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Design optimization of dynamic properties, for example, modal frequencies, can be of much importance when structures are
exposed to the shock and/or vibration environments. Amodal strain basedmethod is proposed for fast design of natural frequencies
of plate-like structures.The basic theory ofmodal strains of thin plates is reviewed.The capability of determining the highly sensitive
elements by means of modal strain analysis is theoretically demonstrated. Finite element models were constructed in numerical
simulations. Firstly, the application of the proposed method is conducted on a central-massed flat plate which was topologically
optimized by the Reference. The results of modal strain analysis at the first mode have good agreement with the results from the
topology optimization. Furthermore, some features of the strain mode shapes (SMSs) of the flat plate are investigated. Finally, the
SMSs are applied to the optimization of a stiffened plate. Attention is focused on the distributions of the SMSs of the stiffeners,
which also shows good agreement with the results from the topology optimization in the previous study. Several higher orders of
SMSs are extracted, which can visualize the most sensitive elements to the corresponding modal frequency. In summary, both the
theory and simulations validate the correctness and convenience of applying SMSs to dynamic design of plate-like structures.

1. Introduction

Plate-like structures are widely used in the areas of aero-
nautics, automobile engineering and ship structures, due to
their light weight and high structural efficiency, and so forth.
However, the thin plate-like structures can be characterized
by low flexural rigidity. The dynamic behaviours of these
structures are important properties, because the natural
frequencies andmode shapes of the thin plates usually need to
satisfy the requirements of structural integrity, durability, and
sound radiation when subjected to the shock and vibration
loadings, which matters in different branches of engineering:
automobile [1, 2], naval [3], aeronautics and astronautics [4],
and so forth.

The goal of the dynamic design is to avoid resonance of
the structure in a given interval for external excitation fre-
quencies. This can be achieved by, for example, maximizing
the fundamental frequency, increasing an modal frequency
of a higher order, or the gap between two consecutive modal
frequencies of given orders [5].Themechanical performances
of the load-carrying plate-like structures, including the
stiffness, structural strength, dynamic characteristics, and
vibration fatigue, are highly dependent on the thickness
distributions and stiffener layout patterns; and hence various
computational approaches have been developed to predict
the optimal thickness distributions [6], geometric param-
eters [7], or stiffener layout patterns [8–10] for plate-like
structures.
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Design of the dynamic behaviours can be formulated
as a case of reinforcement optimization, where parts of
the structure are fixed to be solid for purpose of avoiding
a trivial solution. As a specific example of reinforcement
optimization, dynamic design of the stiffened thin plates can
be formulated as the optimal design of the rib-reinforcement
of plates. Eigenvalue sensitivity analysis has been conducted
as a powerful tool for structural dynamic modification [11]
and design [12] and so forth. The eigenvalue sensitivity with
respect to the locations of stiffeners can also be useful in
the optimization of stiffened plates [13]. More generally,
maximization of eigenvalues using topology optimization is
considered as an effective and popular approach [14, 15].
The main idea of the topology optimization is the removal
of ineffective (e.g., comparatively small stressed) elements
from the design domain. In order to find accurate solution
of topology optimization, the designer must increase the
number of iteration and the number of elements. When the
numbers of iteration and elements are increased, solution
time also increases extremely. By transforming the design
problem of stiffener layout patterns into a search for an opti-
mal distribution of materials, a very large number of design
variables are required in order to represent the shape in the
most general way. Consequently, expensive computations are
required.These can be somewhat time-consuming during the
preliminary design process.

