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In this paper, the finite-time stability criteria are extended to nonlinear nonhomogeneous perturbed fractional-order
systems including multiple time-varying delays. The sufficient conditions of a stability for the fractional systems with
multiple time delays are obtained by using the generalized and classical Gronwall’s approach. A numerical example is

presented to illustrate the validity of the obtained result.
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Introduction

N recent years, fractional differential equations are

extensively studied [1,2]. The existence of solutions of
the fractional differential equations is studied in [1]. The
existence and uniqueness of solutions of the linear
fractional differential equations for the fractional time-
delay systems is considered in [2]. Time delays are present
in various engineering systems, such as long transmission
lines, hydraulic, pneumatic, and electric networks, chemical
processes, etc. Time-delay systems are described by
differential-difference equations. This type of equations
belongs to the class of functional differential equations [3].

Stability is an important issue in the system and control
theory. Stability of time-delay systems has been
investigated over the last few decades [4]. Stability analysis
of time-delay systems is more complicated than stability
analysis of the systems without time delays because time-
delay systems include the derivative of the time-delayed
state. The existence of pure time delay, regardless if it is
present in the state or/and control, may cause an
undesirable system transient response, or generally, even an
instability [5].

In the stability analysis of time-delay systems, two
approaches have been adopted [5]. One approach involves
the stability conditions that do not include information on
the delay, and in the other approach, the stability conditions
take into account information on the delay. The first
approach is called the delay-independent criteria and
generally provides simple algebraic conditions. Because
there is no upper limit to time delay, the delay-independent
criteria are often regarded as conservative in practice,
where the unbounded delays are not realistic.

The largest number of stability conditions for time-delay
systems deal with linear models. Both necessary and
sufficient conditions have been developed for some special

cases, which are mainly delay-dependent. In many papers,
the stability criteria are presented by using the Lyapunov’s
second method and the concept of matrix measure [6,7].

Various concepts of stability, such as finite-time
stability, practical stability, robust stability, internal
stability, external stability, have been studied for fractional-
order systems in [8-18]. Finite-time and practical stability is
considered in the papers [8-14]. Robust stability results for
the linear fractional systems are presented in [15].
Matignon [16] studied the internal stability and external
stability (bounded input-bounded output (BIBO) stability)
of linear fractional systems. Stability analysis of the linear
fractional systems with multiple delays is discussed in [17].
Analytical stability bound for the fractional delayed
systems by using the Lambert function is investigated by
Chen and Moore [18].

The stability of the fractional-order systems cannot be
analyzed by using the algebraic criteria that are developed
for stability analysis of integer-order systems, such as the
Hurwitz criterion, since the fractional systems do not have
characteristic polynomial. Instead, the fractional systems
have pseudopolynomial with a rational power-multivalued
function. The Lyapunov methods have been developed for
the analysis of stability of the linear and nonlinear integer
systems and have been extended to the analysis of stability
of the fractional systems.

On the other side, there are only few papers that consider
the non-Lyapunov stability (finite-time and practical
stability) of the fractional systems. Recently, for the first
time, the finite-time stability of the fractional delay systems
is reported in [19]. Using the recently obtained generalized
Gronwall inequality [20], the stability test procedure for the
linear nonhomogeneous fractional systems with a constant
time delay is suggested in the paper [21].

Besides, there are also many systems with multiple time
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delays in the practical applications. In that way, it is more
necessary to study systems with multiple time delays than
those with a single delay. Recently, some works are
devoted to finite-time stability issues for the fractional-
order neural networks with delays [22,23].

This paper presents the system stability from the non-
Lyapunov point of view. The finite-time stability for the
class of nonlinear nonhomogeneous perturbed fractional
systems including multiple time-varying delays is proposed
using generalized Gronwall inequality and then by using
classical Bellman-Gronwall inequality [10].

Fractional Calculus Definitions

The idea of a fractional calculus has been known since
the development of a classical calculus [24].

The fractional calculus deals with differential and
integral operators of non-integer order. The fractional
differentiation and integration is an extension and
generalization of the conventional integer-order
differentiation and integration. Over the last few decades,
the applications of fractional calculus had a considerable
progress [25]. For example, wide and fruitful applications
can be found in rheology, viscoelasticity, acoustics, optics,
chemical and statistical physics, robotics, control theory,
electrical and mechanical engineering, bioengineering, etc.
[26-29]. The main reason for the success of fractional
calculus applications is that these new fractional-order
models are often more accurate than integer-order ones, i.e.
there are more degrees of freedom in the fractional-order
model than in the corresponding classical one [30]. All
fractional operators consider the entire history of the
process being considered, thus being able to model the
nonlocal and distributed effects often encountered in natural
and technical phenomena [28-31].

