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Introduction 
N recent years, fractional differential equations are 
extensively studied [1,2]. The existence of solutions of 

the fractional differential equations is studied in [1]. The 
existence and uniqueness of solutions of the linear 
fractional differential equations for the fractional time-
delay systems is considered in [2]. Time delays are present 
in various engineering systems, such as long transmission 
lines, hydraulic, pneumatic, and electric networks, chemical 
processes, etc. Time-delay systems are described by 
differential-difference equations. This type of equations 
belongs to the class of functional differential equations [3]. 

Stability is an important issue in the system and control 
theory. Stability of time-delay systems has been 
investigated over the last few decades [4]. Stability analysis 
of time-delay systems is more complicated than stability 
analysis of the systems without time delays because time-
delay systems include the derivative of the time-delayed 
state. The existence of pure time delay, regardless if it is 
present in the state or/and control, may cause an 
undesirable system transient response, or generally, even an 
instability [5]. 

In the stability analysis of time-delay systems, two 
approaches have been adopted [5]. One approach involves 
the stability conditions that do not include information on 
the delay, and in the other approach, the stability conditions 
take into account information on the delay. The first 
approach is called the delay-independent criteria and 
generally provides simple algebraic conditions. Because 
there is no upper limit to time delay, the delay-independent 
criteria are often regarded as conservative in practice, 
where the unbounded delays are not realistic. 

The largest number of stability conditions for time-delay 
systems deal with linear models. Both necessary and 
sufficient conditions have been developed for some special 

cases, which are mainly delay-dependent. In many papers, 
the stability criteria are presented by using the Lyapunov’s 
second method and the concept of matrix measure [6,7]. 

Various concepts of stability, such as finite-time 
stability, practical stability, robust stability, internal 
stability, external stability, have been studied for fractional-
order systems in [8-18]. Finite-time and practical stability is 
considered in the papers [8-14]. Robust stability results for 
the linear fractional systems are presented in [15]. 
Matignon [16] studied the internal stability and external 
stability (bounded input-bounded output (BIBO) stability) 
of linear fractional systems. Stability analysis of the linear 
fractional systems with multiple delays is discussed in [17]. 
Analytical stability bound for the fractional delayed 
systems by using the Lambert function is investigated by 
Chen and Moore [18]. 

The stability of the fractional-order systems cannot be 
analyzed by using the algebraic criteria that are developed 
for stability analysis of integer-order systems, such as the 
Hurwitz criterion, since the fractional systems do not have 
characteristic polynomial. Instead, the fractional systems 
have pseudopolynomial with a rational power-multivalued 
function. The Lyapunov methods have been developed for 
the analysis of stability of the linear and nonlinear integer 
systems and have been extended to the analysis of stability 
of the fractional systems. 

On the other side, there are only few papers that consider 
the non-Lyapunov stability (finite-time and practical 
stability) of the fractional systems. Recently, for the first 
time, the finite-time stability of the fractional delay systems 
is reported in [19]. Using the recently obtained generalized 
Gronwall inequality [20], the stability test procedure for the 
linear nonhomogeneous fractional systems with a constant 
time delay is suggested in the paper [21]. 

Besides, there are also many systems with multiple time 
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delays in the practical applications. In that way, it is more 
necessary to study systems with multiple time delays than 
those with a single delay. Recently, some works are 
devoted to finite-time stability issues for the fractional-
order neural networks with delays [22,23]. 

This paper presents the system stability from the non-
Lyapunov point of view. The finite-time stability for the 
class of nonlinear nonhomogeneous perturbed fractional 
systems including multiple time-varying delays is proposed 
using generalized Gronwall inequality and then by using 
classical Bellman-Gronwall inequality [10]. 

Fractional Calculus Definitions  
The idea of a fractional calculus has been known since 

the development of a classical calculus [24].  
The fractional calculus deals with differential and 

integral operators of non-integer order. The fractional 
differentiation and integration is an extension and 
generalization of the conventional integer-order 
differentiation and integration. Over the last few decades, 
the applications of fractional calculus had a considerable 
progress [25]. For example, wide and fruitful applications 
can be found in rheology, viscoelasticity, acoustics, optics, 
chemical and statistical physics, robotics, control theory, 
electrical and mechanical engineering, bioengineering, etc. 
[26–29]. The main reason for the success of fractional 
calculus applications is that these new fractional-order 
models are often more accurate than integer-order ones, i.e. 
there are more degrees of freedom in the fractional-order 
model than in the corresponding classical one [30]. All 
fractional operators consider the entire history of the 
process being considered, thus being able to model the 
nonlocal and distributed effects often encountered in natural 
and technical phenomena [28–31]. 

The fractional derivative and integral may be defined in 
many ways [25–28]. The definitions that are mainly used 
are the Riemann–Liouville definition, the Grünwald–
Letnikov definition, and the Caputo definition. 

