center of gravity, 

including drive unit (point G), on the global system 

reference axis (see Figs. 8 and 9a) 
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and the magnitude of its acceleration 
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are the major indicators of the BWE response to the 

excitation caused by resistance-to-excavation. It is 

suggested in [21], that the changes to the geometric 

parameters of chip cross section (thickness and width) 

due to the system vibrations shall not be greater than the 

corresponding calculation values by 5 to 7 %. On the 

other hand, it is suggested in DIN 22261 standard (part 

2) that the factor to account for additional dynamic load 

in vertical direction (Y-axis) of the BWB is ψV=0.1. 

This implies an allowed acceleration value 

aV,PER=aY,PER=0.1g≈1.0 m/s2. The standard ignores 

additional dynamic load in the X-axis by providing the 

corresponding factor of additional dynamic factor 

ψL=ψX=0. 

 
3. NUMERICAL EXAMPLE 

 

The analysis is carried out for the following four typical 

positions of BWB: Position 1 - BWB is in its highest 

position (α= –17.7°); Position 2 - BWB is in horizontal 

position (α=0°); Position 3 - BWB is in “planum” 

(subgrade level) position (α=15.1°); Position 4 - BWB 

is in its lowest position (α=22.3°). 

The system natural frequencies and the participation 

of the subsystems in each mode shape are tabulated in 

Table 1. 

The responses of the system to excitation due to 

resistance-to-excavation for the highest and lowest 

positions of the BWB are depicted in Figs. 11 and 12. 

Extreme values and ranges of the generalized 

coordinates, displacements and accelerations of the 

point G, for all characteristic positions of BWB, are 

tabulated in Table 2. 

 
4. DISCUSSION 

 

The following inferences can be deduced from the 

results presented in Table 1: 

(a) In the first mode of vibrations, the influence of the 

PA is dominant, with the pronounced coupling with 

PTR. The frequency of the first mode increases with 

increasing inclination angle of the BWB. Its value in 

Position 4 is greater than in Position 1 by 8.01 %. 

(b) In the second mode, a strong coupling with the PA is 

observed, and the majority of the potential energy is 

generated by the PTR. Further, increasing the BWB 

inclination angle results in decreasing of the second 

mode frequency. In Position 4, its value is 4.87 % 

smaller than in Position 1. 

(c) The PA is the dominant substructure in the third 

mode (minimum participation of 88.70 % in Position 1 

and a maximum of 95.87 % in Position 3). The change 

in the third mode frequency due to the changes in the 

BWB inclination angle is relatively small; its value in 
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Position 3 is 3.15 % smaller than the value 

corresponding to Position 1. 

(d) The BWB is dominant in the fourth mode as the 

combined participation of the other subsystems is less 

than 5%. The fourth mode frequency is practically 

independent of the BWB inclination angle. 

(e) The relatively weak dependence of the natural 

frequencies spectrum on the system geometry or 

configuration (BWB positions) supports the adequacy of 

the selection of the geometric and dynamic parameters 

of the BWE superstructure. 

It is observed that the generalized coordinate q1 is 

greatly affected by the fundamental harmonic of 

excitation with negligible influence from the higher 

order harmonics. 

Table 1. Natural frequencies and participation of the subsystems in percentage ratio 