The fractional derivative and integral may be defined in
many ways [25-28]. The definitions that are mainly used
are the Riemann-Liouville definition, the Griinwald—
Letnikov definition, and the Caputo definition.

Definition 1. Let f(-)eC[a,b] be a continuous

function over the finite interval [a,b]. The Riemann-—

Liouville fractional derivative of the order «aeC,
Rea>0, n—1<Rea <n, neN, is defined as [25]:

RL 1a _ 1 d " f(s)
D“”f([)_r(n—a)(dfj !(t_s)““ds’ (1)
te[a,b],

where ¢ and ¢ are the limits of the operator, I'(-) is the

Euler’s gamma function which is defined by the Euler
integral of the second kind:

F(a):je_’t“_ldt, aeC, Rea>0. )
0

Gamma function is a generalization of the factorial for non-
integer arguments. The reduction formula holds:

I(a+l)=al'(a), a€C, Rea>0. 3)

For a special case ae[O,l[, the Riemann-Liouville
fractional derivative is given by:

RL & _ 1 dt f(s)
D“”f(t)_r(n—a)dt.[(t_s)a ds, t>a. (4

Definition 2. Let f(-)eC[a,b]. The Riemann—

Liouville fractional integral of the order « € C, Rea >0,
is defined as [25]:
g, f(1)= "D (0)
t
5
:ﬁj(t—s)a_l f(s)ds, telab]. ©)

a

Definition 3. The
derivative of a-th order (¢ € R") and fractional integral

Griinwald-Letnikov  fractional

of |a| -th order (¢ € R™) are given by [26]:

i
0, (0= fimet ST -, @

h—>0 p* 4 > l
i=

where [] is a floor operator, and (j presents a

generalized binomial coefficient defined by:

[?j:% acR, ieN,. @)

Definition 4. Let f(-) belong to the set of all n-th order

differentiable functions on the finite interval [a,b]:

ri)ecanl={ s e whlf, g

neN.
The Caputo fractional derivative of the order «, for

aeC, a¢N,, Rea20, n-1<Rea<n, nelN, is
defined as [26]:

PN B S A O
Da,lf(t)_F(n_a)J.(t_S)a—nH dS’ te[a,b], (9)
n dY
6= ] 6,
and for a € N, it is given by [26]:
CDZ’tf(t):(%j £(), tefab].  (10)

Previous Results Related to the Fractional-Order
Time-Delay Systems

A continuous time-invariant linear homogeneous
fractional system including time-varying delays in state can
be presented by a linear homogeneous fractional differential
equation in a state space:
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“Df  x(1) = Apx(0)+ D Ax(t=7, (1), 121,
i=1

(1)
aelo,
with the associated function of the initial state:
x(0)=w, (1), telty=tout ], (12)

where 7, ;(¢), i=1,2,...,n, are time-varying delays in
state that satisfy:

0<z.,;(t)<7.p, Vie{l,2,...n}, Vtel,

13
J =[t, ta+T[. 1

A linear nonhomogeneous fractional system including
time-varying delays in state and input (control) can be
described by a linear nonhomogeneous fractional state-
space equation:

¢ Dy, x(7)= Apx(1)+ iAiX(t_Tx,i (t))

+Bou(t)+ Y Bu(t-7,, (1)), (14)
j=1
t>t,, ae ]0,1[,

with the associated function of the initial state:

x(6)=w, (1), te[tg=touto ], (15)
and the associated function of the initial control:
xX(6)=w, (), telty=tu-10 | (16)

where 7,,(¢), i=12,...,n, and 7, (1), j=12,...,m,

are time-varying delays in state and control, respectively,
which satisfy:

O0<z,; (t) <t,y, Vi€e {1,2,...,11}, Vteld,
0<7,;()<t00, Vje{l,2,...m}, Vied, (17)
J =[t, 1 +T[.
A nonlinear nonhomogeneous perturbed fractional
system including time-varying delays in state and control

can be given by a nonlinear nonhomogeneous fractional
state equation:

CDE x(1) = (At My )x (1)

n

+;<Ai +AAi)X<t_TW' (t))

m

+Bu(t)+ Y Bu(t-7,, () (18)

