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Iterative learning control (ILC) is one of the recent topics in control theories and it is suitable for controlling a wider class of 
mechatronic systems - it is especially suitable for the motion control of robotic systems. This paper addresses the problem of 
application of fractional order ILC for fractional order singular system. Particularly, we study fractional order singular 
systems in the pseudo-state space. An closed-loop fractional order PDalpha type ILC of the fractional-order singular system is 
investigated. Also, open-closed loop of the fractional order P-PDa type ILC is considered. Sufficient conditions for the 
convergence in the time domain of the proposed ILC schemes are given by the corresponding theorems and proved. Finally, 
numerical simulations show the feasibility and effectiveness of the proposed approach. 
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Introduction 
TERATIVE learning control (ILC) is one of the most active  
fields in control theory and it is a powerful intelligent control 

concept that iteratively improves behavior of the processes 
that are repetitive in nature [1-3]. Since the early 80’s, ILC 
[4,5] has been one of the very effective control strategies in 
dealing with repeated tracking control with the aim of 
improving tracking performance for the systems that work in 
a repetitive mode. As opposed to traditional controllers, ILC 
is a simple and effective control and can progressively reduce 
tracking errors and improve system performance from 
iteration to iteration. Namely, ILC is a trajectory tracking 
improvement technique for control systems, which can 
perform the same task repetitively in a finite time interval to 
improve the transient response of a system using the previous 
motion. For the purpose of emulating human learning, ILC 
uses knowledge obtained from the previous trial to adjust the 
control input for the current trial so that a better performance 
can be achieved. ILC is a memory based control technique 
since the input-output data should be stored after each 
iteration for updating the control input for the next iteration. 
Therefore, ILC requires less a priori knowledge about the 
controlled system in the controller design phase and also less 
computational effort than many other kinds of control. 
Besides, in terms of how to use  tracking error signal of the 
previous iteration to form the control signal of the current 
iteration, ILC updating schemes can be classified as P-type, 
D-type, PD-type, and PID type. A typical ILC in the time 
domain is a simple open-loop control (off-line learning 

control) that only uses tracking error information in the 
previous iterations to form the control signal used in the 
current iteration and it cannot suppress the unanticipated, non-
repeating disturbances. So, ILC is a technique of controlling 
systems operating in a repetitive mode with the additional 
requirement that a specified output trajectory ( )dy t  in an 

interval [ ]0,T  is followed to a high precision and through 
improving the performance from trial to trial in the sense that 
the tracking error is sequentially reduced. The basic strategy 
is to use an iteration of the form 

1( ) ( ( ), ( )), ( ) ( ) ( )i i i i d iu t f u t e t e t y t y t+ = = − , where f(.,.) 
defines the learning algorithm and remains to be specified, 
yi(t) is the output at the i-th operation resulting from an input 
ui(t), and yd(t) represents the desired output. The new control 
input ui+1(t) should make the system closer to the desired 
result in the next execution cycle.  

In the real application, to overcome such drawbacks, an 
ILC scheme is usually performed together with a proper 
feedback controller for compensation [6], where we often 
design a learning operator for the closed-loop (on-line ILC) 
systems that have achieved a good performance. Since the 
theories and learning algorithms on ILC were firstly proposed, 
ILC has attracted considerable interests [3] due to its 
simplicity and effectiveness of the learning algorithm, and its 
ability to deal with the problems associated with nonlinear, 
time-delay, uncertainties, and, recently, singular systems. 
Besides, during the past years, singular systems have attracted 
attention of a lot of researchers from the mathematics and 
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control communities due to the fact that singular systems can 
describe behavior of some physical systems better than 
regular systems such as: electrical network models [7], 
mechanical models [8, 9], etc. Naturally, many theoretical 
results for regular systems have been extended to singular 
cases. For example, the robot control systems can generally be 
described by some nonlinear ordinary differential equations. 
However, when the robots contact with the objects and the 
environment, they will usually be depicted by some end-point 
constraints. In that way, the constraints are generally 
described by nonlinear differential-algebraic equations which 
are modeled as singular systems, [9]. It is well known that the 
issues of concern for singular systems are much more 
complicated than those for regular systems, because for 
singular systems we need to consider not only stability, but 
also regularity and the absence of impulses at the same time 
[10]. Actually, elimination of algebraic constraints needs a 
suitable feedback control [11]. From the control point of view, 
it is also necessary to study the ILC for singular systems. 
Until now, there are few results reported on introducing ILC 
methods to studying of tracking control for singular systems 
[12, 13].  

Recently, increasing attentions are paid to fractional 
differential equations and their applications in various science 
and engineering fields [14, 15]. Moreover, an increasing 
attention has been paid to the fractional calculus (FC) and its 
application in control and modeling of fractional-order 
singular systems [16, 17]. It is not difficult to conclude that 
other dynamic systems (robotic systems of fractional-order, 
etc.) [18] can be displayed in the singular form, especially in 
realization of various  robotic tasks. 

