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Anisotropy invariant map proposed by Lumley and Newman and
barycentric map proposed by Banerjee et al. were used in order to
estimate the degree of anisotropy in turbulent swirl flow. The differences in
visual interpretations of anisotropy states in these two maps were analysed
and mathematical basis of these two maps was derived. Experimental data
reveal that there is significant influence of swirl on the anisotropy of
turbulence. Anisotropy invariant mapping shows that different flow regions
of swirl flow are characterized by different anisotropy states.
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1. INTRODUCTION

From a computational point of view, it is of
considerable interest to have some knowledge about the
expected anisotropy in the flow field [1]. The modelling
of the Reynolds stress anisotropy tensor is the most
important and delicate element in the Reynolds stress
model, where the knowledge of the departure from
isotropy is essential. In [2] and [3] the anisotropy of
turbulent flow was analysed. Useful tools to quantify
the degree of anisotropy in turbulent flows are
anisotropy invariant maps. These maps represent a
domain within which all realisable Reynolds stress
invariants must lie. In current work, two representations
of these maps are used: anisotropy invariant map (AIM)
which is a representation proposed by Lumley and
Newman [4] and a barycentric map (BM), a
representation proposed by Banerjee et al. [5]. In this
paper, the anisotropy analyses is conducted using these
two maps in case of a swirl flow.

Swirl flows are an important class of flows, common
in nature and in many technical applications. These
highly complex flows have been studied for a long time,
but the modelling and understanding of such flows still
represents a challenge to turbulence modellers.

Tangential velocity distributions from experimental
investigations of swirl flows showed that there are four
regions in the flow: vortex core, shear vortex layer,
main flow and wall region [6]. Each of these regions has
important properties and their existence makes physical-
mathematical modelling of such flows very
complicated. Experimental results from a great number
of experimental studies demonstrated that swirl decayed
with axial distance.

Negative eddy viscosities were observed in certain
parts of swirl flow [7]. Obviously, standard two-
equation model cannot successfully predict these flows.
The reason is that swirl flow is characterized by
anisotropy in eddy viscosity in contrast to two-equation
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model of turbulence, which assumes the eddy viscosity
to be isotropic. Reynolds stress model is suggested in
order to predict turbulence in swirl flow field
successfully [8]. The motivation for the development of
the Reynolds stress model is the inability of any eddy-
viscosity model to allow a non-local relationship
between Reynolds stress tensor and mean strain rate
tensor, that is, history effects.

The aim of this paper is to present and analyse part
of experimental results from [9] in order to improve our
knowledge of the anisotropy in swirl flow. The AIM
and BM were used in order to obtain -easier
understanding of swirl influence on the anisotropy of
turbulence. Mathematical basis of both maps are
explained in the paper. Differences between these two
maps were analysed in order to determine which map
gives better graphical result.

2. SWIRL FLOW PROPERTIES

Radial distributions of mean velocity components and
terms of Reynolds stress tensor are presented in this
section. Measurements of these quantities were carried
out in 12 appropriately selected points in one cross
section of a straight circular pipe. More details about
experiment can be found in [9].

2.1 Mean velocity distribution

Profiles of tangential mean and axial mean velocities are
plotted in Figure 1. These velocities are normalized with
bulk wvelocity U,,. Radial velocity component is

negligible and this velocity profile is not shown.

As it is said earlier, there are four characteristic
regions within the swirling flow. These regions have
important structural and statistical properties.

Vortex core is characterized by linear variation of
the tangential velocity component with radial distance
from the pipe centreline. Vortex core, for the velocity
profile plotted in Figure 1, extends up tor/R ~0.23.

Shear flow region is characterized by weak tangential
velocity variation. It extends approximately between
0.23<7r/R<0.56 for velocity profile shown in Figure
1. Mean flow region is characterized with free vortex
distribution. For considered velocity profile beginning
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Figure 1. Normalized mean velocity profiles

of this region is defined at r/R ~ 0.56. Near the wall,
tangential velocity distribution reaches zero very
rapidly. Measurements could not be made near the wall
and due to this fact, end of the mean flow region i.e.
beginning of the wall region is not specified for the
velocity profile from Figure 1.