As a progress of modal analysis method, curvature mode
shapes (CMSs) and/or strain mode shapes (SMSs) have been
developed theoretically, numerically, and experimentally for
several decades [16–21]. Yam et al. [17] revealed that the
strain mode can be more sensitive to local changes of the
structure than the displacement mode. By a comparison
of strain and classic experimental modal analysis (EMA),
Kranjc et al. [20] pointed out that strain EMA can offer
advantages which are important for particular applications;
for example, the direct identification of SMSs can be highly
important in the vibration-fatigue and damage-identification
models. Hong et al. [22] conducted a comprehensive compar-
ison of macrostrain mode and displacement mode obtained
from distributed macrostrain sensing and high-density point
sensing (e.g., accelerometers) technologies. Because of the
highly sensitive characteristic to local defects, modal curva-
ture and/or modal strain based quantities have been widely
utilized to identify the presence, locations, and severity
of damage in dynamic structures by the comparisons of
before and after damage [23–26]. For the assessment of
structural status, modal macrostrain vectors, macrostrain
frequency response functions, and modal curvatures were
successfully applied in structural health monitoring [27, 28].
Furthermore, for dynamic stresses analysis, Pelayo et al.
[29] proposed a modal-based method in which the SMSs
play a key role. In random fatigue evaluation, prognosis of
fatigue hotspots by using stressmode shapeswas theoretically
demonstrated, and hence a two-step evaluation procedure
was proposed for computational efficiency [30]. From the
aforementioned literature, it can be seen that curvature/strain
and stress mode shapes have their own advantages over
displacementmode shapes due to themore sensitivity to local
deformations and changes.

Continuing in this line of investigation, the modal strain
theory is adopted to investigate the dynamic design of plate-
like structures. Strain mode shapes will be demonstrated
to efficiently locate the most sensitive areas and hence to
facilitate the fast design of plate thickness and/or stiffener
layout for desired modal frequencies. In Section 2, the
basic theory of modal strains is reviewed at first; then the
formulation of eigenvalue sensitivity is presented and the
correlation between the eigenvalue sensitivity and the modal
strain distribution is theoretically derived. In Section 3,
several numerical simulations are performed to investigate
the basic law of the modal strain and its applicability in
dynamic design of plates. Comparisons between the results
of modal strain analysis and those of topology optimization
are conducted. In Section 4, the conclusion is reached.

2. Theoretical Background

2.1. Modal Strains of Thin Plates. Considering the formula-
tion for vibrational natural frequency which can be described
by the following eigenvalue problem [31],

K (b)𝜙 = 𝜆M (b)𝜙, (1)

where 𝜆 and 𝜙 are the eigenvalue and eigenvector, respec-
tively, and 𝜆 = 𝜔2, where 𝜔 is the natural circular frequency,
the global stiffness matrix K(b) is a function of the vector b
including the design parameters. In addition, the global mass
matrixM(b) is also a function of the design parameters.With
plate thickness design, the structural mass matrix depends
on the plate thickness. For a structure characterized by𝑛 nodal degrees of freedom (DOFs), the set of solutions[𝜙1,𝜙2, . . . ,𝜙𝑛] is composed of the 𝑛 eigenvectors, that is, the
displacement mode shapes (DMSs), and the number of mode
shapes considered in the dynamic response analysis is usually
much less than the total number of nodal DOFs for large-
scale structures.

In this study, the method is presented on a Kirchhoff
plate. The surface strains and the transverse (out-of-plane)
displacement 𝑤(𝑥, 𝑦) in a thin plate with small deflection are
related by the following equation [32]:

𝜀 = {{{{{{{
𝜀𝑥𝜀𝑦𝛾𝑥𝑦
}}}}}}}
= −𝑧

{{{{{{{{{{{{{{{{{{{

𝜕2𝑤𝜕𝑥2𝜕2𝑤𝜕𝑦2
2 𝜕2𝑤𝜕𝑥𝜕𝑦

}}}}}}}}}}}}}}}}}}}
, (2)

where 𝑧 is the distance from the plate surface to the neutral
surface of the plate, that is, the half thickness of the thin plate.

In light of the strain-displacement relationship, one can
define the SMSs as the distribution of the in-plane strain com-
ponents at the top or bottom surface of the plate according to
the corresponding natural vibration mode. If a finite element
formulation is adopted, the deflection at any arbitrary point
of a plate element is given by [32]

w (𝑥, 𝑦) = N𝑒 (𝑥, 𝑦)w𝑒, (3)
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where N𝑒(𝑥, 𝑦) is the shape function matrix and w𝑒 is a
vector containing the displacement and rotations of the node(𝑤, 𝜃𝑥, 𝜃𝑦). Substituting (3) into (2), the strain vector at the
element surface can be given by

𝜀 (𝑥, 𝑦) = −𝑧B𝑒 (𝑥, 𝑦)w𝑒, (4)

where B𝑒(𝑥, 𝑦) is the strain matrix of the element containing
the second derivatives of the shape functions. With the mode
superposition method, the dynamic strains on the surface of
the plate element can be expressed as