Recently, the application of ILC to the fractional-order 
systems has become a new topic [19-22]. Among different 
fractional order controllers, fractional order iterative learning 
controller (FOILC), the fractional order version of iterative 
learning control (ILC), is of interest in this paper. Also, in [23, 
24] are presented  new results for PDα  type of robust ILC for 
a given class of fractional order uncertain time delay system. 
Moreover, for the first time, in the paper [25] an iterative 
learning feedback control is considered for the fractional-
order singular systems as well as in the paper [26] a robust 
iterative learning feedback control of the second-order for 
fractional-order singular systems is considered. Motivated by the 
mentioned investigations of ILC algorithms for ILC fractional 
order control in the tracking problems of these systems, (open)-
closed-loop iterative learning control for given fractional-order 
singular systems described in the form of state space and output 
equations. The sufficient convergent conditions of the proposed 
ILC will be derived in time-domain and formulated by a 
theorem. A rigorous mathematical proof for the convergence of 
the iterative learning process is presented. Finally, the simulation 
results are presented to illustrate the performance of the proposed 
P-PDα ILC scheme. 

The remainder of this paper is arranged as follows: in the 
Section Preliminaries and basics of fractional calculus, some 
preliminaries as well as the fractional Caputo operators are 
presented. In Section  Open-loop fractional-order iterative 
learning control, the first main result is derived where the 
convergence is guaranteed by mathematical proof rigorously, 
which includes the extensions of some of the basic result ILC 
of singular fractional-order systems with order α ∈  (0, 1) to 
uncertain fractional-order singular system. In the next section 
Open-closed-loop fractional-order iterative learning control the 
second main result is presented in the same manner where the 
open-closed-loop fractional-order ILC is introduced for the same 
singular fractional order system. In the section Numerical 

simulations suitable numerical examples are included to illustrate 
the performance of the proposed (P)-PDα ILC schemes. Finally, 
the last section summarizes this work. 

Preliminaries and basics of fractional calculus  

The λ -norm, maximum norm, induced norm 
For a later use in proving the convergence of the proposed 

learning control, the following norms are introduced [3] for 
the n -dimensional Euclidean space nR : the sup-norm 

1
sup ,k

k n
x x∞

≤ ≤
=  [ ]1 2, ,... T

nx x x x= , kx -absolute value; the 

maximum norm ( )
0
max ,s t T

x x t
≤ ≤

=  

( ) ( ) ( ) ( )[ ]1 2, ,..., T
nx t x t x t x t= ; the matrix norm as 

1
1
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kk m
j

A g∞ ≤ ≤
=

⎛ ⎞
⎜ ⎟=
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∑ , [ ]kj mxn
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A useful property associated with the λ-norm  is the 
following inequality.  

Property 1: λ norm has the next property 
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∫
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The induced norm of the matrix A is defined as: 

 sup : with 0
Ax

A x X xx
⎧ ⎫= ∈ ≠⎨ ⎬
⎩ ⎭

 with, (3) 

where ( ).  denotes an arbitrary vector norm. In case ( ).
∞

 it 
follows that  

 Ax A x∞ ∞ ∞≤ , (4) 

where A ∞  denotes the maximum value of the matrix A. For 
the previous norms, note that  

 ( ) ( ) ( )Th t h t e h tλ
λ λ∞

≤ ≤ . (5) 

The λ  - norm is thus equivalent to the ∞ - norm. For 
simplicity, in applying the norm ( ). ∞

 the index ∞  will be 
omitted. Before giving the main results, we first give the 
following Lemma 1, [27]. 

Lemma 1. Suppose a real positive series { }1na ∞  satisfies  

 
( )

1 1 2 2 ...

1, 2, ...,

n n n N n Na a a a

n N N

ρ ρ ρ ε− − −≤ + + + +

= + +
 (6) 
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where ( )1 0 1, 2,..., 0i Nρ ε≥ = =  and 
1

1
N

i
i

ρ ρ
=

= <∑ . Then 

the following holds: 

 ( )lim / 1nn
a ε ρ

→∞
≤ − . (7) 

Fractional calculus- Caputo operator 
Fractional calculus (FC) is a generalization of classical 

calculus concerned with the operations of integration and the 
differentiation of non-integer (fractional) order. The concept 
of fractional operators has been introduced almost 
simultaneously with the development of the classical ones. 
The three most frequently used definitions for the general 
fractional differential integral are: the Grunwald-Letnikov 
(GL) definition, the Riemann-Liouville (RL) and the Caputo 
definitions, [14, 15]. In this paper, Caputo fractional-order 
operator is used, where definition of the left Caputo 
fractional-order derivatives is given [14, 15]  as follows:  

 ( ) ( ) ( ) ( ) ( )0

0

11 ,
t

n nC
tt

t

D f t t f d
n

αα τ τ τ
α

− −= −
Γ − ∫  (8) 

where ( ) ( ) ( ) /n n nf d f dτ τ τ= , 1n nα +− ≤ < ∈ , and (.)Γ  is 
the well-known Euler’s gamma function.  In the case 1n =  
we have 0 1α≤ <  as well as 

 ( ) ( ) ( ) ( )
0

0

1 .
1

t
C

tt
t

df
D f t t dd

αα τ
τ ττα

−= −
Γ − ∫  (9) 

In the following sections, Dα  will denote C
to tDα  for 

brevity of notation. 

Fractional-order autonomous linear singular system  
Consider the following autonomous, singular, fractional-

order system (SFOS) described by the state and output 
equations, respectively 

 ( ), 1ED (t)= Ax t n nα α− < <x ,  (10) 

 ( ) ( ),t C t=y x  (11) 

where admissible initial conditions for (10) are given by 

 ( )( )
0,0 0,1,2,... 1k

kx x k n= = − . (12) 

Here, 0
C

tD Dα α=  denotes the α  th-order Caputo fractional 
derivative with respect to t, while ,E A , and C are matrices 
with appropriate dimensions [28, 29]. In solving a singular 
problem, assuming regularity of the system, it is necessary to 
ensure the existence and uniqueness of the solution. 