2.2 Reynolds stresses distributions

Radial distributions of turbulence intensities normalized
with bulk velocity U,, are shown in Figure 2. These
distributions have similar profiles. Turbulence
intensities are in range from 8 to 27 percent of the bulk
velocity U,
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Figure 2. Normalized distributions of turbulence intensities

Turbulent shear stresses distributions over cross
section are presented in Figure 3. These distributions do
not have similar profiles in contrast to distributions of
turbulence intensities shown in Figure 2. Reynolds

stress component ¥V has negative values in region
0.05<r/R<0.62

and a small positive value in region
0.62<r/R<0.96 W

The component YWis positive

20 =VOL. 42, No 1, 2014

through the range in which the measurements are

performed. The Reynolds stress ¥ is positive in the

region 005 <R <038 e for 038 <r/R<07
and negligible for 0.7<r/R< 0.96
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Figure 3. Normalized profiles of off-diagonal components
of the Reynolds stress tensor

There is a big interaction between mean and
fluctuating velocity field. This interaction causes the
highly complex flow field.

3. REPRESENTATION OF ANISOTROPY IN
TURBULENCE

The Reynolds stress tensor is a symmetric second-order
tensor, given by

u2 uyv - uw
T=z;=|w v ww
=—Tl~j vu v vw
— — 3

wu wy w

It is useful to decompose this tensor into the sum of

its deviator (traceless tensor), and a spherical

Tij
(isotropic) tensor, 7;; , as follows:
T = z’i} +7.
The spherical part is defined as

_1 e

T 3 -7 kk§ 3 é‘lj N
where q2 represents the trace of the Reynolds stress
tensor and it is equal to twice the kinetic energy of
turbulence q2 =2k.

The deviator is now expressed as
1 — 1

= T Tkk5 gq 25 i

i i
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When the deviator T;j is normalised with the trace of

Reynolds stress tensor qz, the anisotropy tensor

A =ay; is obtained as follows [4]

a; =L ="7__5._. 1)

It isolates the property of anisotropy of Reynolds
stress tensor from other flow properties. The anisotropy
tensor is dimensionless, has zero trace and in the case of
isotropy it vanishes identically.

Having in mind that the anisotropy tensor is
symmetric, i.e. a; =aj, it is possible to find an

orthonomal basis {”1 , Iy ,n3} such that:

é =Anin,
or in matrix form

4 0 0
4=[0 4 0
0 0

S

Vectors n; that diagonalize anisotropy tensor 4 are

called eigenvectors (or principal directions) and 4; are

called eigenvalues (or principal values) of anisotropy
tensor 4 . The symmetry property of anisotropy tensor

A ensures that all three eigenvalues and the associated

eigenvalues are real. The eigenvalues of anisotropy
tensor A are determined by solving the characteristic

equation
det(4—-A1)=0 or |al~]- —/15l.j| -0.

Evaluation of this determinant leads to a characteristic
polynomial of A4, which is given by

B -1+ 1hA-13=0, (2)

where

[1 :ﬂ'(é) =04k

- aljaﬂ) and

1 1
Iy =l d)* —r A*]=—(@ay

1 2 3
I3 =det(4) = E(aiia ik — 3@ + aip).

The scalar coefficients I;, I, and I; are called the
first, second and third invariant of 4. With respect to

(1), it is clear that the first invariant /; is equal to zero,
and the second and third invariant are reduced to:

1, 1
I, = —Etré = _Eaijaji and
15 1
[3 :Eﬂ'é ZEaU-ajkakl-.
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Instead of the second and third invariant, I, and I3,
the turbulence state is analysed with invariants II, and
111, which differ from former invariants by only a
numerical factor as follows

I, =-2I, =a;a; and

§eji
[I]a = 3[3 = al'jajkaki.

A cross-plot of [, versus [II,, shown in Figure 4,
represents anisotropy invariant map (AIM) where I,
represents the degree of anisotropy and /I, indicates
the nature of anisotropy [3].
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Figure 4. Anisotropy invariant map (AIM)

Characteristic states of turbulence are represented by
the boundaries of this map. There are two curves
extending  from  the  origin. Right curve

2/3
(11, :%Gmaj ) corresponds to axisymmetric

expansion in which one diagonal component of
Reynolds stress tensor is larger than the other two, equal

30 4 2/3
components. The left curve (11, =E(_§1Haj )

represents an axisymmetric contraction in which one
component is smaller than the other two components,
which are equal.

Limiting points at the end of these curves are

important: isotropic turbulence at the origin(0,0),

. . 11
isotropic two-component turbulence 3676 at the

end of the left curve and one-component turbulence

(%,%} at the end of right curve. Upper boundary line

of the AIM represents the two-component turbulence
2 Lo .
(1, = §+ 2111, ) which is reached near the solid walls

where the wall-normal component of the fluctuations
vanishes much faster than the other components [8].

