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The exponentially stabilizing state feedback control algorithm is developed by Lyapunov’s second method leading to the variable
structure system with chattering free sliding modes. Linear time-invariant discrete-time second order plant is considered and the
control law is obtained by using a simple fuzzy controller. The analytical structure of the proposed controller is derived and used
to prove exponential stability of sliding subspace. Essentially, the control algorithm drives the system from an arbitrary initial state
to a prescribed so-called sliding subspace S, in finite time and with prescribed velocity estimate. Inside the sliding subspace S, the
system is switched to the slidingmode regime and stays in it forever.The proposed algorithm is tested on the real system in practice,
DC servo motor, and simulation and experimental results are given.

1. Introduction

It is well-known that the variable structure control systems
(VSCS) theory has been existing for several decades. Almost
everything published in the area is related to the VSCS
with sliding modes, with known features and advantages.
Until the mid-1980s, the results concerned exclusively the
continuous time type of these systems.With the development
of computer and digital technology, the discrete-time version
of the problem has become more important in the academic
research and industries. Discrete-time sliding mode control
is an attempt to eliminate the problems caused by the
discretization of continuous-time controllers. Great attention
was directed to the existence of sliding mode regime inside
the so-called sliding subspace and finite system state reaching
time to the sliding subspace in this type of systems, because it
is quite different from its continuous counterpart. Although
discrete-time VSCS with sliding mode is characterized by
a phenomenon that the actual so-called sliding control is
applied inside sliding subspace (see, e.g., [1–3]), the chattering
problem was raised. Many different ways were proposed to
reduce it or fully eliminate it [4]. On the other side, system
convergence to the sliding subspace conditions was dealt

with, where analogy to the continuous systems conditions
was massively exploited.

Many of the authors treated special classes of the sys-
tems, most frequently, linear systems, systems in companion
canonical form, and nonlinear systems, with Lyapunov’s
second method as a powerful design and analysis technique
[5, 6]. There are no papers with exponential stability of
sliding subspace, except that some authors speak about expo-
nential changes of, in general case, vector variable, usually
designated, for example, by 𝑆 and used for sliding subspace
definition as 𝑆 = 0; see [7], among others. In [8] authors spoke
about exponential state vector changes on the way towards
zero origin of a ball.

Recently, the integration of fuzzy techniques and conven-
tional control approaches has been an active research focus.
Fuzzy controllers are inherently nonlinear controllers, and
the major advantage of fuzzy control technology over the
traditional control technology is its capability of capturing
and utilizing qualitative human experience and knowledge
in a quantitative manner through the use of fuzzy sets,
fuzzy rules, and fuzzy logic [9]. Based on the differences of
fuzzy control rules, approaches to fuzzy logic control can
be roughly classified into the conventional fuzzy control
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and Takagi-Sugeno (T-S) model based fuzzy control. The
conventional fuzzy control systems are essentially heuristic
and model free and various approaches have been developed
for stability analysis. The key idea of these approaches is
to regard a fuzzy controller as a nonlinear controller and
embed the stability and/or control design problem of fuzzy
control systems into conventional nonlinear system stability
theory [10, 11]. T-S models are based on using a set of fuzzy
rules to describe a global nonlinear system in terms of a
set of local linear models which are smoothly connected by
fuzzy membership functions, and they provide a basis for
development of systematic approaches to stability analysis
and controller design of fuzzy control systems in view of
powerful conventional control theory and techniques [12–14].

Combining fuzzy logic (FL) and sliding mode control
(SMC) theory, so-called fuzzy sliding mode control (FSMC)
has the advantages of both SMC and FLC. The analogy
between a simple and a sliding-mode controller with a
boundary layer is shown in [15]. In [16, 17], for example, fuzzy
controllers are designed to satisfy the sliding conditions, and
in these approaches, the focus is on the design of sliding
surface via the fuzzy logic theory. Some fuzzy control rules
to construct reaching control under the assumption that
equivalent control already exists is used in [18]. A fuzzy-
model-based controller which guarantees the stability of the
closed loop controlled system is suggested in [19], where the
closed-loop system consists of the TS fuzzy model and the
switching type fuzzy-model-based controller. Fuzzy logic has
been also utilized to adapt the parameters of SMC to achieve
a better performance and especially attenuate the chattering
of control input.

The above works are related to continuous systems, and
discrete systems were much less considered in the context
of FSMC. The design of the fuzzy sliding mode control to
meet the requirement of necessary and sufficient reaching
conditions of sliding mode control of discrete nonlinear
system is considered in [20]. A robust controller based on
the sliding mode and the dynamic T-S fuzzy state model for
discrete systems is developed in [21].

One motivation for this work stems from the fact that
discrete-time type of the problem clearly makes place of
microprocessor compensator application in the systems. The
mainmotivation for the paper to be related to the exponential
stability of the FSMC, as a higher quality stability property,
goes from the fact that, in most of papers, only stability of
sliding subspace 𝑆 was considered.

Following Hui and Żak’s [3] conditions for chattering free
sliding mode, in this paper, the exponential stabilizing fuzzy
control algorithm is developed by Lyapunov’s secondmethod
leading to the variable structure system with chattering
free sliding modes, for linear time-invariant second order
discrete-time system. That is, the exponential stability to
be in exact sense related to the sliding subspace as a set,
defined over working point distance from the set, during
its approaching to the set. In the work, essentially, the
objective is to push the system state from an arbitrary initial
position to the sliding subspace 𝑆, in finite time, and with
estimate of approaching velocity defined by an exponential
law. The velocity could not be smaller than the exponential

law defines. Once the system reaches 𝑆 it stays there forever
working in sliding mode regime, which is chattering free, as
well, and with the system state asymptotic approaching to the
zero equilibrium state. The control law is obtained by using
a simple fuzzy controller and the analytical structure of the
proposed controller is derived and used in the proof of the
theorem on exponential stability of sliding subspace.