Zfl- (x(t =T, (t))),

+1, (x(t))+ 2

1>, ael0l],

n

with the associated functions of the initial state (15) and
initial control (16), and with the time-varying delays

satisfying (17). In the equations, x(-)eR" is the state
vector, u() e R™ is the given continuous vector function
of input (control), 4, eR"*", i=0,1,2,...,n, are the
system matrices, the matrices A4; e R"*", i=0,1,2,...,n,
present parameter perturbations of the system, B; e R"*",

Jj=0,1,2,...,m, are the input (control) matrices, 7, € R is
the initial time of observation of the system behavior, and
T is a positive number. Vector functions f,(-)e R" and

f,()eR", i=12,..,n, present the nonlinear
perturbations in respect to x(¢) and x(t—rx,i(t)),

i=1,2,...,n, respectively. It is assumed that:

I ()] e )
Hfi (x(t —Ty (t)))” <¢q Hx(t —Tyi (t))

Vi e{l,2,...,n}, Vt>t,,

, Vizxt,,

) (19)

where ¢; e R*, Vie{0,1,2,...,n}, are known real positive
constants. In this paper, the norm ||()|| denotes the
Euclidean vector norm ||x(t)|| = "x(t)"2 = (xT (t)x(t))l/2 or
(44

Omax (4) induced by the Euclidean vector norm, where

the Euclidean matrix norm ||A||=||A||2 :ﬂﬁx

Amax () and o, (-) are the largest eigenvalue and the

largest singular value of matrix () , respectively.

The dynamic system behavior is observed over the time
interval J =[to,to +T [, where the quantity 7 may be
either a real positive number or the symbol oo, so finite-

time stability and practical stability may be considered
simultaneously. System trajectories and control actions are
bounded by the time-invariant sets that are defined a priori

in a given problem. These sets are: S; — the set of all initial
states of the system, S, — the set of all allowable states of

the system, S, —the set of all initial control actions,

S,

. —the set of all allowable control actions,

0,€,04,0, eR*, &S<e¢. These sets are assumed to be

bounded, connected, and open. In this paper, the set S, is
defined as S, = {x(t):”x(t)" < p}, peR*, [8-12].

The initial functions (15) and (16) and their norms can
be given in general form as:

W (’)EC([% _Tx,M’to:I: R"),

vl =, max v (]

(20)
‘I’u () € C(|:t0 _Tu,M’ tO]’ Rn)’

v, (1)

lwilo =  max |
Yulle tetg=7, 01210 |

B
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where C([to—rx’M,to],R”) and C([to—ru’M,to},R”)
denote the Banach spaces of all continuous real vector

[fo —Toum» to] and

[to -7, M,to}, respectively, mapping these intervals into

functions on time intervals

R" with the topology of the uniform convergence. Here, it
is assumed that the smoothness condition is present so that
there is no difficulty with the questions of existence,
uniqueness, and continuity of solutions of systems with
respect to the initial conditions.

The definitions of the finite-time stability will be given
for homogeneous system (11) and for nonhomogeneous
system (14) or (18) with the associated initial functions.

Definition 5. The fractional delayed system given by a
linear homogeneous state equation (11) satisfying the initial
condition (12) is a finite-time stable with respect to

{5,£,t0,J}, 0 < ¢, if and only if:

lwle <o @1
implies:

[x(t)|<e. vies. (22)
Definition 6. The fractional delayed system given by a
nonhomogeneous linear (14) or nonlinear (18) state
equation satisfying initial conditions (15) and (16) is a
finite-time stable with respect to {5,&,ay,a,.t.J},

0 < ¢, ifand only if:

llle <6 lwalle <@ (23)
and
fu(t)|<a,. vted, (24)
imply:
[x(t)|<e vie. (25)

The finite-time stability analysis of nonlinear
nonhomogeneous perturbed fractional systems with a
constant time delay is suggested in [32]. The non-Lyapunov
(finite-time) stability and stabilization of nonlinear
nonhomogeneous perturbed fractional systems with time-
varying delay is proposed in [33] for the system:

Dy, x(t) = (4 + 24 ) x(1)
+<A1 +AA1)x(t—rx (t))

+Byu(1)+1, (x(t),x(t -7, (t))),

t>1,, ael0,l],

(26)

with the initial function (12) and vector function f ()
satisfying the assumption:

Jto (x(0).x (2= (1))
<cox(O)+e |x(t=7. ()], ezt

where ¢,,c; € R" are known real positive constants.