Definition 1. Let ( ) [ ],f a b⋅ ∈C  be a continuous 

function over the finite interval [ ], .a b  The Riemann–
Liouville fractional derivative of the order ,α ∈  
Re 0,α ≥  1 Re ,n nα− ≤ <  ,n∈  is defined as [25]: 
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where a  and t  are the limits of the operator, ( )Γ ⋅  is the 
Euler’s gamma function which is defined by the Euler 
integral of the second kind: 
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Gamma function is a generalization of the factorial for non-
integer arguments. The reduction formula holds: 

 ( ) ( )1 , , Re 0.α α α α αΓ + = Γ ∈ >  (3) 

For a special case [ [0,1 ,α ∈  the Riemann–Liouville 
fractional derivative is given by: 
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Definition 2. Let ( ) [ ], .f a b⋅ ∈C  The Riemann–
Liouville fractional integral of the order ,α ∈  Re 0,α >  
is defined as [25]: 
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Definition 3. The Grünwald–Letnikov fractional 
derivative of -thα  order ( )α +∈  and fractional integral 

of -thα order ( )α −∈  are given by [26]: 
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where [ ]⋅  is a floor operator, and 
⋅⎛ ⎞
⎜ ⎟⋅⎝ ⎠

 presents a 

generalized binomial coefficient defined by: 
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Definition 4. Let ( )f ⋅  belong to the set of all n-th order 

differentiable functions on the finite interval [ ], :a b  
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The Caputo fractional derivative of the order ,α  for 
,α ∈  0 ,α ∉  Re 0,α ≥  1 Re ,n nα− ≤ <  ,n∈  is 

defined as [26]: 
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and for 0 ,α ∈  it is given by [26]: 
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Previous Results Related to the Fractional-Order 
Time-Delay Systems 

A continuous time-invariant linear homogeneous 
fractional system including time-varying delays in state can 
be presented by a linear homogeneous fractional differential 
equation in a state space: 
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with the associated function of the initial state: 

 ( ) ( ) 0 , 0, , ,x x Mt t t t tτ⎡ ⎤= ∈ −⎣ ⎦x ψ  (12) 

where ( ), ,x i tτ  1,2, , ,i n= …  are time-varying delays in 
state that satisfy: 
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A linear nonhomogeneous fractional system including 
time-varying delays in state and input (control) can be 
described by a linear nonhomogeneous fractional state-
space equation: 
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with the associated function of the initial state: 

 ( ) ( ) 0 , 0, , ,x x Mt t t t tτ⎡ ⎤= ∈ −⎣ ⎦x ψ  (15) 

and the associated function of the initial control: 

 ( ) ( ) 0 , 0, , ,u u Mt t t t tτ⎡ ⎤= ∈ −⎣ ⎦x ψ  (16) 

where ( ), ,x i tτ  1,2, , ,i n= …  and ( ), ,u j tτ  1, 2, , ,j m= …  
are time-varying delays in state and control, respectively, 
which satisfy: 
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A nonlinear nonhomogeneous perturbed fractional 
system including time-varying delays in state and control 
can be given by a nonlinear nonhomogeneous fractional 
state equation: 
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with the associated functions of the initial state (15) and 
initial control (16), and with the time-varying delays 

satisfying (17). In the equations, ( ) n⋅ ∈x  is the state 

vector, ( ) m⋅ ∈u  is the given continuous vector function 

of input (control), ,n n
iA ×∈  0,1, 2, , ,i n= …  are the 

system matrices, the matrices ,n n
iA ×Δ ∈  0,1, 2, , ,i n= …  

present parameter perturbations of the system, ,n m
jB ×∈  

0,1,2, , ,j m= …  are the input (control) matrices, 0t ∈  is 
the initial time of observation of the system behavior, and 
T  is a positive number. Vector functions ( )0

n⋅ ∈f  and 

( ) ,n
i ⋅ ∈f  1,2, , ,i n= …  present the nonlinear 

perturbations in respect to ( )tx  and ( )( ), ,x it tτ−x  
1,2, , ,i n= …  respectively. It is assumed that: 
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where ,ic +∈  { }0,1,2, , ,i n∀ ∈ …  are known real positive 

constants. In this paper, the norm ( )⋅  denotes the 

Euclidean vector norm ( ) ( ) ( ) ( )( )1 2T
2

t t t t= =x x x x  or 

the Euclidean matrix norm ( )1 2 T
max2A A A Aλ= = =  

( )max Aσ  induced by the Euclidean vector norm, where 

( )maxλ ⋅  and ( )maxσ ⋅  are the largest eigenvalue and the 

largest singular value of matrix ( ) ,⋅  respectively. 
The dynamic system behavior is observed over the time 

interval [ [0 0, ,J t t T= +  where the quantity T  may be 
either a real positive number or the symbol ,∞  so finite-
time stability and practical stability may be considered 
simultaneously. System trajectories and control actions are 
bounded by the time-invariant sets that are defined a priori 
in a given problem. These sets are: δ −S the set of all initial 
states of the system, ε −S the set of all allowable states of 
the system, 

0α −S the set of all initial control actions, 

uα −S the set of all allowable control actions, 

0, , , ,uδ ε α α +∈  .δ ε<  These sets are assumed to be 
bounded, connected, and open. In this paper, the set ρS  is 

defined as ( ) ( ){ }: ,t tρ ρ= <x xS  ,ρ +∈  [8–12]. 

The initial functions (15) and (16) and their norms can 
be given in general form as: 
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where ( )0 , 0, , n
x Mt tτ⎡ ⎤−⎣ ⎦C  and ( )0 , 0, , n

u Mt tτ⎡ ⎤−⎣ ⎦C  

denote the Banach spaces of all continuous real vector 
functions on time intervals 0 , 0,x Mt tτ⎡ ⎤−⎣ ⎦  and 

0 , 0, ,u Mt tτ⎡ ⎤−⎣ ⎦  respectively, mapping these intervals into 
n  with the topology of the uniform convergence. Here, it 

is assumed that the smoothness condition is present so that 
there is no difficulty with the questions of existence, 
uniqueness, and continuity of solutions of systems with 
respect to the initial conditions. 