Definition 1. 
a) The SFOS system (10) is said to be regular if  

( )det 0s E Aα − ≠ ,  

b) The SFOS system (10) is said to be impulse free if (10) 
applies and 

 ( )( )deg det s E A rankEα − = . (13) 

Lemma 1. The triplet ( ), ,E A α is called regular if and only 

if ( )det 0s E Aα − ≠  for some s ∈C  [28, 29]. Also, if triplet 

( ), ,E A α  is regular, we call SFOS system (10) regular, and 
consequently SFOS system is solvable. 

Lemma 2. If the function ( ),f t x  is continuous, then the 
initial value problem  

 ( ) ( )( )
( ) ( )

0

0

, , 0 1
0

C
tt D x t f t x t

x t x

α α⎧ = < <⎪
⎨

=⎪⎩
 (14) 

is the equivalent to the following nonlinear Volterra integral 
equation:  

 ( ) ( ) ( ) ( ) ( )
0

110 , ( )
t

t

x t x t s f s x s dsα
α

−= + −
Γ ∫  (15) 

and its solutions are continuous, [30]. 

Closed-loop fractional-order iterative learning 
control  

The fractional-order non-autonomous singular linear system 
A non-integer (fractional) linear, singular system described 

in the form of pseudo state space and output equations is 
considered. The considered class of fractional-order 

( )0,1α ∈ non-autonomous singular linear system can be 
written as the state space equation and output equation 

 ( ) ( ), 0 1E D (t)= Ax t Bu tα α+ < <x  (16) 

 ( ) ( ).t C t=y x  (17) 

Here, t  is the time within the operation interval 
, ,o oJ t t T J R= + ⊂⎡ ⎤⎣ ⎦ , while ,A B , and C are matrices having 

appropriate dimensions. It is assumed that det 0E =  and that 
SFOS system is regular. 

Also, the initial conditions of fractional differential 
equations which were compared to the given fractional 
derivatives were considered by different authors [29, 31], 
assuming that there was no difficulty regarding the questions 
of existence, uniqueness, and continuity of solutions with 
respect to initial data. The following assumptions on the 
system (16), (17) are imposed. 

A1. The desired trajectories ( )dy t , dx (t) are continuously 
differentiable in [ ]0,T . 

A2. For the given desired output trajectory ( )dy t , there 
exists a control input ( )du t such that 

 ( ) ( ), 0 1d d dED (t)= Ax t Bu tα α+ < <x  (18) 

 ( ) ( ).d dt C t=y x  (19) 

A3. SFOS system is controllable and observable. 
A4. Resetting the initial conditions holds for all 

iterations, i.e. (0) (0), 0,1, 2...,k dx x k= =   

Convergence Analysis 

Here, it is suggested the closed-loop fractional order PDα  
learning algorithm which comprises control law a PDα  
feedback law. Moreover, it was shown in [32] that the 
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tracking speed was the fastest when the system and iterative 
learning scheme have the same order. In the feedback loop 
ILC, the PDα controller provides stability of the system and 
keeps its state errors within uniform bounds. Besides, 
feedback control is introduced as follows, (see Fig.1):  

 1 0 1 1( ) ( ) ( )f i t i iu t D e t e tα − −
+ + += Π + Γ , (20) 

where 1 1( ) ( ), 0i ie t e t ε ε− +
+ += − →  denotes a vector of the 

just realized tracking error signal at time. If the feedback 
delay can be neglected then: 1 1( ) ( )i ie t e t−

+ += . In that way, 

closed-loop fractional order PDα learning algorithm takes the 
form of  

 1 1 0 1( ) ( ) ( ) ( )i i i t iu t u t e t D e tα
+ + += + Γ ⋅ + Π ⋅ , (21) 

where ,Γ Π are gain matrices of appropriate dimensions, 
( )u t  the value of the function at time. A sufficient condition 

for convergence of a proposed feedback ILC is given by the 
Theorem 1 and proved as follows.  

Theorem 1: Suppose that the update law (21), is applied to 
the system (16), (17) and assumptions , 1,2,3,4iA i =  satisfies. 
If matrix Π  exists such that 

 1,I CB ρ− Π ≤ <⎡ ⎤⎣ ⎦  (22) 

where ( ) 1B E B C −= + Π  and matrix Π is such that ( )E B C+ Π  
is invertible, then, when ∞→i  the bounds of the tracking 
errors ( ) ( ) ,d ix t x t−  ( ) ( ) ,d iy t y t−  ( ) ( ) ,d iu t u t−  
converge asymptotically to zero. 