2. Problem Statement, Notation, and
Some Definitions

Linear time-invariant second order discrete-time system is
considered, which is described by its state equation:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑏𝑢 (𝑘) , (1)

where 𝑘 ∈ 𝑁
0
,𝑁
0
= {0, 1, 2, . . .}, 𝑥(𝑘) is state vector at time 𝑘,

𝑢(𝑘) ∈ 𝑅 is control vector at time 𝑘, 𝐴 and 𝑏 are real constant
matrix and vector of appropriate dimensions, respectively,
and (𝐴, 𝑏) is assumed to be a controllable pair.

For the system (1), define a hyperplane

𝑐𝑥 = 0, (2)

where 𝑐 = (𝑐1 𝑐2) is a constant nonzero row vector. The
hyperplane is the so-called sliding subspace 𝑆 (in further text
only 𝑆). Clearly, for second order system 𝑆 is sliding line,
described by

𝑆 = {𝑥 : 𝑐𝑥 = 0} . (3)

Also, 𝑐𝑏 ̸= 0 is assumed.
The objective of this paper is to develop variable structure

type of state feedback control law:

𝑢 = 𝑢 (𝑥) , (4)

based on fuzzy logic, which guarantees that the state
𝜒(𝑘; 𝑥(0); 𝑢(⋅)) of the system (1) reaches 𝑆 in finite time and
with velocity whose estimate is defined by an exponential law.
Once 𝑆has been reached, the controller is required to keep the
state within it thereafter, which means positive invariance of
𝑆 relative to the systemmotion and what is denoted as sliding
mode regime. During this regime, inside 𝑆, convergence to
zero equilibrium with prescribed mode 𝜆 can be guaranteed
if the 𝑐 has been appropriately chosen. For 𝑐 choice, in general
case, see [22].

More rigorously, 𝑆 is positive invariant relative to the sys-
tem (1)motion if and only if𝑥(0) ∈ 𝑆 implies𝜒(𝑘; 𝑥(0); 𝑢(⋅)) ∈
𝑆, ∀𝑘 ∈ 𝑁

0
.

Furthermore, some other notations and definitions are
given for the reason of their usage in theorems, which are
the main results. Real 𝑛-dimensional state space 𝑅𝑛 is with
Euclidean norm denoted by ‖ ⋅ ‖. For 𝑆,

𝑑 (𝑥, 𝑆) = inf (󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 : 𝑦 ∈ 𝑆) (5)

is the distance between 𝑆 and the point 𝑥 ∈ 𝑅𝑛.

Definition 1. The state 𝑥 = 0 of the system (1), (2) is stable
in 𝑆 (with respect to 𝑆) iff ∀𝜀 ∈ 𝑅

+
, (𝑅
+

=]0, +∞[),
∃𝛿 = 𝛿(𝜀) ∈ 𝑅

+
such that 𝑥(0) ∈ 𝑆 and ‖𝑥(0)‖ < 𝛿(𝜀)
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implies that 𝜒(𝑘; 𝑥(0); 𝑢(⋅)) exists, ‖𝜒(𝑘; 𝑥(0); 𝑢(⋅))‖ < 𝜀, and
𝜒(𝑘; 𝑥(0); 𝑢(⋅)) ∈ 𝑆, ∀𝑘 ≥ 0.

Definition 2. The state 𝑥 = 0 of the system (1), (2) is attractive
(globally) in 𝑆 (with respect to 𝑆) iff∃Δ > 0 (Δ = ∞) such that
𝑥(0) ∈ 𝑆 and ‖𝑥(0)‖ < Δ implies that 𝜒(𝑘; 𝑥(0); 𝑢(⋅)) exists,
lim{‖𝜒(𝑘; 𝑥(0); 𝑢(⋅))‖ : 𝑘 → +∞} = 0, and 𝜒(𝑘; 𝑥(0); 𝑢(⋅)) ∈
𝑆, ∀𝑘 ∈ 𝑁

0
.

Definition 3. The state 𝑥 = 0 of the system (1), (2) is (globally)
asymptotically stable in 𝑆 (with respect to 𝑆) iff it is both stable
and (globally) attractive in 𝑆.

Definition 4. The system (1), (2) is stable in 𝑆 (with respect to
𝑆) iff its state 𝑥 = 0 is globally asymptotically stable in 𝑆.

Definition 5. 𝑆 is exponentially (globally) stable, relative to
the system (1), (2), iff ∃Δ ∈]0, +∞[ (Δ = +∞) and ∃𝛼 ∈

[1, +∞[ and 𝛽 ∈]0, +∞[ such that distance 𝑑[𝑥(0), 𝑆] < Δ

implies that 𝜒(𝑘; 𝑥(0); 𝑢(⋅)) exists and 𝑑[𝜒(𝑘; 𝑥(0); 𝑢(⋅)), 𝑆] ≤
𝛼𝑑[𝑥(0), 𝑆]𝑒

−𝛽𝑘, ∀𝑘 > 0.

Remark 6. Previous definitions are valid and in the general
case, for 𝑥 ∈ 𝑅𝑛.

The problem stated in the objective of the paper can
be reformulated as follows: the objective of the paper is to
develop the control law (4) such that 𝑆 is globally exponentially
stable relative to the system (1), (2) and the system (1),
(4) is stable in the sliding mode regime with appropriately
prescribed modes. Control law (4) will be developed using
fuzzy logic controller.

3. Structure of FLC

The key idea of fuzzy sliding mode control is to integrate
fuzzy control and sliding mode control in such a way that
the advantages of both techniques can be used. One approach
is to design conventional fuzzy control systems, and sliding
mode controller is used to determine best values for param-
eters in fuzzy control rules. Thereby, stability is guaranteed
and robust performance of the closed-loop control systems is
improved. In another approach, the control design is based on
sliding mode techniques while the fuzzy controller is used as
a complementary controller. Also, sliding mode control law
can be directly substituted by a fuzzy controller.