The definitions of the finite-time stability will be given 
for homogeneous system (11) and for nonhomogeneous 
system (14) or (18) with the associated initial functions. 

Definition 5. The fractional delayed system given by a 
linear homogeneous state equation (11) satisfying the initial 
condition (12) is a finite-time stable with respect to 
{ }0, , , ,t Jδ ε  ,δ ε<  if and only if: 

 x δ<ψ C  (21) 

implies: 

 ( ) , .t t Jε< ∀ ∈x  (22) 

Definition 6. The fractional delayed system given by a 
nonhomogeneous linear (14) or nonlinear (18) state 
equation satisfying initial conditions (15) and (16) is a 
finite-time stable with respect to { }0 0, , , , , ,u t Jδ ε α α  

,δ ε<  if and only if: 

 0,x uδ α< <ψ ψC C  (23) 

and 

 ( ) , ,ut t Jα< ∀ ∈u  (24) 

imply: 

 ( ) , .t t Jε< ∀ ∈x  (25) 

The finite-time stability analysis of nonlinear 
nonhomogeneous perturbed fractional systems with a 
constant time delay is suggested in [32]. The non-Lyapunov 
(finite-time) stability and stabilization of nonlinear 
nonhomogeneous perturbed fractional systems with time-
varying delay is proposed in [33] for the system: 

 

( ) ( ) ( )

( ) ( )( )
( ) ( ) ( )( )( )

] [

0

C
, 0 0

1 1

0 0

0

D

, ,

, 0,1 ,

t t

x

x

t A A t

A A t t

B t t t t

t t

α

τ

τ

α

= + Δ

+ + Δ −

+ + −

≥ ∈

x x

x

u f x x
 (26) 

with the initial function (12) and vector function ( )0 ⋅f  
satisfying the assumption: 
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where 0 1,c c +∈  are known real positive constants. 
Theorem 1. [33] The nonlinear nonhomogeneous 

fractional delayed system (26), satisfying the initial 

condition (12) and assumption (27), is a finite-time stable 
with respect to { }0, , , , ,u t Jδ ε α  ,δ ε<  if the following 
condition is satisfied: 
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and ( )Eα ⋅  is the Mittag-Leffler function defined by: 
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The finite-time stability of nonlinear nonhomogeneous 
fractional systems including multiple constant time delays 
in state is presented in [34] for the state equation: 
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with the associated function of the initial state: 

 ( ) ( ) [ ]0 0, , ,xt t t t t= ∈ −Δx ψ  (32) 

and vector functions ( ) ,i ⋅f  0,1,2, , ,i n= …  satisfying the 
assumptions (19). 

Theorem 2. [34] The nonlinear nonhomogeneous 
fractional delayed system (31), satisfying the initial 
condition (32) and assumptions (19), is a finite-time stable 
with respect to { }0, , , , ,u t Jδ ε α  ,δ ε<  if the following 
condition is satisfied: 
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Main Results 
As a main contribution of this paper, the finite-time 

stability results are extended to the class of nonlinear 
nonhomogeneous perturbed fractional system with multiple 
time-varying delays in state and multiple time varying 
delays in control. 

The sufficient conditions that enable system trajectories 
to stay within the a priori given sets for this class of 
systems are obtained. First, the conditions are obtained by 
using generalized Gronwall inequality, and then by using 
classical Bellman–Gronwall inequality. 

Theorem 3. The nonlinear nonhomogeneous perturbed 
fractional delayed system (18), satisfying initial conditions 
(15) and (16) and assumptions (19), is a finite-time stable 
with respect to { }0 0, , , , , ,u t Jδ ε α α  ,δ ε<  if the following 
condition is satisfied: 
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Proof. In accordance with the property of the fractional 
order ] [0,1 ,α ∈  one can obtain a solution in form of the 
equivalent Volterra integral equation: 
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u u

f x f x

 (37) 

Applying the norm on equation (37) and using the triangle 
inequality for vectors, an estimate of the solution ( )tx  is 
obtained: 

( ) ( ) ( )

( )

( ) ( )

( )( )

( )( ) ( )

( )( ) ( )( )

( )( )( )

0

0

0 0

,
1

1
, 0

1

, 0
1

,
1

1

d ,

n

i x i
i

t n

i x i
it
m

j u j
j

n

i x i
i

t t

A s A s

A s s

t s A s s B s s

B s s s

s s

α

α

τ

τ

τ

τ

=

−

=

=

=

≤ + ×
Γ

+ Δ

+ −

× − + Δ − +

+ − +

+ −

∑

∑∫

∑

∑

x x

x x

x

x u

u f x

f x

 (38) 

Now, applying the norm on equation (18) and taking into 
account the assumptions (19), it follows that: 

  

( ) ( ) ( )

( ) ( )( )
( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )( )

0

C
, 0 0

1 1 ,1

, 0

, 0
1

1 ,1 ,

D

.