𝜀 (𝑥, 𝑦, 𝑡) = −𝑧B𝑒 (𝑥, 𝑦)𝜙𝑒q (𝑡) , (5)

where the product B𝑒(𝑥, 𝑦)𝜙𝑒 represents the curvature mode
shape in the element and q(𝑡) is the modal coordinate.
Therefore, for an individual finite element, the strain mode
shapes on the plate surface can be derived as [17]

𝜙
𝑒
𝜀 = −𝑧B𝑒 (𝑥, 𝑦)𝜙𝑒. (6)

Equation (6) represents the modal strain formulation at a
specific finite element. The formulation for the whole model
of the plate structure holds the similar form. Considering
a structure containing 𝑚 finite elements, (6) for the whole
model of the structure becomes

{{{{{{{{{{{{{

𝜙𝑒𝜀,1

𝜙𝑒𝜀,2...
𝜙𝑒𝜀,𝑚

}}}}}}}}}}}}}
= −𝑧[[[[[[

B𝑒1
B𝑒2

d

B𝑒𝑚

]]]]]]

{{{{{{{{{{{{{

𝜙𝑒1

𝜙𝑒2...
𝜙𝑒𝑚

}}}}}}}}}}}}}
. (7)

The relationship between the displacement vector 𝜙𝑒 in the
local coordinate system and the displacement vector 𝜙 in the
global coordinate system is given by

𝜙
𝑒 = T𝜙, (8)

where T is the coordinate transformmatrix. By transforming
the displacement in the global coordinate system to the
displacement in the local coordinate system, the strain mode
shapes of each individual element in the whole structure can
be represented in a compact form as

𝜙
𝑒
𝜀 = −𝑧B𝑒T𝜙. (9)

The vector 𝜙 denotes the structural displacement mode
shapes in the global coordinate system. The product B𝑒T𝜙 is
the curvature mode shapes of the deflected neutral surface.

2.2. Modal Principal Strains. Since the strain vectors can
include different components, for a specific order of mode,
the modal strain can have different distributions depending
on the strain component, for example, the strain mode
shape in the 𝑥- and 𝑦-directions of a plate structure. It is
noted that the three in-plane components of strains are of
importance for plate-like structures, that is, the two normal
strains and the one shear strain. In some cases, however,
the derived quantities can be much more important. For

instance, Pedersen [33] found that the optimal orientation
of orthotropic materials depends on one nondimensional
material parameter plus the ratio of the two principal strains.
Bendsoe et al. [34] expressed the strain energy density in
the frame of the principal strains for frame-independent
consideration in structural compliance optimization.

Strain based parameters that are independent of the coor-
dinate system, for example, strain invariants and principal
strains are examples of such scalar parameters.Themaximum
principal strain can be used as an overall measure of the
magnitude of the in-plane strains. If the largest normal strain
is of most interest, the rth modal principal (maximum and
minimum) strains of the 𝑖th element (𝜙1,2𝜀 )𝑖𝑟 can be expressed
as

(𝜙1,2𝜀 )𝑖𝑟 = (𝜙𝑥𝜀 )𝑖𝑟 + (𝜙𝑦𝜀 )𝑖𝑟2
± √((𝜙𝑥𝜀 )𝑖𝑟 − (𝜙𝑦𝜀 )𝑖𝑟2 )2 + ((𝜙𝑥𝑦𝜀 )𝑖𝑟2 )2,

(10)

where (𝜙𝑥𝜀 )𝑖𝑟, (𝜙𝑦𝜀 )𝑖𝑟, and (𝜙𝑥𝑦𝜀 )𝑖𝑟 are the rth modal strains of
the 𝑖th element in the 𝑥-, 𝑦-, and 𝑥𝑦-components, respec-
tively. Therefore, once the 𝑥-, 𝑦-, and 𝑥𝑦-components of the
modal strains are obtained, modal principal strains can be
calculated using (10) for each order of the mode shape. The
benefit of the modal principal strain is to provide a scalar
quantity to characterize the magnitude of the modal strain
field.