 

Figure 1. Block diagram of closed-loop PDα iterative learning control for a 
LTI singular system 

Proof. Let  

 
( ) ( ) ( ) ( )

( ) ( ), , , , ,

( ) ( )

i d i d d

i i id

h h t h t h x x u u f

D h t h h t h tα α αα

δ

δ δ

= − =

= = −
 (23) 

Tracking error can be obtained as follows: 

 ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )d ii i
de t y t y t C x t
dt

α
α α

α
δ= − = . (24) 

Taking the proposed control law gives: 

 ( )
1 1 1 1i d i i i iu u u u e e αδ δ+ + + += − = − Γ − Π , (25)  

or, taking (24) it yields: 

 ( )
1 1 1 1i d i i i iu u u u C x C x αδ δ δ δ+ + + += − = − Γ − Π  (26) 

Also, from (16), (17) one can find that  

 ( )
1 1 1i i iE x A x B uαδ δ δ+ + += +  (27) 

Substituting (26) into (27)  it follows  

 ( ) ( )
1 1 1 1i i i i iE x A x B u B C x B C xα αδ δ δ δ δ+ + + += + − Γ − Π  (28) 

After, rearranging (22)  it becomes 

 ( ) ( )( )
1 1i i iE B C x A B C x B uαδ δ δ+ ++ Π = − Γ +  (29) 

Using suitable gain matrix Π as well as taking into account 
previously introduced assumptions, matrix ( )E B C+ Π  is 

invertible, i.e. exists ( ) 1E B C −
+ Π . Multiplying on the left 

side expression (29) by ( ) 1E B C −
+ Π  we obtain (30) in the 

form  

 ( ) ( )
( )

1( )
11

1
ii

i

x E B C A B C x
E B C B u

αδ δ
δ

−
++

−

= + Π − Γ +

+ + Π
 (30) 

If one adopts 

 ( ) ( )1A E B C A B C−
= + Π − Γ , ( ) 1B E B C B−

= + Π  (31) 

then  (30) becomes 

 ( )
1 1i i ix A x B uαδ δ δ+ += +  (32) 

By replacing  (32) into (26), we have 

 1 1i i iu I CB u C CA xδ δ δ+ +⎡ ⎤⎡ ⎤= − Π − Γ + Π⎣ ⎦ ⎣ ⎦  (33) 

Estimating the norms of (33) with (.)  and using the 
condition of Theorem 1 one gets  

 1 1

0 1

i i i

i i

u u C CA x
u x

δ ρ δ δ
ρ δ β δ

+ +

+

≤ + Γ + Π =⎡ ⎤⎣ ⎦
= +

 (34) 

Also, one can write the solutions of (32) in the form of the 
equivalent Volterra integral equations using assumption A4, 
as: 

  ( ) ( ) ( ) ( ) ( )( )1
1 1

0

1
t

i i ix t t s A x s B u s dsαδ δ δ
α

−
+ += − +

Γ ∫  (35) 

Applying the norm ( ). on the equation (35), if it is 
uniqueness solution, [29, 31] one obtains: 

 

( )

( )

( ) ( )

1
1 1

0

1

0

1 1
1

0 0

1( ) ( ) ( )

1 ( ) ( )

( ) ( ) ( ) ( )

t

i i

t

i

t t

i i

x t t s A x s ds

t s B u s ds

a bt s x s ds t s u s ds

α

α

α α

δ δ
α

δ
α

δ δ
α α

−
+ +

−

− −
+

≤ − +
Γ

+ −
Γ

≤ − + −
Γ Γ

∫

∫

∫ ∫

(36) 

where ,a A b B= = . Moreover, applying λ  norm to both 
sides of the previous (36), it follows  
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or,  
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( )1 1

1
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1

T

i i i

e Tx t a x t b u t
λ α

λ λ λδ δ δ
λ α

−

+ +

−
≤ + ⋅

Γ +
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Introducing  ( )1O λ− , as 

 ( ) ( )
( )

1
1

1

Te TO
λ α

λ
λ α

−
−

−
=

Γ +
, (40) 

where (39) simplifies to  

 ( ) ( )1
1 1( ) ( ) ( )i i ix t a x t b u t Oλ λ λδ δ δ λ −

+ +≤ +  (41) 

or, one may conclude  

 ( )
( )( ) ( )

1
1

1 1
( ) ( ) ( )

1
i i i

bO
x t u t O u t

aO
γλ λ λ

λ
δ δ λ δ

λ

−
−

+ −
≤ ≤

−
, (42)  

then, if a sufficiently large λ   is used, one can obtain that: 

 ( )( 1) 1 0Ta e Tλ αλ α −Γ + − − >  (43) 

Taking the λ -norm of the expression (28) leads to: 

 1 0 1i i iu u x
λ λ λ

δ ρ δ β δ+ +≤ +  (44) 

Finally, taking into account (36) we have  

 ( )( )1
1 0i i iu O u uγλ λ λ

δ ρ β λ δ ρ δ−
+ ′≤ + =  (45) 

So that, there exists a sufficient large λ  satisfying 

 ( )( )1
0 1Oγρ ρ β λ −′ = + <  (46) 

Therefore, according to Lemma 1, [27] it can be concluded 
 that: 

 lim 0i
i

u λδ
→∞

→ , (47) 

This completes the proof of Theorem 1. Moreover, due to 
uniqueness and existence of the theorem for fractional order 
singular system,[29] one can conclude that  

 lim ( ) ( ),i d
i

x t x t
→∞

=  lim ( ) ( ).i di
y t y t

→∞
=  (48) 

Further, the case of the fractional order ( )0,1α ∈  singular 
system non-autonomous singular linear system can be written 
as the state space equation and output equation is also 
discussed here: 

 ( ) ( ) ( ),
0 1
ED (t)= A A x t Bu tα

α
+ Δ +

< <
x  (49) 

 ( ) ( ),t C t=y x  (50) 

Here, t  is time in the operation interval [ ]0 0,J t t T= + , 
J R⊂ , as well as ,A B  and C are matrices with the 
appropriate dimensions; AΔ  is unknown real norm-bounded 
matrice which represent parameter uncertainty  in the system 
model. 