Frequency Subsystem 
Position Mode 

Hz PA BWB BWB hanging PTR 

1. 0.712 63.75 0.02 5.84 30.39 

2. 1.211 42.01 0.03 9.35 48.61 

3. 4.760 88.70 2.92 1.35 7.03 
1 

4. 5.249 2.88 97.03 0.02 0.07 

1. 0.745 64.31 0.01 7.73 27.95 

2. 1.197 37.85 0.01 13.47 48.67 

3. 4.645 95.55 0.02 0.96 3.47 
2 

4. 5.231 0.01 99.97 0.01 0.01 

1. 0.763 62.74 0.03 10.67 26.56 

2. 1.170 37.17 0.06 17.99 44.78 

3. 4.609 95.87 2.21 0.55 1.37 
3 

4. 5.249 2.05 97.69 0.07 0.19 

1. 0.769 61.25 0.06 12.68 26.01 

2. 1.152 38.05 0.12 20.26 41.57 

3. 4.610 94.63 4.34 0.34 0.69 
4 

4. 5.268 4.10 95.45 0.15 0.30 

 
Table 2. Extreme values and ranges 

Maximum value Minimum value Range 

Position Position Position 
Notation 

(unit) 
1 2 3 4 1 2 3 4 1 2 3 4 

q1 (mm) 6.6 11.2 14.2 15.3 -0.9 0.1 0.3 0.2 7.5 11.1 13.9 15.1 

q2 (mm) 2.3 3.1 4.0 4.4 -0.6 0.6 0.6 0.4 2.9 2.5 3.4 4.0 

q3 (mm) 12.1 22.7 30.0 33.0 7.9 17.5 24.3 27.2 4.2 5.2 5.7 5.8 

q4 (mm) 3.8 4.2 4.3 4.2 1.7 1.8 1.8 1.7 2.1 2.4 2.5 2.5 

pG,X (mm) 5.8 1.0 -8.1 -13.3 3.7 0.2 -9.0 -14.9 2.1 0.8 0.9 1.6 

pG,Y (mm) -12.0 -24.2 -31.3 -33.2 -16.2 -30.1 -37.5 -39.1 4.2 5.9 6.2 5.9 

pG (mm) 17.1 30.1 38.6 41.9 12.5 24.2 32.3 35.7 4.6 5.9 6.3 6.2 

aG,X (m/s2) 0.25 0.05 0.17 0.24 -0.25 -0.05 -0.17 -0.24 0.5 0.1 0.34 0.48 

aG,Y (m/s2) 0.49 0.55 0.57 0.57 -0.49 -0.55 -0.57 -0.57 0.98 1.1 1.15 1.14 

aG (m/s2) 0.5 0.55 0.60 0.62 0.0 0.0 0.0 0.0 0.5 0.55 0.60 0.62 

q1 (mm) 6.6 11.2 14.2 15.3 -0.9 0.1 0.3 0.2 7.5 11.1 13.9 15.1 

q2 (mm) 2.3 3.1 4.0 4.4 -0.6 0.6 0.6 0.4 2.9 2.5 3.4 4.0 

q3 (mm) 12.1 22.7 30.0 33.0 7.9 17.5 24.3 27.2 4.2 5.2 5.7 5.8 

q4 (mm) 3.8 4.2 4.3 4.2 1.7 1.8 1.8 1.7 2.1 2.4 2.5 2.5 

pG,X (mm) 5.8 1.0 -8.1 -13.3 3.7 0.2 -9.0 -14.9 2.1 0.8 0.9 1.6 

pG,Y (mm) -12.0 -24.2 -31.3 -33.2 -16.2 -30.1 -37.5 -39.1 4.2 5.9 6.2 5.9 

 
Table 3. Relative relations between maximum values and ranges 

Maximum value Range 

Position Position Notation (unit) 

1 2 3 4 1 2 3 4 

q1 (mm) 1.00 1.70 2.15 2.32 1.00 1.48 1.85 2.01 

q2 (mm) 1.00 1.35 1.74 1.91 1.00 0.86 1.17 1.38 

q3 (mm) 1.00 1.88 2.48 2.73 1.00 1.24 1.36 1.38 

q4 (mm) 1.00 1.11 1.13 1.11 1.00 1.14 1.19 1.19 
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(a) 

 
(b) 

Figure 11. System response in Position 1: (a) generalized 
coordinates and displacement of point G; (b) acceleration 
of point G 

The frequency of the fundamental oscillation of 

generalized coordinates q2 and q3 and corresponds to the 

frequency of the fundamental excitation harmonic. 

Further, the response plots show secondary changes 

whose frequency corresponds to the frequency of the 

fifth excitation harmonic. In the plots of generalized 

coordinate q4, it is noticed that in addition to the 

fundamental excitation harmonic, which causes the 

fundamental oscillation, there are notable influences of 

the fifth and the sixth excitation harmonics. 

The maximum values and range of the generalized 

coordinates change with the changes to the BWB 

inclination angle from α= –17.7° (at Position 1) up to 

α=22.3° (at Position 4). Taking the results at Position 1 

as basis for comparison, then the relative relations can 

be computed and tabulated as in Table 3. An 

examination of the maximum values shows that the 

generalized coordinate q3 is the most sensitive to the 

geometric configuration change (its maximum value in 

Position 4 is 2.73 times that in Position 1).  

The least sensitive is the generalized coordinate q4 

which has a maximum value in Position 3 that is 1.13 

times that in Position 1. The most pronounced change in 

range is observed with generalized coordinate q1 - the 

value in Position 4 is 2.01 times that in Position 1. 

 
(a) 

 
(b) 

Figure 12. System response in Position 4: (a) generalized 
coordinates and displacement of point G; (b) acceleration 
of point G 

5. CONCLUSION  

 

The following conclusions are inferred from the 

presented analysis: 

-The PA is dominant in the first mode of vibration, 

with significant participation of PTR; 

-The majority of the potential energy is accumulated 

in the PTR in the second mode;  

-The PA is overally dominant in the third mode, 

accounting for a minimum of 88.7% of the total energy; 

-The energy accumulated by the BWB, more than 

95% of the total energy, is greatest in the fourth mode; 

-The fundamental frequency of the system is most 

sensitive to the change of the geometric configuration, 

while the fourth mode frequency is the least sensitive; 

-The observations for the BWB tip are in agreement 

with the recommended values in the literature; 

-The intensity of the acceleration of the BWB tip in 

the vertical direction is less than the allowed value of  

1 m/s2 as given in the standard DIN 22261; 

-The intensity of acceleration of the BWB tip in the 

horizontal direction approaches, in some positions, 50% 

of the intensity of acceleration in the vertical direction. 

Note that the standard DIN 22261 assumes that the 

value is negligible. 
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УТИЦАЈ ГЕОМЕТРИЈСКЕ КОНФИГУРАЦИЈЕ 

НА ОДЗИВ ГОРЊЕ ГРАДЊЕ РОТОРНОГ 

БАГЕРА 

 

С. М. Бошњак, Н. Б. Гњатовић 

 

У раду је анализиран одзив горње градње роторног 

багера у вертикалној равни применом редукованог 

динамичког модела са четири степена слободе. 

Подструктуре стуба са стрелом противтега и стрела 

ротора третиране су као просторне решеткасте 

конструкције. Побуду у динамичком моделу 

представља отпор копању.  

Анализирано је динамичко понашање за четири 

карактеристичне геометријске конфигурације горње 

градње и на основу приказаног истраживања може 

се извести закључак да на основну фреквенцију 

система геометријска конфигурација има највећи 

утицауј, док је четврта сопствена фреквенција 
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најмање осетљива на промену разматраног 

параметра. Максималне вредности померања и 

убрзања референтних тачака система јављају се при 

најнижем положају стреле ротора. 

 