2.3. Eigenvalue Sensitivity. In order to update design variables
toward the optimized solution, the optimality criteria need
to determine how different values of the design variables
influence the objective function under a given set of design
constraints. Thus, sensitivity analysis is needed in topology
optimization. The sensitivity of eigenvalue with respect to
the vector of design variables b can be formulated as follows
[31]:

𝜕𝜆𝜕b = 𝜕𝜕b [𝜙𝑇K (b)𝜙] − 𝜆 𝜕𝜕b [𝜙𝑇M (b)𝜙] , (11)

where K(b) and M(b) are the global stiffness matrix and the
global mass matrix, respectively. The superscript “𝑇” denotes
the transpose of a matrix. If plate thickness is considered
as a design variable and if piecewise-constant thickness is
assumed, the design variables b become the plate thicknesses
of the 𝑚 finite elements (𝑏1, 𝑏2, . . . , 𝑏𝑚) in the whole model.
The sensitivity with respect to one of the design thicknesses,𝑏𝑖, can be expressed as [31]

𝜕𝜆𝜕𝑏𝑖 = ∬
Ω𝑖

[ 𝐸𝑏2𝑖4 (1 − 𝜇2)𝜅 (𝑤)𝑇C𝜅 (𝑤) − 𝜆𝜌𝑤2]𝑑Ω. (12)

In the structural domain Ω, 𝜌 denotes the mass density, 𝐸
is Young’s modulus, and 𝜇 is Poisson’s ratio. The curvature
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Figure 1: Relationships between the SMSs, CMSs, and eigenvalue sensitivity.
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Figure 2: Topology optimization result and the modal principal strain of a clamped plate: (a) topology optimization result from [14]; (b)
modal principal strain.

vector 𝜅(𝑤) and the matrix C for an isotropic material are,
respectively, expressed as

𝜅 (𝑤) =
{{{{{{{{{{{{{{{{{{{

𝜕2𝑤𝜕𝑥2𝜕2𝑤𝜕𝑦2
2 𝜕2𝑤𝜕𝑥𝜕𝑦

}}}}}}}}}}}}}}}}}}}
,

C = [[[[[

1 𝜇 0𝜇 1 0
0 0 12 (1 − 𝜇)

]]]]]
,

(13)

where 𝑤 denotes the plate deflection of the mode shape.
Equation (12) indicates that the eigenvalue sensitivity with
respect to the design variable is quadratically proportional to
the curvature vector.The elements with higher curvature can
give rise to higher eigenvalue.

From (9), the magnitudes of modal strains are linearly
correlated to the curvature vector of mode shapes in the local
coordinate; that is,

𝜙
𝑒
𝜀 = −𝑧 ⋅ 𝜅. (14)

Substituting (14) into (12), the eigenvalue sensitivity with
respect to one of the element thicknesses, 𝑏𝑖, can be derived
as

𝜕𝜆𝜕𝑏𝑖 = ∬
Ω𝑖

[ 𝐸𝑏2𝑖4𝑧2 (1 − 𝜇2)𝜙𝑒𝑇𝜀 C𝜙𝑒𝜀 − 𝜆𝜌𝑤2]𝑑Ω. (15)

From (15), the coefficient of modal strain term is always
positive, and hence the eigenvalue sensitivity with respect to
each element thickness can be positively correlated to the
modal strain term 𝜙𝑒𝑇𝜀 C𝜙

𝑒
𝜀 of the corresponding finite ele-

ment.Therefore, thicknessmodification of the finite elements
with higher modal strains can be more effective for design of
modal frequencies of the whole structure. The relationships
between the SMSs, CMSs, and eigenvalue sensitivity can be
illustrated as in Figure 1.

The elements with higher modal strain at a specific mode
contribute much more to the eigenvalue than elements with
lower modal strain. This law provides a fast routine that
one canmodify the high-modal-strain elements with priority
in order to obtain a desired modal frequency. It is to note
that strain mode shapes can be conveniently generated and
visualized by using finite element modal analysis.

3. Numerical Investigation

3.1. Material Distribution Problem. In the previous study,
Pedersen [14] maximized the first natural frequency of a
rectangular plate that is clamped at all four edges or simply
supported at all four edges using topology optimization. The
dimensions of the plate are 150mm × 100mm × 1.22mm.
The material properties were Young’s modulus 𝐸 = 70GPa,
Poisson’s ratio 𝜇 = 0.3, and mass density 𝜌 = 2700 kg/m3. A
nonstructural mass 0.003 kg was placed at the centre. In the
simulation of present study, the flat plate is modelled using
quadrilateral shell element (S4R) in Abaqus software [35].