Theorem 2. For the fractional order singular system (49), 
(50) with the αPD -type ILC scheme (21), and the 
assumptions A1-A4 where the convergence condition is given 
by (22), then when ∞→i  the bounds of the tracking errors 

( ) ( ) ,d ix t x t−  ( ) ( ) ,d iy t y t−  ( ) ( ) ,d iu t u t−  converge 
asymptotically to a residual ball centered at the origin. 

Proof: The proof follows from the proof of Theorem 1. 
Namely, from  (49), (50) one can easily find that  

 ( )( )
1 1 1i i i dE x A A x B u Axαδ δ δ+ + += + Δ + − Δ  (52) 

Multiplying on the left side expression (52) by 
( ) 1E B C −+ Π  we obtain (53) in the form  

 ( )( )
1 1i i i dx A A x B u Axαδ δ δ+ += + Δ + − Δ  (53) 

where  

 ( ) ( )1A E B C A B C−= + Π − Γ , ( ) 1B E B C B−= + Π ,  

 ( ) 1A E B C A−
Δ = + Π Δ . (54) 

By replacing (53) into (26), we have 

( )1 1i i i

d

u I CB u C C A A x

C Ax

δ δ δ+ +
⎡ ⎤⎡ ⎤= − Π − Γ + Π + Δ +⎣ ⎦ ⎣ ⎦

+Π Δ
 (55) 

Estimating the norms of (55) with (.)  and using the 
condition of Theorem 2 one gets 

( )

1

0 1 1

0 1 1

0 1 1

i i

i i

d i i d i

i

u u

C C A A x x

C A x u x x u

x c

δ ρ δ

β δ δ

ρ δ β δ β ρ δ

β δ β

+

+ +

+

+

≤ +

⎡ ⎤+ Γ + Π + Δ +⎣ ⎦

+ Π Δ = + + ≤ +

+ +

 (56) 

where it is fulfilled, [ ]( ) , 0,dx t c t T≤ ∀ ∈ . Also, one can 
write the solutions of (53) in form of the equivalent Volterra 
integral equations using the assumption A4, as: 
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( ) ( )

( ) ( ) ( )

1 1
1

0

1

0

( )1( )
( )

1_

t
i

i
i

t

d

A A x sx t t s ds
B u s

t s Ax s ds

α

α

δδ
α δ

α

− +
+

−

⎛ ⎞+ Δ +⎡ ⎤⎣ ⎦= − −⎜ ⎟Γ ⎝ ⎠

− Δ
Γ

∫

∫
 (57) 

In a similar manner, applying the norm ( ). on the 
equation (57), if a uniqueness solution exists, [29, 31] where 

, ,a A b B a AΔ= = = Δ , and applying λ  norm, we have 

 
( )( )

( )
( )

1 1( ) ( ) ( )
1

. .
1

i i i
T

x t a a x t b u t a c
e T

λ λ λ
λ

α

δ δ δ

λ α

+ Δ + Δ
−

≤ + + + ⋅

−

Γ +

(58) 

or, one may conclude  

 
( ) ( )

( ) ( )( )
( ) ( )

1 1

1 1

1 1

( )
( )

1

( )

i
i

i

bO u t a O
x t

a a O

O u t

λ
λ

γ λ

λ δ λ
δ

λ

λ δ ε λ

− −
Δ

+ −
Δ

− −

+
≤ ≤

− +

′≤ +

 (59) 

Finally, taking the λ -norm of the expression (56) leads to: 

 1 0 1 1i i iu u x c
λ λ λ

δ ρ δ β δ β+ +≤ + +  (60) 

or, taking into account (59) we obtain  

 
( )( )

( )

1
1 0

1
0 1

i i

i

u O u

c u

γλ λ

λ

δ ρ β λ δ

β ε λ β ρ δ ε

−
+

−

≤ + +

′ ′+ + = +
 (61) 

So that, there exists a sufficient large λ  satisfying 

 ( )( )1
0 1Oγρ ρ β λ −′ = + <  (62) 

Therefore, taking into account Lemma1, [3] it yields: 

 1lim
1i

i
u λδ ε

ρ→∞
≤

′−
, (63) 

This completes the proof of Theorem 2. 
Remark 1. In the case of no parameter uncertainty, i.e. 

0AΔ = , one can obtain that when i → ∞  bounds of the 
tracking errors ( ) ( ) ,d ix t x t−  ( ) ( ) ,d iy t y t−  and 

( ) ( )d iu t u t−  converge asymptotically to zero, as stated in 
Theorem 1, (i.e 0AΔ = , i.e 0ε = ).  