Sliding mode controllers, generally, involve a discon-
tinuous control action which often results in chattering
phenomena due to imperfections in switching devices and
delays. Commonly used methods for chattering elimination
are to replace the relay control by a saturation function
and boundary layer technique. In some applications of fuzzy
sliding mode control, the continuous switching function
of the boundary layer is replaced with equivalent fuzzy
switching function.

In this paper, the fuzzy controller is used in the reaching
phase. The controller should realize nonlinear control law
which will guarantee exponential stability of sliding subspace
𝑆. This section introduces the principal structure of the
proposed controller.

Fuzzy
control
 rules
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Figure 1: The proposed fuzzy logic controller.
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Figure 2: The input membership functions.

The fuzzy logic controller that will be evaluated is one of
the simplest, Figure 1. It employs only two input variables,
𝑥
1
(𝑘) and 𝑥

2
(𝑘). Constant 𝑐

1
and 𝑐
2
are component of vector

𝑐 from (2).

Scaling Factors. The use of normalized domains requires
a scale transformation, which maps the physical values of
the input variables (𝑥

1
and 𝑥

2
in the present study) into

a normalized domain. This is called input normalization.
Furthermore, output denormalization maps the normalized
value of the control output variable (𝑢FN) into its respective
physical domain (𝑢F). The relationships between scaling
factors (𝐺, 𝐺

𝑢
) and the input and output variables are as

follows:

𝑥
1N (𝑘) = 𝐺 ⋅ 𝑐

1
⋅ 𝑥
1
(𝑘) ,

𝑥
2N (𝑘) = 𝐺 ⋅ 𝑐

2
⋅ 𝑥
2
(𝑘) ,

𝑢F (𝑘) = 𝐺𝑢 ⋅ 𝑢FN (𝑘) .

(6)

Fuzzification Module. It converts instantaneous value of a
process state variable into a linguistic value with the help
of the represented fuzzy set. The parametric functional
description of the triangular shaped membership function
is the most economic one and hence it is considered here.
The membership functions of input variables are shown in
Figure 2.

Let 𝑥∗
𝑗
be the one crisp input. Then, the fuzzified version

of 𝑥∗
𝑗
after normalization is its degree of membership in

𝜇
𝑁
(𝑥
∗

𝑗N) and 𝜇𝑃(𝑥
∗

𝑗N), where𝑁 and 𝑃 are the linguistic values
taken by𝑥

𝑗N.Here, symbols𝑁 and𝑃have commonmeanings
negative and positive, respectively.

Assumption 7. The value 𝑥
𝑗N(𝑘) satisfies

𝑥
𝑗N (𝑘) ∈ [−𝐿, 𝐿] , ∀𝑗 = 1, 2, ∀𝑘 ∈ 𝑁

0
. (7)
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Figure 3: The output membership functions.

According to the previous assumption, mathematical
description of the input membership functions is, respec-
tively, given by

𝜇
𝑁
(𝑥
𝑗N) =

−𝑥
𝑗N + 𝐿

2𝐿
, 𝜇
𝑃
(𝑥
𝑗N) =

𝑥
𝑗N + 𝐿

2𝐿
, 𝑗 = 1, 2.

(8)

Remark 8. It is noticed that

𝜇
𝑁
(𝑥
𝑗N) + 𝜇𝑃 (𝑥𝑗N) = 1, 𝑗 = 1, 2. (9)

The membership functions for the normalized output
(𝑢FN) are singleton and are shown in Figure 3. In Figures
2 and 3, 𝐿 and 𝐻 are two positive constants chosen by the
designer, which can be fixed after being determined.

Remark 9. To ensure that Assumption 7 is valid, one must
be careful in choosing the scaling factor 𝐺. In practical
implementation, the maximum and minimum values of
variables 𝑥

1
and 𝑥

2
are known, and the factor 𝐺 is chosen so

that it satisfies the following conditions:

𝐺 ⋅ 𝑐
𝑗
⋅
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨max ≤ 𝐿, ∀𝑗 = 1, 2. (10)

Remark 10. For a second order system, it is common to define
the row vector 𝑐 as 𝑐 = (𝑐1 1).

Fuzzy Control Rules. Using the aforementioned membership
functions, the following control rules are established for the
fuzzy logic control part:

𝑅
1
: If 𝑥
1N is 𝑁 and 𝑥

2N is 𝑁 then 𝑢FN is 𝑁

𝑅
2
: If 𝑥
1N is 𝑁 and 𝑥

2N is 𝑃 then 𝑢FN is 𝑍

𝑅
3
: If 𝑥
1N is 𝑃 and 𝑥

2N is 𝑁 then 𝑢FN is 𝑍

𝑅
4
: If 𝑥
1N is 𝑃 and 𝑥

2N is 𝑃 then 𝑢FN is 𝑃.

(11)

Inference Engine.The basic function of the inference engine is
to compute the overall value of control output variable based
on the individual contribution of each rule in the rule base.
A degree of match for each rule is established by using the
defined membership functions.

Here, the antecedent of each rule is evaluated by using the
triangular norm (𝑡-norm). The 𝑡-norm used in this paper is
intersection (AND function), which is mathematically given
as

𝜇
𝑚
(𝑥
1N, 𝑥2N) = 𝑇 (𝜇(⋅) (𝑥1N) , 𝜇(⋅) (𝑥2N)) , (⋅) = 𝑁, 𝑃.

(12)

Then, based on this degree of match, the clipped fuzzy
set representing the value of the control output variable is
determined via Mamdani inference method. Thus, outcomes
of fuzzy rules are

𝜇
𝐶𝐿𝑚

(𝑢FN) = min (𝜇
𝑚
, 𝜇
𝑈𝑚

(𝑢FN)) ,

𝑈
𝑚
∈ {𝑁,𝑍, 𝑃) , 𝑚 = 1, 2, 3, 4.