The material volume of topology optimization was con-
strained to be less than 60% in the Reference. The result of
topology optimization from the clamped case is shown in
Figure 2(a). In current modal analysis, Lanczos method is
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Figure 3: Topology optimization result and the modal principal strain of a simply supported plate: (a) topology optimization result from
[14]; (b) modal principal strain.

chosen as eigensolver, and the displacement normalization
is applied in eigenvector normalization (these two are used
throughout the latter simulations). The black areas represent
the optimal material distribution for maximizing the first
eigenvalue in Figure 2(a). In Abaqus software, the modal
strain distribution within the structural domain can be
clearly visualized, which makes it simple and convenient to
determine the regions of high modal strain in the structure
for different modes. By generating the maximum in-plane
principal strain (Abs) in Abaqus visualization, Figure 2(b)
gives the contour of the maximum in-plane principal strain
at the first mode. As the maximummagnitude is 1.249 × 10−3,
the cutoff value is set to 3.747 × 10−4, which is ≈30% of the
maximum magnitude. That is, the regions with the absolute
magnitude of the modal strain exceeding the cutoff value
are displayed in pure black. The black regions indicate the
highly distributed principal strain at this mode shape, which
are located at the centre of the plate and the mid of the four
edges. This result is in much agreement with the topology
optimization.

The corresponding results of the case with a simply
supported boundary condition are shown in Figure 3. The
maximummagnitude of the in-plane principal strain is 5.944× 10−4, and the cutoff value is set to 2.6748 × 10−4, ≈45% of the
maximum. It can be seen that the centre and the four corners
of the plate can be considered as the optimal regions, based on
both the topology optimization and themodal strain analysis.
The two cases shown in Figures 2 and 3 show that the modal
principal strain can serve as an indicator for the optimization
of the material distribution of a plate structure.

Similar to the displacement mode shapes (DMSs), the
SMSs depend on the properties of mass and stiffness of a
structure. Highly strained regions at a specific mode shape
can make a higher contribution to the global stiffness of that
mode. However, the DMSs cannot reveal this law.This is self-
explanatory for a cantilever beam: large deflection occurs at
the free end with small strain but large strain at the fixed end
with small deflection.

3.2. Modal Strain Characteristics of Thin Plates. In this sec-
tion, some characteristics of SMSs in a flat plate, as shown
in Figure 4, are discussed.The in-plane size of the flat plate is

x

y

z

Neutral surface
Short edge, 400mm

Long edge, 600mm

Thickness, 4mm

Figure 4: Model of the rectangular flat plate.

600mm× 400mm,with the thickness of 4mmand the aspect
ratio of the plate is the same as the former example (3 : 2).
Young’s modulus of the material is 𝐸 = 108GPa, Poisson’s
ratio is 𝜇 = 0.34, and the mass density is 𝜌 = 4.5× 103 kg/m3.

As the DMSs can have 𝑥-, 𝑦-, and 𝑧-component and
magnitude shapes, the SMSs can have different contours
depending on the strain components. For comparison pur-
pose, the maximum values of the three in-plane components
of the modal strains in the simply supported flat plate are
depicted in Figure 5 for the first five modes. Herein, the
maximum displacements are normalized to unity, and then
the SMSs are generated based on the corresponding DMSs.
The 𝑥-component of the modal strains at the 4th order is
higher than the other four orders, of which the reason is that
the 4th mode of the flat plate is the 3 × 1 bending mode in𝑥-𝑦-plane. The 𝑦-components of the modal strains at the 3rd
and 5th orders are the two highest modes, which is because
the 3rd and 5th orders are the 1 × 2 and 2 × 2 bending modes
in 𝑥-𝑦-plane, respectively. For the in-plane shear component,
the modal strains increase as the order of mode goes up.