t t

x

n n x n

m

j u j
j

x n x n

t A A t

A A t t

A A t t B t

B t t c t

c t t c t t

α

τ

τ

τ

τ τ

=

≤ + Δ

+ + Δ −

+ + + Δ − +

+ − +

+ − + + −

∑

x x

x

x u

u x

x x

 (39) 

Taking into account ( )max ,i iA Aσ=  the inequality (39) 

can be written as: 

 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )( )

0

C
, max 0 max 0 0

max 1 max 1 1 ,1

max max ,

0 ,
1

D

,

t t

x

n n n x n

m

j u j
j

t A A c t

A A c t t

A A c t t

B t B t t

α σ σ

σ σ τ

σ σ τ

τ
=

≤ + Δ +

+ + Δ + −

+ + + Δ + −

+ + −∑

x x

x

x

u u

 (40) 

and using ( ) ( )max max ,
i iA c i i iA A cμ σ σ= + Δ +  0,1,2,i =  

, ,n…  and ,j jb B=  0,1,2, , :j m= …  

 

( ) ( ) ( )( )
( )( )

( ) ( )( )

0 0 0 1 1

C
, ,1

,

0 ,
1

D

.

n n

t t A c A c x

A c x n

m

j u j
j

t t t t

t t

b t b t t

α μ μ τ

μ τ

τ
=

≤ + −

+ + −

+ + −∑

x x x

x

u u

 (41) 

Using the inequality: 

 
( )( ) ( )

{ }
,

,
,

sup ,

1, 2, , ,
x M

x i
t t t

t t t

i n

τ
τ

⎡ ⎤∈ −⎣ ⎦

− ≤

∀ ∈

x x
i

i

…
 (42) 

the inequality (41) can be presented in the following 
manner: 
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( ) ( ) ( )

( )( )

0
,

C
, 0

,

,
1

0 ,

D sup

,

,

x M

t t
t t t

m

j u j
j

x M

t t b t

b t t

t t

α

τ
μ

τ

τ

Σ
⎡ ⎤∈ −⎣ ⎦

=

≤ +

+ −

> +

∑

x x u

u

i

i

 (43) 

and then: 

 

( ) ( )

( ) ( )( )

0
,

C
,

,

0 ,
1

0

D sup

,

.

x M

t t x
t t t

m

j u j
j

t t

b t b t t

t t

α

τ
μ

τ

Σ
⎡ ⎤∈ −⎣ ⎦

=

⎛ ⎞
⎜ ⎟≤ +
⎜ ⎟
⎝ ⎠

+ + −

>

∑

x x ψ

u u

i

i
C

 (44) 

After combining (44) and (38), it follows: 

( ) ( )

( )
( )

( ) ( )( )

,

0

,1

0 ,
1

1

sup

d .
x M

x

xt
t t t

m
t

j u j
j

t

t

t s s

b t b t t

τα

α

μ

τ

Σ
⎡ ⎤∈ −⎣ ⎦−

=

≤ + ×
Γ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+

⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟× −
⎜ ⎟
⎜ ⎟+ + −
⎜ ⎟
⎝ ⎠

∫
∑

x ψ

x ψ

u u

i

i

C

C  (45) 

Expanding (45) leads to: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

0

,
0

0

0

1

1

,

1
0

1
,

1

1 d

1 sup d

1 d

1 d .

x M

t

x x

t

t

t t t
t

t

t

t m

j u j
jt

t t s s

t s t s

t s b t s

t s b t t s

α

α

τ

α

α

μ
α

μ
α

α

τ
α

−
Σ

−
Σ

⎡ ⎤∈ −⎣ ⎦

−

−

=

≤ + −
Γ

+ −
Γ

+ −
Γ

+ − −
Γ

∫

∫

∫

∑∫

x ψ ψ

x

u

u

i

i

C C

 (46) 

Taking into account ( ) ,ut α<u  and using ,u Mτ  instead of 

( ), ,u j tτ  it follows: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0

,
0

0

0

1

1

,

10

1
,

1

d

sup d

d

1 d .

x M

t
x

x

t

t

t t t
t

t
u

t

t m

u M j
jt

t t s s

t s t s

b
t s s

t s t s b

α

α

τ

α

α

μ

α

μ
α

α
α

τ
α

Σ −

−Σ

⎡ ⎤∈ −⎣ ⎦

−

−

=

≤ + −
Γ

+ −
Γ

+ −
Γ

+ − −
Γ

∫

∫

∫

∑∫

ψ
x ψ

x

u

i

i

C
C

 (47) 

Integrating (47) leads to the following relations: 

( ) ( )
( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )

( ) ( ) ( )

,
0

0

0 ,

,

0

0

1

,

00

1
,

1

1
,

1

1

sup d

1 d

1 d ,

x M

u M

u M

x

t

t t t
t

u

t m

u M j
jt

t m

u M j
jt

t t
t

t s t s

t tb

t s t s b

t s t s b

α

α

τ

α

α

τ

τ
α

μ
α α

μ
α

α
α α

τ
α

τ
α

Σ

−Σ

⎡ ⎤∈ −⎣ ⎦

−

=−

−
−

=

⎛ ⎞−
⎜ ⎟≤ +
⎜ ⎟Γ⎝ ⎠

+ −
Γ

−
+
Γ

+ + −
Γ

+ + −
Γ

∫

∑∫

∑∫

x ψ

x

u

u

i

i

C

 (48) 

 

( ) ( )
( )