(13)

Finally, the clipped values for the control output of each rule,
previously denoted by 𝜇

𝐶𝐿𝑚
, 𝑚 = 1, 2, 3, 4, are aggregated,

thus forming the value of the overall control output.
From the rule base it may be noted that the control

rules 𝑅
2
and 𝑅

3
generate two memberships 𝜇

2
and 𝜇

3
which

have the same output fuzzy set defined by 𝜇
𝑍
(𝑢FN). For

such situations a combined membership is obtained by using
the triangular conorm (𝑡-conorm, or 𝑠-norm). The 𝑡-conorm
considered for this study is Lukasiewicz OR 𝑡-conorm:

𝜇
𝑇𝐶

2,3
= min (1, 𝜇

2
+ 𝜇
3
) . (14)

Defuzzification Module. Defuzzification module converts the
set of modified control output values into a crisp value.
Defuzzification is done using the well-known COS (center
of sum) method. According to this method and taking into
account the previously analyzed structure of the proposed
fuzzy controller and the fact that the output fuzzy sets are
singleton, the crisp value of control output is given by

𝑢FN =
𝜇
1
⋅ (−𝐻) + 𝜇

𝑇𝐶

2,3
⋅ 0 + 𝜇

4
⋅ 𝐻

𝜇
1
+ 𝜇
𝑇𝐶

2,3
+ 𝜇
4

. (15)

Since for Lukasiewicz OR 𝑡-conorm it is valid that

𝜇
𝑇𝐶

2,3
= 𝜇
2
+ 𝜇
3
≤ 1, (16)

(15) can be written as

𝑢FN =
𝜇
1
⋅ (−𝐻) + 𝜇2 ⋅ 0 + 𝜇3 ⋅ 0 + 𝜇4 ⋅ 𝐻

𝜇
1
+ 𝜇
2
+ 𝜇
3
+ 𝜇
4

. (17)

To obtain analytical expression of the proposed con-
troller, all combinations of input variables must be consid-
ered. If Assumption 7 holds, there are eight input combina-
tions (IC’s), as shown in Figure 4. The control rules 𝑅

1
–𝑅
4
in
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Figure 4: The regions of the fuzzy controller input values.

Table 1: Outcomes of fuzzy rules in IC regions.

IC Fuzzy rules
𝑅
1

𝑅
2

𝑅
3

𝑅
4

IC1 𝜇
𝑁
(𝑥1N) 𝜇

𝑁
(𝑥1N) 𝜇

𝑁
(𝑥2N) 𝜇

𝑃
(𝑥2N)

IC2 𝜇
𝑁
(𝑥1N) 𝜇

𝑁
(𝑥1N) 𝜇

𝑁
(𝑥2N) 𝜇

𝑃
(𝑥2N)

IC3 𝜇
𝑁
(𝑥2N) 𝜇

𝑁
(𝑥1N) 𝜇

𝑁
(𝑥2N) 𝜇

𝑃
(𝑥1N)

IC4 𝜇
𝑁
(𝑥2N) 𝜇

𝑁
(𝑥1N) 𝜇

𝑁
(𝑥2N) 𝜇

𝑃
(𝑥1N)

IC5 𝜇
𝑁
(𝑥2N) 𝜇

𝑃
(𝑥2N) 𝜇

𝑃
(𝑥1N) 𝜇

𝑃
(𝑥1N)

IC6 𝜇
𝑁
(𝑥2N) 𝜇

𝑃
(𝑥2N) 𝜇

𝑃
(𝑥1N) 𝜇

𝑃
(𝑥1N)

IC7 𝜇
𝑁
(𝑥1N) 𝜇

𝑃
(𝑥2N) 𝜇

𝑃
(𝑥1N) 𝜇

𝑃
(𝑥2N)

IC8 𝜇
𝑁
(𝑥1N) 𝜇

𝑃
(𝑥2N) 𝜇

𝑃
(𝑥1N) 𝜇

𝑃
(𝑥2N)

(11) are used to evaluate appropriate control law in each IC
region, as in [23]. The results of evaluating the fuzzy control
rules 𝑅

1
–𝑅
4
are given in Table 1.

Applying (17) to the results from Table 1 and taking into
account (6) and (8), analytical structure of the controller is
easily obtained, as follows:

𝑢F (𝑘) =

{{{{

{{{{

{

𝐻𝐺𝐺
𝑢
(𝑐
1
𝑥
1
(𝑘) + 𝑐

2
𝑥
2
(𝑘))

2 (2𝐿 − 𝐺𝑐
1

󵄨󵄨󵄨󵄨𝑥1 (𝑘)
󵄨󵄨󵄨󵄨)

, IC1, IC2, IC5, IC6

𝐻𝐺𝐺
𝑢
(𝑐
1
𝑥
1 (𝑘) + 𝑐2𝑥2 (𝑘))

2 (2𝐿 − 𝐺𝑐
2

󵄨󵄨󵄨󵄨𝑥2 (𝑘)
󵄨󵄨󵄨󵄨)

, IC3, IC4, IC7, IC8.

(18)

Defining function 𝑔(𝑥
1
, 𝑥
2
),

𝑔 (𝑥
1
, 𝑥
2
) =

{{{{

{{{{

{

𝐻𝐺𝐺
𝑢

2 (2𝐿 − 𝐺𝑐
1

󵄨󵄨󵄨󵄨𝑥1 (𝑘)
󵄨󵄨󵄨󵄨)
, IC1, IC2, IC5, IC6

𝐻𝐺𝐺
𝑢

2 (2𝐿 − 𝐺𝑐
2

󵄨󵄨󵄨󵄨𝑥2 (𝑘)
󵄨󵄨󵄨󵄨)
, IC3, IC4, IC7, IC8.