As mentioned in Section 2.2, the principal strain is of
much importance due to its property of frame-independence.
The maximum in-plane principal strains for the first five
modes were extracted for the simply supported flat plate.
Experimentally, the mass-normalization of the DMSs and
SMSs cannot be performed with strain modal parameters
only [20], unless the special strategy is used, for example, the
mass-change strategy [21]. In present study, the aim of using
a specific order of strain mode shape is to give a qualitative
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Figure 6: Tensile and compressive principal strains of the simply
supported flat plate.

image of the strain intensity of the structure loaded at that
modal frequency. For comparison of the relative magnitudes,
it is proper to use a uniform normalization method for
different modes. Therefore, in numerical modal analysis, the
maximum magnitudes of the DMSs are normalized to unity,
and then the SMSs are generated. The positive and negative
maximum principal strains at each mode denote the tensile
and compressive components of strains, respectively.The two
peak values of each mode are shown in Figure 6. At the 1st
order of mode, the magnitude of the positive is higher than
the negative. However, due to the symmetry or antisymmetry
of the 2nd to 5th modes, the magnitudes of the positives and
the corresponding negatives are identical. Furthermore, the
magnitudes of principal strains increase as the order of mode
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Figure 7: Maximum modal principal strains of the flat plates with
different boundary conditions.

goes up, except that the strain magnitudes from 3rd to 5th
orders of mode remain at the same level.

The effect of boundary conditions on the modal strain
is being investigated. Three different boundary conditions
were considered for the flat plate, that is, free-free supported,
simply supported, and the clamped one. Figure 7 shows the
positive maximum values of the in-plane modal principal
strains from the 1st to 5th modes. The maximum displace-
ment in each mode is normalized to unity; however, the
maximum modal strain of each mode varies to each other.
From the first five modes, it can be seen that the modal
strains increase as the constraints of the boundary conditions
become tighter. From this characteristic of the SMSs, it can
be found that the improvement of boundary constraints
can probably increase the strain/stress concentrations in
a vibrating structure, although the global stiffness can be
improved via this practice.Therefore, it is worthwhile to note
this characteristic when dynamic failure or vibration fatigue
of a structure is of primary concern.

For validation purpose, the first strain mode shape of
the flat plate is used to perform a thickness modification
in order to improve the fundamental frequency of the
plate. According to the first strain mode shape shown in
Figure 8, the high modal principal strains are distributed at
the middle of the long edges. Thus, these regions are selected
to increase the thickness from 4mm to 5mm, that is, the
blue elements shown in Figure 9.The fundamental frequency
of the initial plate is 161.66Hz. After modification, the first
natural frequency is increased to 173.33Hz via finite element
analysis; and the result by using (15) is 171.89Hz. Results show
the same tendency between the finite element analysis and the
sensitivity equation in modal frequency modification.

3.3. Design of Stiffeners. Thedesign of stiffeners is an effective
approach to enhance the modal frequencies of plate-like
structures. A stiffened rectangular plate is investigated in this
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Figure 8: The first modal principal strain of the clamped flat plate.

Figure 9: Thickness-modified model of the clamped plate.

section. It is noted that the efficiency of stiffeners depends
largely on the locations and orientations of the stiffeners.
In order to improve the efficiency of stiffeners, topology
optimization of stiffeners of the plate was conducted [36].The
model of the stiffened plate is shown in Figure 10. The plate
has the same dimensions as the flat one.The initial formof the
stiffeners was based on one of themost common layouts, with
three short-edge stiffeners and one long-edge stiffener. All of
the stiffeners were assumed to be the identical cross section,
with 4mm width and 30mm height. It is because hereby the
attention is fixed on the layout optimization of the stiffeners,
rather than on the cross sections. The boundary condition of
the stiffened plate is simply supported, with no constraint on
the stiffeners.The stiffeners are modelled using B31 elements.

In the previous study [36], topology optimization was
conducted to maximize the fundamental frequency of the
stiffened plate subject to the volume constraint, with the
stiffeners taken as the design domain. The optimal material
distribution is as shown in Figure 11(a) at volume fraction
of 40%. It can be observed that the material density of the
long-edge stiffener is rather low on the whole. High density is
distributed at the three short-edge stiffeners, especially at the
middle one.

To investigate the modal strains of the stiffeners, modal
analysis was conducted and the distribution of modal princi-
pal strain of the stiffeners at the 1st order of mode is shown
in Figure 11(b). The peak of the maximum in-plane principal
strain is 1.553 × 10−3, and the cutoff value is set to 7.4 × 10−4
(≈48% of the peak value). The elements with the maximum
principal strain exceeding the threshold value are displayed as
the purple colour. From the modal strain distribution, it can

X

Y

Z

Figure 10: Model of the stiffened plate.