( ) ( ) ( )

( )
( )

( ) ( )

( ) ( )

,
0

0

0 ,

,

0

0

1

,

0 0

1

1

1

1

1
1

sup d

1

1 d

1 d ,

x M

u M

u M

x

t

t t t
t

u

t m

u j
jt

t m

u j
jt

t t
t

t s t s

b t t

t s s b

t s s b

α

α

τ

α

α

τ

τ
α

μ
α

μ
α

α
α

α

α
α

Σ

−Σ

⎡ ⎤∈ −⎣ ⎦

−

=−

−
−

=

⎛ ⎞−
⎜ ⎟≤ +
⎜ ⎟Γ +⎝ ⎠

+ −
Γ

−
+

Γ +

+ −
Γ

+ −
Γ

∫

∑∫

∑∫

x ψ

x

ψ

i

i

C

C

 (49) 

 

( ) ( )
( )

( ) ( ) ( )

( )
( ) ( )

( )
( )

,
0

0

1

,

,0 0
0

1

, 0

1

1
1

sup d

1
1

1 ,

x M

x

t

t t t
t

m
u Mu

j
j

m
u M

u j
j

t t
t

t s t s

b t t
b

t t
b

α

α

τ

α α

α

μ
α

μ
α

τα
α

α α α

τ
α

α α

Σ

−Σ

⎡ ⎤∈ −⎣ ⎦

=

=

⎛ ⎞−
⎜ ⎟≤ +
⎜ ⎟Γ +⎝ ⎠

+ −
Γ

−
+ +

Γ + Γ

− −
+
Γ

∫

∑

∑

x ψ

x
i

i

C

 (50) 

 

( ) ( )
( )

( ) ( ) ( )

( )
( ) ( )

( )
( )

,
0

0

1

,

0 ,0 0

1

0 ,

1

1
1

sup d

1 1

.
1

x M

x

t

t t t
t

m
u Mu

j
j

m
u u M

j
j

t t
t

t s t s

b t t
b

t t
b

α

α

τ

α α

α

μ
α

μ
α

α τα
α α

α τ

α

Σ

−Σ

⎡ ⎤∈ −⎣ ⎦

=

=

⎛ ⎞−
⎜ ⎟≤ +
⎜ ⎟Γ +⎝ ⎠

+ −
Γ

−
+ +

Γ + Γ +

− −
+

Γ +

∫

∑

∑

x ψ

x
i

i

C

 (51) 
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Introducing a nondecreasing function ( )g t  in the following 
manner: 

 ( ) ( )
( )

01 ,
1x

t
g t

t αμ
α

Σ
⎛ ⎞−
⎜ ⎟= +
⎜ ⎟Γ +⎝ ⎠

ψ C  (52) 

and using generalized Gronwall inequality [20], leads to: 

( ) ( ) ( ) ( )( )
,

0
,

sup E ,
x Mt t t

t t g t t t α
α

τ
μΣ

⎡ ⎤∈ −⎣ ⎦

≤ ≤ −x x
i

i  (53) 

and then to: 

 

( )
( )
( ) ( )( )

( )
( ) ( )

( )
( )

0
0

0 ,0 0

1

0 ,

1

1 E
1

1 1

.
1

m
u Mu

j
j

m
u u M

j
j

t
t t

b t t
b

t t
b

t
t

α
α

α

α α

α

μ
δ μ

α

α τα
α α

α τ

α

Σ
Σ

=

=

⎛ ⎞−
⎜ ⎟≤ + −
⎜ ⎟Γ +
⎝ ⎠

−
+ +

Γ + Γ +

− −
+

Γ +

∑

∑

x

 (54) 

Finally, if the condition of Theorem 3 given by a relation 
(35) is used, it follows that: 

 ( ) , .t t Jε< ∀ ∈x  (55) 

 
Based on the previous result, the following special cases 

can be obtained. 
Theorem 4. The linear nonhomogeneous fractional 

delayed system (14) that satisfies the initial conditions (15) 
and (16) is a finite-time stable with respect to 
{ }0 0, , , , ,u Jδ ε α α  ,δ ε<  if the following condition holds: 

 

( ) ( ) ( )

( )
( )
( )

[ [

max 0
max

,0 ,

0

1 E
1 1

,
1 1

0, ,

u

u u Mu M

t t
t

t

t J T

α α
α

α

αα

σ γ
σ

α α

γ τγ τ ε
α α δ

Σ
Σ

ΣΣ

⎛ ⎞
+ +⎜ ⎟⎜ ⎟Γ + Γ +⎝ ⎠

−
+ + ≤
Γ + Γ +

∀ ∈ =

 (56) 

where: 

 ( )max max
0

.
n

i
i

Aσ σΣ
=

=∑  (57) 

Theorem 5. The linear nonhomogeneous fractional 
delayed system (14), where ( )( ), ,u jt tτ− ≡u 0  j∀ ∈ 

{ }1,2, , ,m…  satisfying the initial condition (15), is a finite-

time stable with respect to { }0, , , ,u Jδ ε α  ,δ ε<  if the 
following condition is satisfied: 

 ( ) ( ) ( )
max 0

max

0

1 E ,
1 1

.

ut t
t

t J

α α
α

α
σ γ εσ
α α δ

Σ
Σ

⎛ ⎞
+ + ≤⎜ ⎟⎜ ⎟Γ + Γ +⎝ ⎠

∀ ∈

 (58) 

Remark 1. If there are no delays in input (control) in the 

system (18), ( )( ), ,u jt tτ− ≡u 0  { }1, 2, , ,j m∀ ∈ …  and there 
is a single delay in the state, then conditions given by 
Theorem 1 [33] can be obtained. 