(19)

(18) can be written as

𝑢F (𝑘) = 𝑔 (𝑥1, 𝑥2) 𝑐𝑥 (𝑘) . (20)

It is obvious that the function 𝑔(𝑥
1
, 𝑥
2
) is a nonlinear

function, with the following minimal and maximal values:

𝑔min =
𝐻𝐺𝐺
𝑢

4𝐿
, 𝑔max =

𝐻𝐺𝐺
𝑢

2𝐿
, (21)

and 𝑔(𝑥
1
, 𝑥
2
) > 0, ∀𝑥

1
, 𝑥
2
∈ 𝑅. One should not forget

that parameter 𝐺 must satisfy Assumption 7. The range of
the value of function 𝑔(𝑥

1
, 𝑥
2
) is determined by the choice

of parameters 𝐻, 𝐺, 𝐿, and 𝐺
𝑢
. Without loss of generality, it

can be assumed that 𝐿 = 𝐻 = 1, and they are commonly
normalized domain boundaries. One example of function
𝑔(𝑥
1
, 𝑥
2
) is shown in Figure 5.

4. Main Results

In this section, the solution of the problem stated in Section 2
is provided by the following theorems.
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Figure 5: Example of function 𝑔(𝑥
1
, 𝑥
2
) for 𝐿 = 𝐻 = 1,𝐺 = 𝐺𝑢 = 1,

and 𝑐1 = 𝑐2 = 1.

Theorem 11. Applying

𝑢
𝑜𝑠
(𝑘) = −

1

𝑐𝑏
𝑐𝐴𝑥 (𝑘) , (22)

the so-called one step control, to the system (1), outside 𝑆, is
necessary and sufficient for 𝑥(𝑘) to reach the 𝑆 in one sampling
period (one step).

Proof.
Necessity. Let us assume that𝑥(𝑘) of the system (1) is arbitrary,
outside of sliding subspace, 𝑥(𝑘) ∉ 𝑆, and a control pushes
it to the sliding subspace in one step (sampling period). It
follows that 𝑥(𝑘 + 1) ∈ 𝑆. That fact, description of 𝑆, and the
system (1) state equation lead to

𝑐𝐴𝑥 (𝑘) + 𝑐𝑏𝑢 (𝑘) = 0, (23)

and finally

𝑢 (𝑘) = 𝑢
os
(𝑘) = −

1

𝑐𝑏
𝑐𝐴𝑥 (𝑘) . (24)

Sufficiency. When the system state is outside of sliding
subspace, 𝑥(𝑘) ∉ 𝑆, the action of one step control is assumed.
State equation of the system (1) and expression of 𝑆 give

𝑐𝑥 (𝑘 + 1) = 𝑐𝐴𝑥 (𝑘) + 𝑐𝑏𝑢
os
(𝑘) = 𝑐𝐴𝑥 (𝑘) − 𝑐𝑏

1

𝑐𝑏
𝑐𝐴𝑥 (𝑘)

= 0,

(25)

which means that 𝑥(𝑘 + 1) ∈ 𝑆.

Remark 12. One step control can be encountered in VSCS
papers, in different contexts; see, for example, [3, 4, 13] among
others.

Theorem 13. Applying

𝑢
𝑠𝑙
(𝑘) = −

1

𝑐𝑏
𝑐𝐴𝑥 (𝑘) , (26)

the actual so-called sliding control, to the system (1), inside 𝑆, is
necessary and sufficient for 𝑆 to be positive invariant relative to
the system (1) solution 𝜒(𝑘; 𝑥(0); 𝑢𝑠𝑙(𝑘)).

Proof.
Necessity. Positive invariance of 𝑆 relative to the system (1)
solution 𝜒(𝑘; 𝑥(0); 𝑢sl(𝑘)) is assumed. So, every time 𝑥(𝑘) ∈ 𝑆,
𝑥(𝑘 + 1) ∈ 𝑆 as well. From the previous sentence, description
of 𝑆 and state equation of the system (1) follows that

𝑐𝐴𝑥 (𝑘) + 𝑐𝑏𝑢
sl
(𝑘) = 0, (27)

and further

𝑢
sl
(𝑘) = −

1

𝑐𝑏
𝑐𝐴𝑥 (𝑘) . (28)

Sufficiency. Let us assume, relative to system (1), 𝑥(𝑘) ∈ 𝑆 and
control (26) is applied. Then, state equation of the system (1)
and expression for 𝑆 give

𝑐𝑥 (𝑘 + 1) = 𝑐𝐴𝑥 (𝑘) + 𝑐𝑏𝑢
sl
(𝑘) = 𝑐𝐴𝑥 (𝑘) − 𝑐𝑏

1

𝑐𝑏
𝑐𝐴𝑥 (𝑘)

= 0,

(29)

which implies that 𝑥(𝑘 + 1) ∈ 𝑆.

Remark 14. One step control and sliding control formally are
identical.

The application of actual sliding control 𝑢sl(𝑘) (hence-
forth referred to as 𝑢

sl
(𝑘)) to the system (1) inside 𝑆 is

the phenomenon of discrete-time VSCS with sliding modes.
Using this fact and the intention for developing of the variable
structure type of the controller for the system (1), the control
(4) components could be more precisely specified as

𝑢 [𝑥 (𝑘)] =

{{{{

{{{{

{

𝑢
+
[𝑥 (𝑘)] , 𝑐𝑥 (𝑘) > 0

𝑢
sl
[𝑥 (𝑘)] , 𝑐𝑥 (𝑘) = 0

𝑢
−
[𝑥 (𝑘)] , 𝑐𝑥 (𝑘) < 0.

(30)

Contrary to the 𝑢sl(𝑘), which is applied to the system
(1) inside 𝑆, let us refer to the control which is applied to
the system (1) outside of 𝑆 as the outer control, 𝑢ot(𝑘). The
following theorems are basic for solving the stated problem
by Lyapunov’s second method.

Theorem15. Let the system (1), (30) be considered. 𝑆 is globally
exponentially stable relative to the system (1), (30) if there exists
scalar function V and numbers 𝜂

𝑖
∈]0, +∞[, 𝑖 = 1, 2, 3 such that

(a) V(𝑥) ∈ 𝐶(𝑅2),
(b) 𝜂
1
𝑑(𝑥, 𝑆) ≤ V(𝑥) ≤ 𝜂

2
𝑑(𝑥, 𝑆), ∀𝑥 ∈ (𝑅2),

(c) ΔV(𝑥) ≤ −𝜂
3
𝑑(𝑥, 𝑆), ∀𝑥 ∈ (𝑅2),

where ΔV(𝑥) is the first forward finite difference of V(𝑥).