Anisotropy  invariants (I]a,IHa) are nonlinear

functions of Reynolds stress tensor components which
is the main flaw of this concept.

Another way to visualize the anisotropy of the
turbulence is using a barycentric map (BM). The
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anisotropy states in this map are linear functions of the
Reynolds stresses. The BM is shown in Figure 5.
The turbulence state in BM is characterised by

reorganised anisotropy tensor ér that can be written in

the matrix form as

A 0 0
A4=[0 2 0|
0 0 4

where the eigenvalues A;, A, and A3 are sorted in
decreasing order, 1i.e. A4 =Agu, b =4y and

A3 =Apin  Wwhere A, Ay and Ay, denote

maximum, intermediate and minimum value of the roots
of the characteristic polynomial (2). It is straightforward
to prove (with respect to (1)) that interval between

which eigenvalues can be calculated is —%S/L- S%.

The limiting states of turbulence are determined by the
number of non-zero eigenvalues of tensor 4" and by

equalities between them. These limiting states are: one-

component state (4 = %, b =X = —%) , two-

component state (4 =4, = %,/13 = —%) and three-

component state (4 =4, =43 =0). Corresponding
basis matrices are

2/3 0 0
A = 0 -1/3 0 |,
=lc
0 -1/3
1/6 0 0 0 0 0
A" = 0 1/6 0 and 4~ =0 0 O]
=2c =3c
0 0 -1/3 0 0 0

Every realisable turbulence state can be expressed as a
combination of the above limiting states as

ér = Clacélrc + C%cé;c + C?Cégc , 3)
where:
[l . el
are coefficients such that
Cie +C3c + Cie =1,

and the values of these coefficients is in the range [0,1].

A value of 1 corresponds to respective limiting state and
a value of 0 means that the respective limiting state is
away from the observed state. Above properties are

satisfied by setting the coefficients {Clac ,C;c,Cfc} as

the functions of the eigenvalues of the tensor 4", as

follows:
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Cle =4 =4,
C3e =2(4 —73) and
C:\ilc =3l3 +1.

In order to plot BM, the basis matrices 4, , 4 and

égc are identified as the three vertices of the triangle,

with coordinates (xy.,V|c)s (X2c»V2e) and (X3q,¥3c)-

The coordinates of vertices should satisfy the form of
the equilateral triangle because this form does not
introduce visual bias of the limiting states.

The coordinates of a new point are calculated, as an
analogy to (3), as:

Xp = CieXye + O + C3e X3,
Yn = Clcylc + C2cy2c + C3cy30'
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(:‘(1,[ C
*’3
o\%@6
O

&
&
v

2 comp Two-component turbulence 1 comp

Figure 5. Barycentric map (BM)

4. INVARIANT MAPS APPLICATION IN TURBULENT
SWIRL FLOW

Figure 6 shows radial distributions of components of the
Reynolds stress anisotropy tensor a;; . The variations in

these distributions show highly complex structure of
turbulence.

An important characteristic of turbulent swirl flow is
distribution of anisotropy component a,,. Negative

values of this component in vortex core and shear flow
region mean that the transfer of axial linear momentum
is directed toward the pipe axis, which will result with
smoother downstream velocity profile [9].

While components of anisotropy tensor g

represent the degree of anisotropy of Reynolds stress
tensor components, overall anisotropy can be more
clearly seen from anisotropy maps. The AIM is plotted
in Figure 7, and the BM is plotted in Figure 8.

The visualisation of tensor fields improves the
understanding and interpretation of tensor data. Due to
that fact, the shape of Reynolds stress tensor for
characteristic measuring points is given in Figure 7. The
equation which defines the shape of Reynolds stress
tensor is

FME Transactions



2 2 2
X z
o1 02 g3
This is an ellipsoid equation whose principal axes
coincide with the stress axes and radii are equal to the

absolute value of the eigenvalues |o-1|, |o-2| and |0'3| of
the Reynolds stress tensor. If the oy is large and the

other two eigenvalues are small but equal, o, = o3, the

shape of stress tensor would be prolate spheroid. On the
other hand, if o7 is smaller than the other two

eigenvalues, the shape of the stress tensor would be the
oblate spheroid [10]. These observations are confirmed
in Figure 7: at measuring point number 3 shape of stress
tensor is oblate spheroid and this shape gradually
changes toward prolate spheroid at measuring point
number 7

The AIM and BM represent the same information
about overall anisotropy in different ways. Anisotropy
states in the AIM are nonlinear function of stresses,
while anisotropy states in the BM are linear function of
stresses.