Open-closed-loop fractional-order iterative 
learning control  

Also, for the singular system defined by (10), open-closed-
loop P-PDα-type iterative learning algorithm is proposed as 
follows: 

 ( ) ( )1 1 2 0, 1 2 1( ) ( ) ( ) ( )i i i C t i iu t u t e t D e t e tα
+ + += + Γ + Γ + Π , (64) 

where ( )iu t  and ( )iy t  are, respectively, the system input and 
output in the thi  iteration, ( ) ( ) ( )i d ie t y t y t= −  is the 

trajectory tracking error at i-th iteration, ( )1iu t+  is the system 
input of the ( )1 thi +  trial, ( ) ( )d dy t Cx t=  denotes desired 

output trajectory, and 1 2 2, ,Γ Γ Π  are open-closed-loop 
learning matrices. In the closed loop, the PDα  controller 

( )2 0, 1 2 1( ) ( )C t i iD e t e tα
+ +Γ + Π  provides stability of the system 

and keeps its state errors within uniform bounds. A sufficient 
condition for convergence of the proposed open-closed- loop 
ILC is given by Theorem 3. The proof is as follows: 

Theorem3: Suppose that the update law defined by (64) is 
applied to the non-autonomous singular linear system (16), 
(17) and assumptions , 1,2,3, 4iA i =  are satisfied. If matrix 

2Γ  exists such that 

 2 1,I CB ρ− Γ ≤ <⎡ ⎤⎣ ⎦  (65) 

where ( ) 1
2B E B C B−= + Γ  and matrix 2Γ  is such that 

( )2E B C+ Γ  is invertible, then, when ∞→i , the bounds of 

the tracking errors ( ) ( )d ix t x t−  ( ) ( )d iy t y t− , 

( ) ( )d iu t u t−  converge asymptotically to a residual ball 
centered at the origin. 

Proof.  
The proof is similar to the proofs of the previous two 

theorems.  Taking the proposed control law gives: 

 ( )( )
1 1 1 2 2 11i d i i i iiu u u u e e eαδ δ+ + ++= − = − Γ − Γ + Π , (66)  

or, based on equation (24), it  follows: 

 ( )
1 1 1 2 2 2 11i i i iiu u C x C x C xαδ δ δ δ δ+ + ++= − Γ − Γ − Γ Π . (67) 

as well as   taking into account (27) one can find that  

 
( )

( )

( )
2 1

2 2 1 1

i

i i i

E B C x

A B C x B u B C x

αδ

δ δ δ

+

+

+ Γ =

= − Γ Π + − Γ
 (68) 

By using suitable gain matrix 2Γ , as well as by taking into 
account the previously introduced assumptions, the matrix 

( )2E B C+ Γ  is invertible, i.e. there exists ( ) 1
2E B C −+ Γ . By 

multiplying the expression (68) by ( ) 1
2E B C −+ Γ , we obtain  

 ( )
1 11 i i iix A x A x B uαδ δ δ δ++ = + + , (69) 

where  

 ( ) ( )1
2 2 2A E B C A B C−= + Γ − Γ Π ,  

 ( ) ( )1 1
2 1 2 1, .B E B C B A E B C B C− −= + Γ = + Γ Γ  (70) 

And after replacing (69) into (67), we have 

 1 2 2 2 2 1

1 2 1

i i i

i

u I CB u CA C x
C CA x

δ δ δ
δ

+ += − Γ − Γ + Γ Π⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦
− Γ + Γ⎡ ⎤⎣ ⎦

 (71) 

Taking the norm of both sides of the equation (71) and 
using the condition of Theorem 3, this reduces to: 

  
1 2 2 2 1

1 2 1 0 1 1

i i i

i i i i

u u CA C x

C CA x u x x

δ ρ δ δ

δ ρ δ β δ β δ

+ +

+

≤ + Γ + Γ Π +⎡ ⎤⎣ ⎦

+ Γ + Γ = + +⎡ ⎤⎣ ⎦

 (72) 
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Again, we can obtain the solutions of (25) in form of the 
equivalent Volterra integral equations using the assumption 
A4, as:  

 
( ) ( ) 1 1 1

1

0

( ) ( )1( )
( )

t
i i

i
i

A x s A x sx t t s ds
B u s

α δ δδ
α δ

− +
+

+⎛ ⎞= − ⎜ ⎟Γ +⎝ ⎠∫ . (73) 

Taking norms and using their properties, we have   

 ( )

( ) ( )

1
1 1

0

1 11

0 0

( ) ( ) ( )

( ) ( ) ( ) ( )

t

i i

t t

i i

ax t t s x s ds

a bt s x s ds t s u s ds

α

α α

δ δ
α

δ δ
α α

−
+ +

− −

≤ − +
Γ

+ − + − +
Γ Γ

∫

∫ ∫
(74) 

where ( ) ( ).. .. , .a A b B= = Furthermore, the next relation is 
fulfilled: 

 
[ ] 1 1

1 1

0, , ( ) ( ) ( )

( ) ( )

i i i i

i i i

t T x t x t x x t

x t x x t

δ δ

δ

+ +

+ +

∈ = + −

≤ + −
. (75) 

Here, we may introduce 
[ ]

1 1
0,

sup ( ) ,i i i
t T

x x tη + +
∈

= −  and 

1 1( ) ( )i i ix t x tδ δ η+ +≤ +  and applying λ  norm to both sides 
leads to 

( )
( )

( )

1
1 1

1
0

0

1 1

0

( ) ( )( ) sup
( )

sup
1

t
it

i
t T i

t i

t T

t s a a x sx t e ds
b u s

a te

α
λ

λ

α
λ

δδ
δα

η
α

−
+−

+
≤ ≤

− +

≤ ≤

⎧ ⎫− + +⎪ ⎪⎡ ⎤≤ ⎨ ⎬⎢ ⎥+Γ ⎣ ⎦⎪ ⎪⎩ ⎭

⎛ ⎞
+ ⎜ ⎟Γ +⎝ ⎠

∫
(76) 