Theorem 1. [33] The nonlinear nonhomogeneous
fractional delayed system (26), satisfying the initial

condition (12) and assumption (27), is a finite-time stable
with respect to {5, E,a,,ty,J }, 0 <eg, if the following
condition is satisfied:

[1+%}Ea (ﬂz (t_to)a)

+7u0(t_t0)a Si
[(a+l) &

(28)

, Vteld,

where:
Hs :’uAOCo +'uA101’
:UA,-C, = Omax (Ai)+o_max (AAi)+Ci9 i= 0’1’ (29)

Yu0 :%bo’ by :”BO":GmaX (BO)’

and E (-) is the Mittag-Leffler function defined by:

0

k
z

E = E - 0, C. 30

«(?) kzol“(ka+1)’ @ ze (30)

The finite-time stability of nonlinear nonhomogeneous
fractional systems including multiple constant time delays
in state is presented in [34] for the state equation:

“Df , x() = 4yx (1) + Zn:A[x(t—rX,i)+ Byu(1)
i1

+f0(x(t))+ifi(x(t—rx’i)), 31)

t>1, ae]O,l[, 0<7,,<7,,<-<7,, =A,

with the associated function of the initial state:
x(t)=w,(t), te[ty—A 1], (32)

and vector functions f l.(~), i=0,1,2,...,n, satisfying the

assumptions (19).

Theorem 2. [34] The nonlinear nonhomogeneous
fractional delayed system (31), satisfying the initial
condition (32) and assumptions (19), is a finite-time stable

with respect to {5,£,,.1,J}, S<g, if the following
condition is satisfied:

where:

n
Hs = E /uA,c,-’
i=0

/uAl-c, = Omax (Ai ) * Omax (AAI' ) ¢, (34)
i=0,1,2,...,n,

Yu0 :%b()a by :"Bo": O max (Bo)~
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Main Results

As a main contribution of this paper, the finite-time
stability results are extended to the class of nonlinear
nonhomogeneous perturbed fractional system with multiple
time-varying delays in state and multiple time varying
delays in control.

The sufficient conditions that enable system trajectories
to stay within the a priori given sets for this class of
systems are obtained. First, the conditions are obtained by
using generalized Gronwall inequality, and then by using
classical Bellman—Gronwall inequality.

Theorem 3. The nonlinear nonhomogeneous perturbed
fractional delayed system (18), satisfying initial conditions
(15) and (16) and assumptions (19), is a finite-time stable

with respect to {8, &,a,a,.1,,J}, &<e, if the following
condition is satisfied:

{H%}% (ﬂz (t_to)a)

+7uo(t_to)a Yos Tun (35)
F(a+1) F(a+1)
F(a+1) o
where:
Hs =Z/’IA,C,-’
i=0
;UA,C,- = Omax (Ai)+ O'max (AAi)+Ci7
i=0,1,2,...,n, (36)
Yuo =%b0, Yoz = Zb Vus, =%Z
J=1 J=1
b =|B|= omex (B)), j=0.0,2,...m.

Proof. In accordance with the property of the fractional
order & €10,1[, one can obtain a solution in form of the

equivalent Volterra integral equation:

x(f)="(t0)+1~(10,)X
(A +0dy)x(s)
+i(Ai + AA,-)X(S —Tx,i(s))
; — (37

+ (X(S))+Z

Applying the norm on equation (37) and using the triangle
inequality for vectors, an estimate of the solution X(t) is
obtained:

e < (o )]+ 5

Apx(s)+ Adyx(s)

+Zn: Aix(s =Ty (s)

¢ (38)
+Bou( ) ds,

+Zfi (x(s—z' (s)

Now, applying the norm on equation (18) and taking into
account the assumptions (19), it follows that:

D x(0)] < (ol + o) (1)

(s e = )]

oot (et | A, (=2 ()] + 1B lu (0] 39)

ZIIB (e

+¢ X H t—z’x’l

()] +<olx(0)

“ +---+c, “x(t ~ Ty (t))”

Taking into account "A," o-max( 4), the inequality (39)

can be written as:
(0] (G (40)+ s () 0 5 1)
(G (1) O (A ) e (=20, (1)