Proof. The proof starts with the assumption that sufficient
conditions are fulfilled, while the exponential stability of 𝑆
should be shown.
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Condition (b) of the theorem implies

−𝑑 [𝑥 (𝑘) , 𝑆] ≤ 𝜂
−1

2
V [𝑥 (𝑘)] , (31)

which with (c) give

ΔV [𝑥 (𝑘)] ≤ −𝜂−1
2
𝜂
3
V [𝑥 (𝑘)] . (32)

The last inequality, after solving, gives at first

V [𝑥 (𝑘)] ≤ V [𝑥 (0)] 𝑒−𝛽𝑘, 𝛽 = ln
𝜂
2

𝜂
2
− 𝜂
3

,

𝜂
2
> 𝜂
3
, ∀𝑥 (0) ∈ 𝑅

2
,

(33)

and further by means of condition (a),

𝑑 [𝑥 (𝑘) , 𝑆] ≤ 𝛼𝑑 [𝑥 (0) , 𝑆] 𝑒
−𝛽𝑘

, 𝛼 = 𝜂
−1

1
𝜂
2
. (34)

From (a), it is clear that 𝜂
1
≤ 𝜂
2
which yields 𝛼 ∈ [1, +∞[,

and above relationship between 𝜂
2
and 𝜂
3
guarantee that 𝛽 ∈

]0, +∞[. In that way, it is shown that all stated by Definition 5
is fulfilled; that is, the exponential stability of 𝑆 is proved.

Remark 16. Previous theorem is valid and in the general case
for 𝑥 ∈ 𝑅𝑛.

Scalar function V defined by

V (𝑥) = (sign 𝑐𝑥) 𝑐𝑥 (35)

as Lyapunov’s function candidate and outer control law

𝑢
ot
(𝑘) = −

1

𝑐𝑏
[𝑐𝐴𝑥 (𝑘) − 𝐹 (𝑘) sign 𝑐𝑥 (𝑘)]

𝐹 (𝑘) ∈ 𝑅, 𝐹 (𝑘) > 0, ∀𝑘 ∈ 𝑁
0

(36)

are chosen relative to the system (1). Evidently, such sort
of 𝑢ot together with 𝑢

sl which is unique and already stated
represents the control of (30) type. The following theorems
are basic for solving of the stated problem by Lyapunov’s
second method.

Theorem 17. 𝑆 is globally exponentially stable relative to the
system (1) if the following control is applied:

𝑢 (𝑘) =

{{{{{

{{{{{

{

𝑢
𝑜𝑡
(𝑘) = −

1

𝑐𝑏
[𝑐𝐴𝑥 (𝑘) − 𝐹 (𝑘) sign 𝑐𝑥 (𝑘)]

𝐹 (𝑘) = |𝑐𝑥 (𝑘)| −
󵄨󵄨󵄨󵄨𝑢F (𝑘)

󵄨󵄨󵄨󵄨 ,

𝑢
𝑠𝑙
(𝑘) = −

1

𝑐𝑏
[𝑐𝐴𝑥 (𝑘)]

(37)

with 𝑢
𝐹
(𝑘) defined by (19), (20) and with 𝑔(𝑥

1
, 𝑥
2
) < 1.

Proof. Previously introduced Lyapunov’s function candidate
fulfills evidently the conditions (a) of Theorem 15. Let us
show that conditions (b) and (c) are fulfilled. Related to the
condition (b) and taking into account that |𝑐𝑥| = 𝜁𝑑, where
𝜁 is a constant and 𝑑 is distance between 𝑥 and hyperplane
𝑐𝑥 = 0, it follows that

V (𝑥) = (sign 𝑐𝑥) 𝑐𝑥 = |𝑐𝑥| = 𝜁𝑑, (38)

and further

𝜂
1
𝑑 (𝑥, 𝑆) ≤ V (𝑥) ≤ 𝜂

2
𝑑 (𝑥, 𝑆) ,

𝜂
1
∈ ]0, +∞[ ≤ 𝜁, 𝜂

2
∈ ]0, +∞[ ≥ 𝜁.

(39)

State of system (1) at time 𝑘 is adopted to be out of 𝑆.Then

ΔV [𝑥 (𝑘)] = V [𝑥 (𝑘 + 1)] − V [𝑥 (𝑘)]

= 𝐹 (𝑘)
󵄨󵄨󵄨󵄨sign 𝑐𝑥 (𝑘)

󵄨󵄨󵄨󵄨 − |𝑐𝑥 (𝑘)|

= (|𝑐𝑥 (𝑘)| −
󵄨󵄨󵄨󵄨𝑢F (𝑘)

󵄨󵄨󵄨󵄨) ⋅
󵄨󵄨󵄨󵄨sign 𝑐𝑥 (𝑘)

󵄨󵄨󵄨󵄨 − |𝑐𝑥 (𝑘)|

= (1 − 𝑔 (𝑥
1
, 𝑥
2
)) |𝑐𝑥 (𝑘)| − |𝑐𝑥 (𝑘)|

= −𝑔 (𝑥
1
, 𝑥
2
) |𝑐𝑥 (𝑘)| = −𝑔 (𝑥1, 𝑥2) 𝜁𝑑 [𝑥 (𝑘) , 𝑆]

≤ −𝑔min𝜁𝑑 [𝑥 (𝑘) , 𝑆] = −𝜂3𝑑 [𝑥 (𝑘) , 𝑆]

(40)

in which way the proof is finished.

According toTheorem 17,

ΔV [𝑥 (𝑘)] = −𝑔 (𝑥1, 𝑥2) V [𝑥 (𝑘)] (41)

with 𝑔(𝑥
1
, 𝑥
2
) > 0 and 𝑔(𝑥

1
, 𝑥
2
) < 1, which leads to the

following equation:

V [𝑥 (𝑘 + 1)] = (1 − 𝑔 (𝑥1, 𝑥2)) V [𝑥 (𝑘)] = 𝜇 (𝑥1, 𝑥2) V [𝑥 (𝑘)] ,

𝜇 (𝑥
1
, 𝑥
2
) ∈ ]0, 1[ .