( )
( )

( )

( )( )

( )

1

1
1 1( )

0 0
0

1 1

1 1

( )

0 0
0 0

( ) ( )sup sup ( )

,
1

( ) ( )

( )
sup sup .

t
it s s

t T t T i

i

i i

t t
t s

t T t T

t s a a x se e dsb u s

a

a a x t b u t

t s
e ds ds

α

α
λ λ

λ λ

λ

δ
δα

η
α

δ δ

ξ
α

−

−
+− − −

≤ ≤ ≤ ≤

+

+

− −

≤ ≤ ≤ ≤

− + +⎡ ⎤≤ ⎢ ⎥+Γ ⎣ ⎦

+
Γ +

≤ + + ⋅

−
+

Γ

∫

∫ ∫

 

where ( )1 1 / 1iaξ η α+= Γ +  . Defining ( )1O λ − , as   

 ( ) ( )
( )

1 1
1

Te TO
λ

α
λ λ α

−
−

−
=

Γ +
, (77) 

and substituting (77) into (76) produces 

 
( )( )

( )

1 1 1

1

( ) ( ) ( )

.

i i ix t a a x t b u t

O

λ λ λδ δ δ

λ ξ

+ +

−

≤ + +

+

 (78) 

It follows immediately from (78) that 

 

( )
( ) ( )( )

( ) ( )

1

1 1
1

1 1

( )
( )

1

( )

i
i

i

bO u t
x t

a a O

O u t

λ
λ

γ λ

λ δ ξ
δ

λ

λ δ ξ λ

−

+ −

− −

+
≤ ≤

− +

′≤ +

. (79) 

Now, it is possible to choose a sufficiently large λ  such that 

 ( )( )1( 1) 1 0Ta a e Tλ αλ α −Γ + − + − > . (80) 

Also,combining (72) and (75) and applying the λ -norm 
yields 

 ( )

1 0 1 1

0 1 1 1 1

1 1

i i i i

i i i

i i i

u u x x

u x

u u xλ λ λ

δ ρ δ β δ β δ

ρ δ β β δ β η

δ ρ δ β δ β

+ +

+ +

+ +

≤ + +

= + + +

′ ′′≤ + +

 (81) 

Finally, taking into account (79) we have    

 
( )( ) ( )1 1

1i i

i

u O u

u

γλ λ

λ

δ ρ β λ δ β ξ λ β

ρ δ ε

− −
+ ′ ′ ′ ′′≤ + + +

′= +
.(82) 

Therefore, there exists a sufficiently large λ  satisfying 

 ( )( )1 1Oγρ ρ β λ −′ ′= + < . (83)  

Thus, from the fact that 1ρ′ <  and Lemma 1, [3] , it is 

immediate to achieve that 1lim 1ii
u λδ ερ→∞

≤ ′−
. This 

completes the proof of Theorem 3. 

Numerical simulations 
In this section, two numerical examples are presented to 

show the effectiveness of the proposed ( )P PDα− type 
iterative learning controller. First, consider the following 
fractional order linear singular system in state space form 
described by 

( )
( )

( )
( )

( )
( )

0.5
1 1 1

0.5
2 22

1 0 1 2 1 0
0 0 1 1 0 1

D x t x t u t
x t u tD x t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
 (84) 

 
( )
( )

( )
( )

1 1

2 2

1 0
0 1

y t x t
y t x t

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
 (85) 

 
where [ ]0,1 , 0.5t α∈ = . The desired trajectories are given 
by  

 ( ) 2
1 2( ) 1.5 1 , ( ) 0.5d dy t t t y t t= ⋅ − = ,  

 ( ) ( )1,2 1,20 0 0d iy y= =  (86) 

The learning gain matrices are chosen as follows 

 
0.95 1 0.95 1

, ,
0 0.95 0 0.95

⎡ ⎤ ⎡ ⎤
Π = Γ =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (87) 
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It is easy to show that the pair (E; A) is regular.  

 
Figure 2. The tracking performance of the system output (y1(t): solid line, 
yd1(t): bold line ) 

 
Figure 3. The tracking performance of the system output (y2(t): solid line, 
yd2(t) ( )2y td : bold line) 

Simulation results in Figures 2-5 show the effectiveness of 
the developed ILC control scheme for the system (16), (17). 
The ILC rule (21) is used, (Figures 3, 4) show the tracking 
performance of the ILC system outputs on the interval 

[ ]0,1t ∈ . Also, we can find (see Figures 4, 5) that proposed 
requirement of tracking performance is achieved at the 
seventh iteration. 