+~--+(O' An)-l—O' AAn)+cn) ( Vn

max ( max (

eallu(Oh+ 205, (e~ )}

Cna
|z,

H (40)

and using /1, . = Oy (Al-)+0'max (AAi)+c,-, i=0,12,
o and b, =[], j=0,1,2,....m
|0 x(0)] < s, IO+ e, (2 =700 ()]
bty [x(r-7,, () (1)
b fu(o)+ Y b |u (-7, ()]
j=1
Using the inequality:
bleals, oo B
Vie {1,2 ..... n},

the inequality (41) can be presented in the following
manner:



MISLJEN, M., LAZAREVIC, M.: NON-LYAPUNOV STABILITY OF THE FRACTIONAL-ORDER TIME-VARYING DELAY SYSTEMS 13

[0t x5, s )]
S Jue=7., ()} 43)
j=1
t>1, —jH'x,M R
and then:

O DA R nC]
by Ju (o) + Zb “

t> 1.

“ (44)

After combining (44) and (38), it follows:

<l + 0

. ﬂz(_ sup X(f')“+||‘l’x||c] (45)
«[l(e=s)" o] ds.

o +b, "u(t)||+zm;bj ”u(l‘—Tu,j (t))”

Expanding (45) leads to:

Ol<lvle+ 5 ﬂr

s v ds

t

+;J‘ (t—s)(l_1 Us  sup
t

ol | (et TG R

+r(1a)_[ (t=5)"" jz_:‘b-/ Ju(r==., ()]s

Taking into account ”u(t)" <a,, and using 7, ,, instead of

z,.;(t), it follows:

aelwle f1 e
<2 oo
.. j.(t—s)a_l sup x(t')”ds
I (05) . reft-r4.1]
f 7)
bo“u el
"rmj‘ (t S) ds

(=) Ju(e -0 s 5,
j=1

Integrating (47) leads to the following relations:

—
—_
QH
~—
~ e
—_—

< ) (t_to )a
ol 10725, 2T

(48)
1 b a-1 L
o | ‘(mu,M_s) ||u(t)||ds;bj

tofru,M
a-1 =
)l @lldsD .
Jj=1

=Ty m

+ﬁ J ‘(HFT”,M —S

fy

(2] < w. . (1 +%J
+ r?lz)!‘(f‘s)a_l

+—
I(a+1)

+$ [RGEDE

to=Tym

x(t’ )”ds

sup
relt-r, 1]

(49)

m
ds"\yu "c Zb«/
j=1
m
dsa, b,

Z*T”’M

+$ [ Je=s

||x<r>||snwxu{1+ E
#z H
te[t r

ubO (t_t()) + 1 u,M aozbj
a

F(a+1) T(a)

Jj=1

m

1 (t_Tu,M 1 )a
+F(0() a aquj,

j=1

(2] < Jw. . (1 +%J

/Uz ﬂt Sal

6‘CubO(l(_tO) 20 N
b.
F(a+1) +F(a+1)z i

j=1

t tO z-uM
b..
a+1 Z

x(t’ )”ds

(51

sup

reft-r,4.1]
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Introducing a nondecreasing function g(t) in the following

t) =||‘|’x"c {14"

and using generalized Gronwall inequality [20], leads to:

manner:

ps (1=1)"
I(a+1) ] 2)

ko<, s () <a0m (m00)). o
and then to:
x(e)] <6 1+% B, (1 (1=10)")

b ) <
+au O(t 0!0 uM ij (54)

F(a+l I(a+1)

(t_to uM
a+1 Zb

Finally, if the condition of Theorem 3 given by a relation
(35) is used, it follows that:

[x(t)|<e vies. (55)
O

Based on the previous result, the following special cases
can be obtained.

Theorem 4. The [linear nonhomogeneous fractional
delayed system (14) that satisfies the initial conditions (15)
and (16) is a finite-time stable with respect to

{6,6,a9,0,.Jy}, & <e, ifthe following condition holds:

u?

oy, 1% 7,.0t%
1 Y max E ta u0
(+F(a+l)] o (s )+F(a+1)

a
a
Yoz Tum Yus (t ~TuM )

<£ (56
Fa+) T(av) 5 O9
VteJO:[O,T[,
where:
O-Zmax = Zo-max (Al ) (57)
i=0

Theorem 5. The [linear nonhomogeneous fractional
delayed system (14), where u(t—ru’j (t)) =0, Vje
{1,2,...,m}, satisfying the initial condition (15), is a finite-
time stable with respect to {é,g,au,Jo}, o<g, if the
following condition is satisfied:

0 t“ a Vuota 2
14 —Zmax” g t _fu0” <2
[+F(a+1)J o (o5 )+F(a+1) s* (58)
Vteld,.