Remark 2. If there are no delays in input (control) in the 
system (18), ( )( ), ,u jt tτ− ≡u 0  { }1, 2, , ,j m∀ ∈ …  and there 

are no parameter perturbations of the system, 0,iAΔ =  

{ }0,1,2, , ,i n∀ ∈ …  and all delays are constant, ( ),x i tτ =  

, const.,x iτ =  { }1,2, , ,i n∀ ∈ …  ( ), , const.,u j u jtτ τ= =  

{ }1,2, , ,j m∀ ∈ …  then conditions given by Theorem 2 [34] 
can be obtained. 

Similarly, by using classical Bellman–Gronwall 
inequality (Appendix B – Lemma B.3), the following result 
can be obtained. 

Theorem 6. The nonlinear nonhomogeneous perturbed 
fractional delayed system (18), satisfying initial conditions 
(15) and (16) and assumptions (19), is a finite-time stable 
with respect to { }0 0, , , , , ,u t Jδ ε α α  ,δ ε<  if the following 
condition is satisfied: 

 

( )
( )

( )
( ) ( )

( )

( )
( )

( )

0

10 0 0

0 ,0 ,

1 e
1 1

,
1 1

,

t t
u

u u Mu M

t t t t

t t

t J

αμα α
α

αα

μ γ
α α

γ τγ τ ε
α α δ

Σ −

Γ +Σ

ΣΣ

⎛ ⎞− −
⎜ ⎟+ +
⎜ ⎟Γ + Γ +⎝ ⎠

− −
+ + ≤
Γ + Γ +

∀ ∈

 (59) 

where: 

 

( ) ( )

( )

0

max max

0
0 0 0

1 1

max

,

,

0,1,2, , ,

, , ,

, 0,1, 2, , .

i i

i i

n

A c
i

A c i i i

m m
u u

u j u j
j j

j j j

A A c

i n

b b b

b B B j m

μ μ

μ σ σ

α α α
γ γ γ

δ δ δ

σ

Σ
=

Σ Σ
= =

=

= + Δ +

=

= = =

= = =

∑

∑ ∑
…

…

 (60) 

Proof. The proof immediately follows from the proof of 
Theorem 3 and applying the Bellman–Gronwall inequality 
(Lemma B.3). For the sake of brevity, the proof of Theorem 
6 is omitted here. 

Also, from Theorem 3, the finite-time stability condition 
for classical (integer-order) system can be obtained. 

Theorem 7. The nonlinear nonhomogeneous perturbed 
integer-order ( 1)α =  delayed system (18), satisfying the 
initial conditions (15) and (16) and assumptions (19), is a 
finite-time stable with respect to { }0 0, , , , , ,u t Jδ ε α α  

,δ ε<  if the following condition is satisfied: 

 

( )( ) ( ) ( )

( )
( ) ( ) ( )

0
0 0 0

0 , 0 ,

1

1 e

,

, 2 1, Е e .

t t
u

u M u u M

t t t t

t t

t J

μμ γ

εγ τ γ τ
δ

Σ −
Σ

Σ Σ

⋅

+ − + −

+ + − − ≤

∀ ∈ Γ = ⋅ =

 (61) 

Remark 3. If ( 1)α = and there is a single constant delay in 
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state and a single constant delay in control, and taking into 
account condition (61), one can obtain the same condition 
which is related to integer-order time-delay systems (see [35]). 

The proposed results can be applied to any fractional-
order or integer-order time-delay model. An example of 
time-delay model can be found in [36, pp. 261–262]. 
Recently, the finite-time stability for a class of fractional-
order delayed neural networks as well as for the fractional-
order complex-valued memristor based neural networks 
including time-varying delays was considered and 
presented in [37,38], respectively. 

Numerical Example 
A nonlinear nonhomogeneous perturbed fractional 

system with multiple time-varying delays in state and 
control is given by the state equation: 

 

( ) ( ) ( )
( ) ( )( )
( ) ( )( ) ( )

( )( ) ( )( )
( )( ) ( )( )( )

( )( )( )

1 2C
0 00,

1 1 ,1

2 2 ,2 0

1 ,1 2 ,2

0 1 ,1

2 ,2

D

,

0,

t

x

x

u u

x

x

t A A t

A A t t

A A t t B t

B t t B t t

t t t

t t

t

τ

τ

τ τ

τ

τ

= + Δ

+ + Δ −

+ + Δ − +

+ − + −

+ + −

+ −

≥

x x

x

x u

u u

f x f x

f x

 (62) 

where: 

 

0 0

1 1

2 2

0 1 2

0 ,

0,2 0 0,02 0,01
, ,

0,1 0,3 0,01 0,03

0, 2 0,1 0,05 0,01
, ,

0 0,1 0,02 0,03

0,3 0 0,04 0
, ,

0,05 0,2 0 0,02

0 3 2 0 0 0
, , ,

1 0 0 1 0 1

0, 0x M

A A

A A

A A

B B B

t τ

− −⎡ ⎤ ⎡ ⎤
= Δ =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤
= Δ =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= Δ =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= = ,