 
Figure 4. The sup-norm of tracking error e1(t) in each iteration  

 
Figure 5. The sup-norm of tracking error e2(t) in each iteration   

Now, we consider the same singular system where we 
apply open-closed-loop P-PDα-type iterative learning 
algorithm (64). In the simulation, we select the following gain 
matrices: 

1 2
0.5 0.5 0.95 0.4, ,0 0.5 0 0.95

⎡ ⎤ ⎡ ⎤Γ = Γ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 2

0.2 0
0 0.2

⎡ ⎤Π = ⎢ ⎥⎣ ⎦
 (88) 

To determine values of the gain matrices, it is necessary to 
satisfy the convergence condition of Theorem 2 and make a 
comprehensive consideration of the convergence speed. It is 
easy to show that the pair (E; A) is regular and 

2 0.7287 1.I CB− Γ = <⎡ ⎤⎣ ⎦  
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Figure 6. The tracking performance of the system output (y1(t) : solid line, 
yd1(t): bold line ) 
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Figure 7. The tracking performance of the system output (y2(t) : solid line, 
yd2(t): bold line) 
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Figure 8. The sup-norms of tracking errors e1(t) and e2(t) in each iteration  

Here the ILC rule (64) is used, where Figures 6, 7 show the 
tracking performance of the ILC system outputs over the 
interval t∈[0,1] . Also, we can find (see Fig.8) that the 
proposed requirement for the tracking performance is 
achieved at the fifth iteration. 

Compared with the results shown in Figures 4 and 5, the 
ILC tracking errors presented in Fig.8 are bounded to a lower 
level. Beside using suggested open-closed ILC control as well 
as learning gains matrices, one may improve the speed 
convergence and transient behavior of the proposed ILC 
fractional order systems. 

Conclusions 
In this paper, a fractional order (P)-PDa type of ILC is 

proposed for a given class of fractional order singular systems 
and, using simulations, the effectiveness of the proposed ILC 
controller was investigated. Particularly, we considered two 
cases of ILC: closed-loop PDα type of ILC as well as open-
closed loop (P)-PDα type of ILC. Sufficient conditions for the 
convergence in the time domain of a proposed ILC were 
given by the corresponding theorems and proved.  

Finally, improved ILC performances by including (open)-
closed ILC controller are illustrated by numerical simulations. 
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Iterativno upravljanje učenjem necelog reda za singularni sistem 
necelog reda: (P)-PDα tip 

Iterativno upravljanje putem učenja (ILC) predstavlja jedno od važnih oblasti u teoriji upravljanja i pogodno je za 
upravljanje šire klase mehatroničkih sistema, a posebno su pogodni za upravljanje kretanjem robotskih sistema. Ovaj se rad 
bavi problemom primene frakcionog reda ILC upravljanja za singularne sisteme frakcionog reda. Posebno, ovde se 
proučavaju  singularni sistemi necelog reda u prostoru pseduo-stanja. U povratnoj sprezi  frakcionog reda PDα  tip ILC 
upravljanje  za singularni sistem frakcionog reda je istraživano. Takođe, frakcionog reda P-PDα tip ILC upravljanje u 
direktnoj-povratnoj sprezi je razmatrano. Dovoljni uslovi za konvergenciju u vremenskom domenu predloženih šema ILC 
upravljanja su data odgovarajućim teoremama i koja su dokazana. Konačno, numeričke simualcije na  primer pokazuje 
izvodljivost i efikasnost predloženog pristupa. 

Ključne reči: teorija upravljanja, iterativno upravljanje, upravljanje učenjem, necelobrojni red, singularni sistem, 
konvergencija metode, robotski sistem. 

Итерационное управление обучением дробного порядка для 
особой сингулярной системы дробного порядка: (P)-PDα тип 

Итерационное управление с помощью процесса обучения (ILC) является одним из важных направлений в теории 
управления и является идеальным решением для управления более широким классом мехатронных систем и 
особенно хорошо подходит для управления движением робототехнических систем. Эта статья имеет дело с 
применением систем управления ILC дробного порядка для сингулярных систем дробного порядка. В частности, мы 
изучаем сингулярные системы дробного порядка в пространстве псевдосостояния. Здесь исследуется тип ILC  
управления с замкнутым циклом дробной степени порядка PDα  в сингулярной системе дробного порядка. Кроме 
того, обсуждается и тип ILC управления дробного порядка P-PDα в прямой обратной связи. Достаточные условия 
сходимости во временной области предлагаемых схем ILC управления приведены в соответствующих теоремах и 
доказаны. Наконец, численные моделирования, например, показывают целесообразность и эффективность 
предлагаемого подхода. 

Ключевые слова: теория управления, итерационное управление, управление обучением, дробный порядок, 
сингулярная система, методы конвергенции, роботизированная система. 

Contrôle itératif par l’étude de l’ordre fractionnel pour le système 
singulier de l’ordre fractionnel: (P)-PDα type  

Le contrôle itératif par l’étude (ILC) représente un domaine important dans la théorie de contrôle  et il est convenable pour le 
contrôle d’une large classe des systèmes mécatroniques en particulier pour le contrôle du mouvement chez les systèmes 
robotiques. Ce papier s’occupe du problème d’application de l’ordre fractionnel de contrôle ILC pour les systèmes singuliers 
de l’ordre fractionnel. On étudie ici spécialement les systèmes singuliers de l’ordre fractionnel dans l’espace de pseudo état. 
Dans les réactions de l’ordre fractionnel PDα le type de contrôle ILC pour le système singulier de l’ordre fractionnel a été 
examiné. On a considéré aussi le contrôle dans les réactions directes de l’ordre fractionnel du type P-PDα . Les conditions 
suffisantes pour la convergence dans le domaine temporel des schémas proposés du contrôle ILC sont données par les 
théorèmes correspondants et prouvées. Enfin les simulations numériques démontrent la faisabilité et l’efficacité de l’approche 
proposée. 

Mots clés: théorie de contrôle, contrôle itératif, contrôle par l’étude, ordre fractionnel, système singulier, convergence de 
méthode,système robotique. 