Remark 1. If there are no delays in input (control) in the

system (18), u(t-7, ;(t))=0, Vje{l,2,. ..,

is a single delay in the state, then conditions given by
Theorem 1 [33] can be obtained.
Remark 2. If there are no delays in input (control) in the

system (18), u(t -7, (t)) =0, Vje{l,2,...,m}, and there
are no parameter perturbations of the system, A4, =0,

vie{0,1,2,...,

m}, and there

n}, and all delays are constant, 7, ,(¢)=

r,;=const, Vie{l,2,...n}, 7r,;(t)=r, = const,
Vj €{1,2,...,m}, then conditions given by Theorem 2 [34]

can be obtained.

Similarly, by wusing classical Bellman—Gronwall
inequality (Appendix B — Lemma B.3), the following result
can be obtained.

Theorem 6. The nonlinear nonhomogeneous perturbed
fractional delayed system (18), satisfying initial conditions
(15) and (16) and assumptions (19), is a finite-time stable
with respect to {5,&,aq,,.4,J}, &<e, if the following

condition is satisfied:

a ﬂz(t_tﬁ)a a
{1+#z(f‘fo) Je T(a+) +7’uo(t_to)

I(a+1) I(a+1)

a
Yos Tum | Vux ("to _Tu,M)

<&
ras) Ty o O
Vteld,
where:
Hs =ZﬂAic,.a
i=0
,uAl-cI- = O'max (Ai)+o-max (AAi)+ci’
i=0,1,2,...,n, (60)
7::02%”70» 702=%;bp VuZ_%Zl
by =|B,]|= Omex (B;): 7 =0.1,2,...,m

Proof. The proof immediately follows from the proof of
Theorem 3 and applying the Bellman—Gronwall inequality
(Lemma B.3). For the sake of brevity, the proof of Theorem
6 is omitted here.

Also, from Theorem 3, the finite-time stability condition
for classical (integer-order) system can be obtained.

Theorem 7. The nonlinear nonhomogeneous perturbed
integer-order (a =1) delayed system (18), satisfying the
initial conditions (15) and (16) and assumptions (19), is a
finite-time stable with respect to {J,&,a4.a,.t),J},

o < ¢, if the following condition is satisfied:

(1+ s (t—to))e”Z(t_t“) + 70 (t—1,)

‘[u,M)SEJ (61)

+ %oz Tum TVus (t_to - 5

vieJ, T(2)=1, E()=e".

Remark 3. If (¢ =1) and there is a single constant delay in
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state and a single constant delay in control, and taking into
account condition (61), one can obtain the same condition
which is related to integer-order time-delay systems (see [35]).

The proposed results can be applied to any fractional-
order or integer-order time-delay model. An example of
time-delay model can be found in [36, pp. 261-262].
Recently, the finite-time stability for a class of fractional-
order delayed neural networks as well as for the fractional-
order complex-valued memristor based neural networks
including time-varying delays was considered and
presented in [37,38], respectively.

Numerical Example

A nonlinear nonhomogeneous perturbed fractional
system with multiple time-varying delays in state and
control is given by the state equation:

DT x (1) = (A +Ady )x (1)
(A + A4 )x(t =7, (1))
( ))+Bou(t)
2 (1)) (62)

+( Ay + A4y )x (1 -

+Bu ( (f))+32 (

+f0 1(" )
( ( sz(’)))

t>0,

where:
[-02 0 _[-0,02 0,01
A = -0,1 03] Ado = -0,01 0,03 |’

-0,2 0,1 -0,05 0,01
Al = 5 AA] = B
0 0,02 -0,03

Lo[e3 0 o040
2712005 02 270 o002 ©3

0 -3 2 0 0 0
BO = b B1 = E BZ = >
1 0 0 1 0 -1

7oy =0,01s, 7, =0,03s,

u,

to :0,

o =0,02, ¢ =0,05 «c,=0,04.