0 1 2

,01 s, 0,03 s,

0,02, 0,05, 0,04.

u M

c c c

τ =

= = =

 (63) 

Initial conditions are: 

 

( ) ( ) [ ]
[ ]

( ) ( ) [ ]
[ ]

T

0 , 0

T

0 , 0

0,04 0,05 ,

, 0,01; 0 ,

0,02 0 ,

, 0,03; 0 ,

x

x M

u

u M

t t

t t t

t t

t t t

τ

τ

= =

⎡ ⎤∈ − = −⎣ ⎦

= =

⎡ ⎤∈ − = −⎣ ⎦

x ψ

u ψ

 (64) 

The task is to analyze the finite-time stability with respect 
to [ ]{ }0 00,1; 500; 0, 2; 2; 0,3  s .u Jδ ε α α= = = = =  From 
the initial conditions and given state equation, it follows: 

 

[ ]
( )

( )
[ ]

( )

( )

0,01; 0

1 22 2

0,03; 0

1 22 2
0

max

0,04 0,05 0,064 0,1,

max

0,02 0 0,02 0, 2,

x x xt

u u ut

t

t

δ

α

∈ −

∈ −

= =

= + = < =

= =

= + = < =

ψ ψ ψ

ψ ψ ψ

C

C

 (65) 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2 T
max 0 max 0 0

1 2 T
max 0 max 0 0

1 2 T
max 1 max 1 1

1 2 T
max 1 max 1 1

1 2 T
max 2 max 2 2

1 2 T
max 2 max 2 2

0,3257,

0,0362,

0, 2288,

0,04,

0,3071,

0, 2146,

A A A

A A A

A A A

A A A

A A A

A A A

σ λ

σ λ

σ λ

σ λ

σ λ

σ λ

= =

Δ = Δ Δ =

= =

Δ = Δ Δ =

= =

Δ = Δ Δ =

 (66) 

 

( ) ( )

( ) ( )
( ) ( )

0 0

1 1

2 2

0 0 1 1 2 2

max 0 max 0 0

max 1 max 1 1

max 2 max 2 2

0,3819,

0,3188,

0,5617,

1,2624,

A c

A c

A c

A c A c A c

A A c

A A c

A A c

μ σ σ

μ σ σ

μ σ σ

μ μ μ μΣ

= + Δ + =

= + Δ + =

= + Δ + =

= + + =

 (67) 

( )

( ) ( )

( ) ( )

0 0 max 0 0 0

0
1 1 max 1 0 1 2

2 2 max 2 1 2

3, 60,

2, 6,

1, 60.

u
u

u
u

b B B b

b B B b b

b B B b b

α
σ γ

δ
α

σ γ
δ
α

σ γ
δ

Σ

Σ

= = = = =

= = = = + =

= = = = + =

 (68) 

Using the condition of Theorem 3, given by (35), it holds: 

( ) ( )

( ) ( )
( )

( )

1 2
1 2e

1 2 e

1 21 2 1 2
ee

1,2624
1 E 1,2624

3 2

60 0,0360 6 0,03 500 .
3 2 3 2 3 2 0,1

T
T

TT

⎛ ⎞
+⎜ ⎟⎜ ⎟Γ⎝ ⎠

−×
+ + + ≤
Γ Γ Γ

 (69) 

From (69), the estimated time of the finite-time stability is: 

 e 4 s.T ≈  (70) 

The system (62) with the initial conditions (64) is a finite-
time stable over the time interval [ ]0 0,3  s.J =  

Theorem 6 can also be used to check the finite-time 
stability of a given system. Using the condition of Theorem 
6, given by (59), it holds: 

 ( )
( )

( )

( )
( )

( )

1 2
e1,26241 2 1 2

3 2e e

1 21 2
e

1,2624 60
1 e

3 2 3 2

60 0,036 0,03 500 .
3 2 3 2 0,1

T
T T

T

Γ⎛ ⎞
+ +⎜ ⎟⎜ ⎟Γ Γ⎝ ⎠

−×
+ + ≤

Γ Γ

 (71) 
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From (71), the estimated time of the finite-time stability is: 

 e 20,1 s.T ≈  (72) 

This result also shows that the system (62) with the initial 
conditions (64) is a finite-time stable over the time interval 

[ ]0 0,3  s.J =  
All these conditions are only sufficient. If the obtained 

estimated time is equal or larger than the given time, it 
always means that the given system will be stable over the 
given time interval. On the other hand, if the obtained 
estimated time is smaller than the given time, it does not 
mean that the given system will not be stable over the given 
time interval. In the previous example, both results give 
estimated times that are larger than the given time. 

Conclusion  
This paper deals with the non-Lyapunov stability of the 

fractional-order time-delay systems. The main features of 
the finite-time and practical stability are extended to the 
class of nonlinear nonhomogeneous perturbed fractional 
systems including multiple time-varying delays in state and 
multiple time-varying delays in input (control). Sufficient 
conditions of stability are obtained for the given class of 
systems using generalized Gronwall inequality. The 
illustrative example is given to support the obtained 
analytical result. 