X
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Z

3.57 − 002
1.00 − 001
1.64 − 001
2.29 − 001
2.93 − 001
3.57 − 001
4.21 − 001
4.86 − 001
5.50 − 001
6.14 − 001
6.79 − 001
7.43 − 001
8.07 − 001
8.71 − 001
9.36 − 001
1.00 + 000

(a)
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+7.400e − 04
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(b)

Figure 11: Topology optimization result and the modal strain of
the stiffeners: (a) topology optimization result from [36]; (b) modal
principal strain.

be seen that the area above the critical value in the long-edge
stiffener is almost zero. The modal principal strains of three
short-edge stiffeners are highly distributed, with the majority
areas above the critical value. This result is coincident with
the result of topology optimization. Therefore, it can be seen
that, for a given initial layout of stiffeners, the modal strain
distribution can clearly visualize the most critical regions to
the associated mode. Besides, one can adjust the cutoff value
to determine how large the regions will be modified in the
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(h)

Figure 12: Contours of the DMSs and SMSs at deformed shapes; (a)–(d): the 2nd to 5th orders of DMSs; (e)–(h): the 2nd to 5th orders of
SMSs (DMSs: displacement mode shapes; SMSs: strain mode shapes).

initial structure.Then fast modification of the highly strained
regions can be performed to obtain an efficient design.

Furthermore, four higher orders of both DMSs and
SMSs are compared as shown in Figure 12. The maximum
magnitudes of the DMSs are normalized to unity, and then
the SMSs are generated. All of the contours of both DMSs
and SMSs are plotted at the deformed displacement mode
shapes, with scale factor of 20 to visualize the displacement
obviously. Highly strained elements can be directly observed
from the SMSs of each mode. For instance, in the 2nd mode,
the high modal strains are located at the 1/4 and 3/4 of the
long-edge stiffener and the midpoint of the two side short-
edge stiffeners. For the 3rd and 4thmodes, all of the stiffeners
are low strain distributed, due to the local modes. Thus,

designers can identify the highly contributed regions to the
modal stiffness from the SMSs and find ways to compress
the local modes, which can often give rise to severe fatigue
damage in dynamic structures.

For verification purpose, structural dynamic modifica-
tion of stiffeners is conducted based on the SMSs information,
considering the 2nd modal frequency of interest. The design
objective is to increase the 2nd modal frequency by modi-
fying the stiffener width. From Figure 12(e), it can be found
that the modal strain of the 2ndmode is highly distributed in
the long-edge stiffener. Therefore, the long-edge stiffener can
be the most efficient region to modify for the design of the
2nd modal frequency. The width of the long-edge stiffener
is modified from 4mm to 8mm, and modal frequencies
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Figure 13: % FC results of the first five modes.

are calculated for the modified stiffened plate. In order to
evaluate the influence of widening of the long-edge stiffener,
the percentage of frequency change (% FC) is defined as

% FC = 𝑓modified − 𝑓initial𝑓initial × 100, (16)

where 𝑓initial and 𝑓modified are the modal frequencies of the
initial stiffened plate and the modified one, respectively.
The % FC results of the first five modes are shown in
Figure 13. Results show that the 2nd modal frequency is
most significantly improved than the other modes, which
verifies that structural dynamic modification using SMSs
information is effective.

4. Conclusions

This paper investigates the application of modal strain theory
in the structural dynamic design. A modal strain based
method is proposed for the design of natural frequencies of
plate-like structures.The capability of determining the highly
sensitive regions using modal strain analysis is theoretically
demonstrated based on the eigenvalue sensitivity.

In numerical simulations, finite element models were
constructed. Firstly, the application of the proposed method
was conducted on a central-massed flat plate which was
topologically optimized in the Reference. The results of
modal principal strains show good agreement with the result
from topology optimization. Furthermore, some features of
the SMSs of the flat plate are investigated. Finally, the SMSs
were applied to the optimization of a stiffened plate. Attention
is focused on the SMSs distribution in the stiffeners, which
also shows good agreement with the result from the topology
optimization in the previous study. Several higher orders of
SMSs were extracted, which can visualize the most sensitive
regions to the corresponding modal frequency. In summary,
the simulations validate the correctness and convenience of
applying modal strain theory to dynamic design of plate
structures. Therefore, it can be used as a quick-design tool
in an industrial environment for preliminary design and
optimization for dynamic consideration.
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