(42)

From nonlinearity of the control low it is obvious that
control gain is high when the system state is far from
sliding surfaces and as small as possible in neighborhood
of the sliding subspace. Also, it may be noted that V[𝑥(𝑘)]
increments, from step to step, that is, absolute value of |𝑐𝑥|,
are getting smaller over time.

Function V[𝑥(𝑘)] is a decreasing function along motion
of the system, but it will never be zero. Obviously, the system
(1) state never gets into 𝑆. Moreover, from (42), it is obvious
that as the working point approaches the 𝑆, the value of the
function 𝜇(𝑥

1
, 𝑥
2
) tends to its maximum value

𝜇max = 𝜇 (𝑥1, 𝑥2)max = 1 − 𝑔 (𝑥1, 𝑥2)min . (43)

Let 𝑂
𝜎
(𝑆) be 𝜎-neighborhood of 𝑆 and V

𝑚𝜎
= min{V(𝑥) :

𝑥 is such that 𝑑(𝑥, 𝑆) = 𝜎}. To be guaranteed for 𝑥(𝑘) to
enter 𝑂

𝜎
(𝑆), settling time

𝑘
𝑠
= [0, log

𝜇max

V
𝑚𝜎

V (0)
] + 1 (44)

is necessary to elapse, where 𝑘
𝑠
= [0, log

𝜇max
(V
𝑚𝜎
/V(0))] is

the biggest integer from the denoted segment. After the state
reached 𝑂

𝜎
(𝑆), one step control, 𝑢os, should be applied to the

system (1) in which way finite reaching time in 𝑆 for 𝑥(𝑘) is
realized. The previous facts are summarized by the following
theorem.
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Theorem 18. 𝑆 is globally exponentially stable relative to the
system (1) with finite reaching time in 𝑆, if the following control
is applied:

𝑢 (𝑘) =

{{{{{{{{{

{{{{{{{{{

{

𝑢
𝑜𝑡
(𝑘) = −

1

𝑐𝑏
[𝑐𝐴𝑥 (𝑘) − 𝐹 (𝑘) sign 𝑐𝑥 (𝑘)] ,

𝐹 (𝑘) = |𝑐𝑥 (𝑘)| −
󵄨󵄨󵄨󵄨𝑢F (𝑘)

󵄨󵄨󵄨󵄨 , ∀𝑘 = 0, . . . , 𝑘
𝑠
− 1

𝑢
𝑜𝑡
(𝑘
𝑠
) = 𝑢
𝑜𝑠
(𝑘
𝑠
) = −

1

𝑐𝑏
[𝑐𝐴𝑥 (𝑘)]

𝑢
𝑠𝑙
(𝑘) =−

1

𝑐𝑏
[𝑐𝐴𝑥 (𝑘)] , ∀𝑘 = 𝑘

𝑠
+1, 𝑘
𝑠
+ 2, . . .

(45)

Proof. Compared to the proof of Theorem 17, here the proof
is the same.

5. Simulation and Experimental Results

The proposed algorithm was tested experimentally on a DC
servo motor with the gear and load, whose linear mathemat-
ical model (without considering the major nonlinear effects:
the speed dependent friction, dead zone, and backlash) is as
follows:

𝐽 ̈𝜃 (𝑡) + 𝐵 ̇𝜃 (𝑡) =
𝜂
𝑔
𝜂
𝑚
𝑘
𝑡
𝐾
𝑔

𝑅
𝑚

𝑈 (𝑡) , (46)

where 𝜃(𝑡) is the angular position of the load shaft, 𝐽 is the
total moment of inertia reflecting to the output shaft, 𝐵 is
the viscous friction coefficient, and 𝑈(𝑡) is the motor input
voltage. 𝑅

𝑚
, 𝑘
𝑡
, 𝜂
𝑚
, 𝜂
𝑔
, and 𝐾

𝑔
are, respectively, the motor

armature resistance, the motor torque constant, the motor
efficiency, the gearbox efficiency, and the total gear ratio.

In the previous model, it is assumed that the motor
inductance is much smaller than the resistance, so it is
ignored, as the case with used servo motor is. The experi-
ments were performed with the Quanser rotary servo motor,
SRV02. This model is equipped with the optical encoder
and tachometer, for motor position and speed measuring,
respectively. Q8-USB data acquisition board for real-time
data acquisition and control was used, with Matlab/Simulink
software and QUARC@, real-time control. The parameters
numerical values are as follows: 𝐽 = 0.021 (kgm2), 𝐵 =

0.084 (Nms/rad), 𝑅
𝑚
= 2.6 (Ω), 𝑘

𝑡
= 0.0077 (Nm/A), 𝜂

𝑚
=

0.69, 𝜂
𝑔
= 0.9, and𝐾

𝑔
= 70.

Choosing 𝑥
1
= 𝜃 and 𝑥

2
= ̇𝜃 as state variables and 𝑢 =

𝑈(𝑡) as control, at first, the continuous time state equationwas
obtained, and finally after applying an accurate discretization
procedure with sampling period 𝑇 = 0.01 (s), the discrete-
time state equation of the system was obtained as follows:

𝑥 (𝑘 + 1) = [
1 0.08266

0 0.6746
] 𝑥 (𝑘) + [

0.002653

0.4979
] 𝑢 (𝑘) . (47)

The above mathematical model of real DC servo motor
was derived as adequate discrete-time state equation. In the
way the system matrix parameters 𝐴 and 𝑏 are available.
Control algorithm from Theorem 18 is used to control the
motor. For simulation and experiment, parameter 𝜎 = 0.005
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2
.