Appendix A – Notations 
A  – system matrix 
B  – input (control) matrix 

( )Eα ⋅  – Mittag-Leffler function 

( )⋅f  – nonlinear perturbation 
t  – time 
( )⋅u  – input (control) vector 

( )⋅x  – state vector 

( )Γ ⋅  – Euler’s gamma function 

( )λ ⋅  – eigenvalue of matrix ( )⋅  
∑  – summation 
( )σ ⋅  – singular value of matrix ( )⋅  

( )uτ ⋅  – time delay in input (control) 

( )xτ ⋅  – time delay in state 

( )u ⋅ψ  – function of initial input (control) 

( )x ⋅ψ  – function of initial state 
N  – set of all positive integers 

0N  – set of all nonnegative integers 
 – set of all real numbers 
+  – set of all positive real numbers 
−  – set of all negative real numbers 
+  – set of all nonnegative real numbers 

C  – set of all complex numbers 
n  – n-dimensional real vector space 
n m×  – set of all real n m×  matrices 

max  – maximum 
sup  – supremum 

( )Re ⋅  – real part of ( )⋅  

{ }  – set 

[ ]  – closed interval 

[ [  – left-closed, right-open interval 

] [  – open interval 
∈  – belongs to 
→  – maps to 
∀  – for all 
:  – such that 
×  – multiplication 
( )⋅  – absolute value of ( )⋅  

( )⋅  – Euclidean vector or matrix norm of ( )⋅  

( )T⋅  – transpose of matrix ( )⋅  
 – end of proof 

Appendix B 
Lemma B.1. (Generalized Gronwall inequality [20]) 

Suppose ( ) :x ⋅ →  and ( ) :a ⋅ →  are nonnegative 
and integrable in every closed and bounded subinterval of 
[ [0,T  and ( ) [ [: 0,g T⋅ →  is nonnegative, nondecreasing, 
continuous, and bounded function such that: 

 ( ) ( ) ( ) ( ) ( )1

0

d , 0.
t

x t a t g t t s x s sα α−≤ + − >∫  (B.1) 

Then for [ [0, :t T∈  

( ) ( )
( ) ( )( )
( ) ( ) ( )1

10

d .
nt

n

n

g t
x t a t t s a s s

n
αα

α

∞
−

=

Γ
≤ + −

Γ∑∫  (B.2) 

Lemma B.2. [20] Under the hypothesis of Lemma B.1, 
if ( )a t  is nondecreasing, then: 

 ( ) ( ) ( ) ( )( )E .x t a t g t tαα α≤ Γ  (B.3) 

Lemma B.3. (the Bellman–Gronwall inequality) If 
( ) :x + +⋅ →  is bounded continuous function on each 

closed interval [ ]0, t  and satisfies: 

 ( ) ( ) ( ) ( )
0

d
t

x t a t g s x s s≤ + ∫  (B.4) 

for nondecreasing function ( )a ⋅  and nonnegative 

integrable function ( ) ,g ⋅  then: 

 ( ) ( ) ( )
0

exp d .
t

x t a t g s s
⎛ ⎞
⎜ ⎟≤
⎜ ⎟
⎝ ⎠
∫  (B.5) 
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Neljapunovska stabilnost sistema necelog reda sa vremenski  
promenljivim kašnjenjima 

U ovom radu, kriterijumi stabilnosti na konačnom vremenskom intervalu su prošireni na nelinearne nehomogene 
perturbovane sisteme necelobrojnog reda koji sadrže višestruka vremenski promenljiva kašnjenja. Dobijeni su dovoljni 
uslovi stabilnosti za sisteme necelog reda sa višestrukim vremenskim kašnjenjima korišćenjem generalizovanog i 
klasičnog Gronwallovog pristupa. Numerički primer je dat u cilju ilustracije značaja dobijenog rezultata. 

Ključne reči: kontinualni sistem, nelinearni sistem, vremensko kašnjenje, stabilnost sistema, neljapunovska stabilnost, 
stabilnost na konačnom vremenskom intervalu, sistem necelobrojnog reda. 

Stabilité de non Lyapunov de l’ordre fractionnel à délai  
temporel variable  

Dans ce papier les critères de stabilité sur l’intervalle temporelle finie sont élargis sur les systèmes non linéaires, non 
homogènes et perturbés de l’ordre fractionnel qui comportent multiples délais variables temporellement . On a obtenu les 
conditions suffisantes de la stabilité pour les systèmes de l’ordre fractionnel à multiple délai temporel par utilisation de 
l’approche classique et généralisée de Gronwall. L’exemple numérique a été donné dans le but d’illustrer l’importance 
du résultat obtenu.  

Mots clés: système continu, système non linéaire, système à délai, délai temporel, stabilité de système, stabilité de non 
Lyapunov, stabilité sur intervalle temporelle finie, système de l’ordre fractionnel. 

Стабильность системы не-Ляпунова частичного порядка с 
нестационарными временными задержками 

В этой статье, критерии стабильности в конечном времени продлены до нелинейных неоднородных 
возмущённых систем частичного порядка, которые содержат несколько изменяющихся во времени задержек. 
Получены достаточные условия стабильности для систем частичного порядка с несколькими временными 
задержками, с использоваными обобщенными и классическими подходами Гронвалла (Gronwall). Численный 
пример приведён для того, чтобы проиллюстрировать значение полученных результатов. 

Ключевые слова: непрерывная система, нелинейная система, система с задержкой, временная задержка, 
стабильность системы, стабильность не-Ляпунова, стабильность в конечном времени, система дробнго порадка. 