Initial conditions are:

x(1)=w, (t)=[0,04 0,05]',
telty—t -t |=[-0,01;0],

(64)
u(t)=w,(1)=[0,02 o],

telty—t, 0t |=[-0.03;0],

The task is to analyze the finite-time stability with respect
) {5:0,1; £=500; & =0,2; o, =2; J, =[0,3] s}. From

the initial conditions and given state equation, it follows:

vl = gmax | Jw. (0)] = v
=(0,04* +0, 052)1/2 =0,064<5=0,1,
(65)
hole =, max e ()] = v
= (0,022 +02)/ =0,02<a,=0,2,
O max (AO ) = ﬂ’ir/lix (AOTAO) =0,3257,
O (M) = 215, (A4 Ady ) = 0,0362,
O (A1) = M2 (47 4,) =0,2288, .
O max (AAI ) = ﬂ’ir/lix (AAIAAI) 0,04
Ormax (42) = Ml (43 4,) = 0,307,
O max (AAZ) ﬂ’i{lix (AA;FAAQ) 0,2146
Haer = Omax (49)+ Ornax (Ady) + ¢y =0,3819,
luAlcl = Omax (Al )+ O max (AAl )+cl =0,3188,
(67)
'qucz = Omax (AZ) O max (AA2)+02 —0 5617
Hs =Hyep T Hae, T Hape, = 1,2624,
by = ”BOH = Omax BO) =3, 7w :%bo =60,
%y

bl = ||Bl|| = Omax (Bl ) = 2’ Yoz =
by :"B2":O-max (B)=L 7 :Fu(b1+bz)=60.
Using the condition of Theorem 3, given by (35), it holds:

1,2624 7.2
I'(3/2)

607 6x0.032 60(.~0.03)"" _500

r(32) T1(3/2) r/z2) o1

JEW (12624 7%
(69)

From (69), the estimated time of the finite-time stability is:
T, ~4s. (70)

The system (62) with the initial conditions (64) is a finite-
time stable over the time interval J, =[0,3] s

Theorem 6 can also be used to check the finite-time
stability of a given system. Using the condition of Theorem
6, given by (59), it holds:

] 26247, 12
[1 1,2624 T, ]e 2, 607

r(3/2) r(32) o
6x0,03"% _ 60(1, ~0,03)" _ 500
r'(3/2) r/z2) o1
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From (71), the estimated time of the finite-time stability is:
T, = 20,1s. (72)

This result also shows that the system (62) with the initial
conditions (64) is a finite-time stable over the time interval
Jo=[0,3] s.

All these conditions are only sufficient. If the obtained
estimated time is equal or larger than the given time, it
always means that the given system will be stable over the
given time interval. On the other hand, if the obtained
estimated time is smaller than the given time, it does not
mean that the given system will not be stable over the given
time interval. In the previous example, both results give
estimated times that are larger than the given time.

Conclusion

This paper deals with the non-Lyapunov stability of the
fractional-order time-delay systems. The main features of
the finite-time and practical stability are extended to the
class of nonlinear nonhomogeneous perturbed fractional
systems including multiple time-varying delays in state and
multiple time-varying delays in input (control). Sufficient
conditions of stability are obtained for the given class of
systems using generalized Gronwall inequality. The
illustrative example is given to support the obtained
analytical result.

Appendix A — Notations
A — system matrix
B — input (control) matrix
E, (-) — Mittag-Leffler function
f(-) —nonlinear perturbation

— time

~

— input (control) vector

u(’)
x()

— state vector

I'(-) - Euler’s gamma function
A(-) - eigenvalue of matrix (-)
> —summation

o(:) - singular value of matrix (-)
7,(-) —time delay in input (control)
7,(-) —time delay in state

v, () — function of initial input (control)

v, (+) — function of initial state

N — set of all positive integers

N, —setofall nonnegative integers

R — set of all real numbers

R* - set of all positive real numbers

R~  —set of all negative real numbers
R, —setof all nonnegative real numbers
C — set of all complex numbers

R"  — n-dimensional real vector space

R™™ —set of all real nxm matrices
max — maximum
sup  — supremum

Re(-) —real part of (-)

— set

] —closed interval
[ — left-closed, right-open interval

— open interval

— maps to
— for all
— such that
X — multiplication

|()| — absolute value of ()

{

[

[

]

€ — belongs to
%

v

||()|| — Euclidean vector or matrix norm of ()

(-)T — transpose of matrix (-)
(] — end of proof

Appendix B
Lemma B.1. (Generalized Gronwall inequality [20])
Suppose x(-):R —>R and a(-):R - R are nonnegative

and integrable in every closed and bounded subinterval of
[0,7] and g(-):[0,7[ - R is nonnegative, nondecreasing,
continuous, and bounded function such that:
t
x(1)< a(t)+g(t)j(t_s)“‘l x(s)ds, a@>0. (B.1)