is adopted which defines very narrow 𝜎-neighborhood of
sliding subspace 𝑆. Also, sampling time 𝑇 = 0.01 (s) and
vector 𝑐 = (80 1), determined so as the system is stable in
sliding mode regime, are adopted which gives 𝜁 = ‖𝑐‖ =

80.006. Fuzzy logic controller is defined by 𝐿 = 𝐻 = 1,
𝐺 = 0.02, and 𝐺

𝑢
= 40, which implies 𝑔min = 0.2 and

𝑔max = 0.4. Taking into account estimate relationships, on
one hand, between 𝜁 and 𝜂

1
and 𝜂

2
, and, on another hand,

between 𝜁, 𝑔min, and 𝜂3, parameters 𝜂
1
= 30, 𝜂

2
= 90, and

𝜂
3
= 15 are chosen, giving parameters of exponential low

𝛼 = 3 and 𝛽 = 0.1823. For initial state 𝑥(0) = (0.36 1)
𝑇,

after calculation, V
𝑚𝜎

= 0.4, V(0) = 29.8, and settling time
𝑘
𝑠
= 20 are obtained.
The parallel simulation and experimental results are

shown, in Figures 6–11 related to the algorithm from
Theorem 18. Figures 6 and 7 show the system state variables.
The control signal that drives the state onto the sliding
subspace is shown in Figure 9. The sliding function and
distance are shown in Figures 8 and 10, respectively. From
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the figures, it could be seen that the system state from initial
position approaches the sliding subspace 𝑆 but not slower
than the exponential law defined by the parameters 𝛼 and
𝛽. At instant 𝑘

𝑠
= 20 (𝑡 = 0.2 sec) the state for the first

time enters the 𝜎-neighborhood of 𝑆. If it continues in the
same way, it will never reach 𝑆. To reach it, one step control
is applied at 𝑘

𝑠
driving state in one step to 𝑆, so the character

of the system approaching 𝑆 changes at 𝑘
𝑠
. At 𝑘

𝑠
+ 1 = 21

the system state is in 𝑆 staying in it thereafter forever. Inside
𝑆 the system is stable too, so the system state asymptotically
approaches the zero state. Simulation results fully confirm the
theoretical results and meet the expectations ofTheorems 15,
17, and 18.

The experimental results have demonstrated that the
proposed control scheme is valid and effective for the real
applications. It is shown that there is no chattering in sliding
mode. However, in practice, errors could not be caused
only by computation but also by measurement accuracy
(resolution, sensitivity), noise existence, nonlinearity, and
inadequate description of the real system by linear model as
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well. All this could cause not entering the 𝜎-neighborhood of
sliding subspace exactly in step 𝑘

𝑠
than at some later instant,

which is the case here in the paper experimental application
example. After entering the 𝜎-neighborhood of 𝑆 at 𝑘

𝑠
or

not and applying one step control at 𝑘
𝑠
, a little bit of sliding

subspace missing occurs. Here, that missing is a little bit
more visible at the beginning of reaching the sliding subspace,
but very shortly, after the like transition period expires, it
is again invisible like in the mathematical case simulation.
This is illustrated by Figure 11, which is an enlarged segment
of Figure 10 for 𝑡 between 0.15 and 0.5 (sec). Evasion of the
occurrence is achieved by appropriate choice of the sliding
subspace and 𝜎-neighborhood parameters through vector 𝑐
and parameter 𝜎, as well as the state space area, where the
linear model is very adequate.

It has already been pointed out that exponential stability
is a higher quality stability property compared to “common”
stability in Lyapunov’s sense (in this case it refers to global
asymptotic stability of a set-sliding subspace 𝑆). For that, it is
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natural that the sufficient conditions of Theorem 15 are more
rigorous compared to the conditions of “common” stability.
The conditions of Theorem 15 are indirectly applicable in
the control of real-world processes through control law of
Theorems 17 and 18, for these control laws were derived from
the conditions of Theorem 15. Real experiment with control
of DC servomotor is control of real-world process. In the way
it is confirmed that the stability conditions ofTheorem 15 are
applicable in the control processes in practice.

To resume, in both ideal simulation case and in experi-
mental application, the proposed new developed algorithm,
in the paper, guarantees exponential stability of 𝑆, and no
chattering in sliding mode regime. Despite the existence of
all upper stated nonidealities, in the case of real application,
by the proper parameters choice, the system motion is such
that distance of working point from 𝑆 is always under pro-
posed exponential envelope, as it could be seen in provided
experiment.

6. Conclusion

In the paper, discrete-time type of VSCS with sliding modes
is considered, related to the linear time-invariant plant of
second order.The fuzzy exponential stabilizing state feedback
control algorithm, so with prescribed approaching to the
sliding subspace velocity estimate, is developed strictly by
Lyapunov’s second method and with chattering free sliding
mode. Also, application of the proposed ideal cases algo-
rithm, in practice, is considered and discussed through the
experimental example. It shows that experiment is quite
consistent with mathematical ideal cases.
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[8] G. Golo and C. Milosavljević, “Robust discrete-time chattering
free slidingmode control,” Systems&Control Letters, vol. 41, no.
1, pp. 19–28, 2000.

[9] H. Ying, “Theory and application of a novel fuzzy PID controller
using a simplified Takagi-Sugeno rule scheme,” Information
Sciences, vol. 123, no. 3, pp. 281–293, 2000.

[10] G. Feng, “A survey on analysis and design of model-based fuzzy
control systems,” IEEE Transactions on Fuzzy Systems, vol. 14,
no. 5, pp. 676–697, 2006.

[11] H. O.Wang, K. Tanaka, andM. F. Griffin, “An approach to fuzzy
control of nonlinear systems: Stability and design issues,” IEEE
Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 14–23, 1996.

[12] H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “Stable and
robust fuzzy control for uncertain nonlinear systems,” IEEE
Transactions on Systems, Man, and Cybernetics Part A: Systems
and Humans, vol. 30, no. 6, pp. 825–840, 2000.

[13] R.-E. Precup, M. L. Tomescu, M.-B. Rdac, E. M. Petriu, S. Preitl,
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