0

Then for ¢ [O,T[ :

x(t)<a()+ j i%(my“ a(s)ds. (B.2)

n=1

Lemma B.2. [20] Under the hypothesis of Lemma B.1,
if a(r) is nondecreasing, then:

x(t)<a(t)E, (g(t) (a)e). (B.3)

Lemma B.3. (the Bellman—Gronwall inequality) If
x(-):R, >R, is bounded continuous function on each

closed interval [0,] and satisfies:
t
x(1)< a(t)+'[g(s)x(s)ds (B4)
0

for nondecreasing function a(~) and nonnegative

integrable function g(o), then:

x(t)Sa(t)exp ~lAg(s)ds . (B.5)
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Neljapunovska stabilnost sistema necelog reda sa vremenski
promenljivim kaSnjenjima

U ovom radu, kriterijumi stabilnosti na konaénom vremenskom intervalu su proSireni na nelinearne nehomogene
perturbovane sisteme necelobrojnog reda koji sadrZe viSestruka vremenski promenljiva kas$njenja. Dobijeni su dovoljni
uslovi stabilnosti za sisteme necelog reda sa viSestrukim vremenskim kasnjenjima koriS¢enjem generalizovanog i
Kklasi¢nog Gronwallovog pristupa. Numeri¢ki primer je dat u cilju ilustracije znacaja dobijenog rezultata.

Kljucne reci: kontinualni sistem, nelinearni sistem, vremensko kas$njenje, stabilnost sistema, neljapunovska stabilnost,
stabilnost na kona¢nom vremenskom intervalu, sistem necelobrojnog reda.

Stabilité de non Lyapunov de ’ordre fractionnel a délai
temporel variable

Dans ce papier les critéres de stabilité sur I’intervalle temporelle finie sont élargis sur les systtmes non linéaires, non
homogénes et perturbés de ’ordre fractionnel qui comportent multiples délais variables temporellement . On a obtenu les
conditions suffisantes de la stabilité pour les systémes de I’ordre fractionnel 2 multiple délai temporel par utilisation de
I’approche classique et généralisée de Gronwall. L’exemple numérique a été donné dans le but d’illustrer ’importance
du résultat obtenu.

Mots clés: systéme continu, systtme non linéaire, syst¢tme a délai, délai temporel, stabilité de systéme, stabilité de non
Lyapunov, stabilité sur intervalle temporelle finie, systéme de I’ordre fractionnel.

CTaduibHOCTH cUCTeMbl He-JIAIMMyHOBa YACTUYHOT 0 MOPSAKA €
HECTAIMOHAPHBIMHU BPEeMEHHBIMU 3a/IePKKAMHU

B oroii craTtbe, KpUTepHH CTA0WJIBLHOCTH B KOHEYHOM BpEeMEeHH IPOAJIEHbI [0 HeJHHEHHbIX HeOoJHOPOIHBIX
BO3MYIIEHHBIX CHCTEM YACTHYHOIO IOPSAKA, KOTOpPbIe COJepP:KAT HECKOJIbKO M3MEHSIIOIUNXCS BO BPeMeHM 3ajJepiKeK.
IlonydeHsl J0CTATOYHBIE YCJIOBHSI CTA0MIBLHOCTH AJISl CHCTEM YACTHYHOIO NOPSAKA € HECKOJbKHMH BpPeMeHHBIMH
3a/1ePiKKaAMH, ¢ UCNO0JIb30BAHBIMM 0000IEHHBIMH M KiIaccHueckuMu noaxogamu I'ponBaiia (Gronwall). YncsieHHbii
NpUMep NPUBEAEH JJ151 TOr0, YTO0bI NPOULTIOCTPHUPOBATH 3HAYCHHE MOJTY4YEHHBIX Pe3y/IbTaTOB.

Kniouesvie cnosa: HenmpepbIBHAsE CHCTEMA, HeJIMHelHas cucremMa, cucremMa ¢ 3a1]ep;m<017[, BpPEMEHHAsl 3aJ€pPiKKa,
CTadMIILHOCTH CHCTEMBI, CTa0MIBHOCTH He-ﬂﬂl’lyHOBa, CTa0UJIbHOCTH B KOHEYHOM BpeMeHH, cucTeMa l]p06HFO nopajaka.