For the first two measuring points, which belong to
the vortex core, 7/R=0.05 and r/R=0.15anisotropy states
lie close to axisymmetric contraction line in both maps,
in the AIM (Figure 7) and in the BM (Figure 8). The

0.3
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r/R

0 0.2 0.4 0.6 0.8 1

next six measuring points correspond to shear layer.
With radius increase, corresponding invariants in the
AIM, i.e. corresponding points in the BM tend toward
axisymmetric expansion line.

The last four measuring points correspond to mean
flow region. Corresponding data shift parallel to
axisymmetric contraction line in both maps. In order to
analyse the difference between the AIM and the BM,
Figure 9 shows radial distribution of principal values of
anisotropy tensor. Now it will be considered anisotropy
state from measuring point »/R= 0.50 (number 7 in
Figures 7, 8 and 9). Figure 9 shows that this state does
not represent axisymmetric expansion turbulence, since
principal anisotropy tensor components 4; and 1, are not
equal. Component 4, is 24% larger than component ;.
However, this state lies on axisymmetric expansion
curve in the AIM (Figure 7), while it is shown a little
offset from axisymmetric expansion line in the BM
(Figure 8).

Another difference between the AIM and the BM is
observed at #/R= 0.65 (number 9 in Figures 7, 8 and 9).
Figure 9 shows that there are significant differences
between principal anisotropy tensor components 4; and
A; so this state cannot be classified as near to
axisymmetric expansion turbulence.

0.12
0.1}
5008 f

0.06

0.04
r/R

Figure 6. Distributions of Reynolds stress anisotropy tensor components
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Moreover, component A,is 376% larger than 4.

This important fact is neglected in the AIM (Figure 7)
since the anisotropy state is located near the right curve.
This same state is equally distanced from left and right
line in the BM (Figure 8). It seems that the BM is more
sensitive to difference between anisotropy tensor
components, which results with better graphical
interpretation than the AIM.

Figure 7. Anisotropy invariant map with ellipsoid shapes
formed by Reynolds stress tensor in turbulent swirl flow.
Numbers in figure denote measuring positions: 1, r/R=0.05;
2, r/R=0.15; 3, r/R=0,25; 4, r/R=0.35; 5, r/R=0,40; 6, r/R=0.45;
7, r/R=0.50; 8, r/R=0.55; 9, r/R=0.65; 10, r/R=0.75; 11,
r/R=0.85; 12, r/R=0.96
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Figure 8. Barycentric map in turbulent swirl flow. Numbers
in figure denote measuring positions as in Figure 7
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Figure 9. Distribution of principal values of anisotropy
tensor. Numbers in figure denote measuring positions as in
Figure 7

24 =VOL. 42, No 1, 2014

The AIM (Figure 7) shows that the nearest state to
isotropy is at /R =0.65 (number 9 in Figures 7, 8 and
9), while the BM (Figure 8) gives different visual
impression that the nearest state to isotropy is at
r/R=0.55 (number 8 in Figures 7, 8 and 9). We
cannot make clear conclusion which map shows better
the real state in this case because the differences
between principal anisotropy components are small at
r/R=0.55 and r/R=0.65, which can be seen from
Figure 9.

Lumley [1] introduced parameter J to distinguish
isotropic  from two-component turbulence. The
vanishing of this parameter (J =0) indicates two-
component state but in the case of isotropic turbulence
this parameter becomes unity (J =1). This parameter
can be expressed using anisotropy invariant coordinates
as

J(,, 11,) =1—- 9(% 1, - II,),

but can also be expressed as a function of coefficients
used in the BM
J(Cie, Coe) =1-(Cie + Cy) .

Figure 10 shows radial distribution of parameter J
calculated in these two ways.

1 T T T T
0.9 b
0.8 b
0-7 | -

ﬁ
0.6 b
0.5 b
1 B —— J(IL,IIL) | |
Q_\»)(/- : T J(CIC7C2C)
0 0.2 0.4 0.6 0.8 1

Figure 10. Distribution of parameter J calculated in
different ways

Similar trends for these two curves are observed,
with the difference that the all anisotropy states that
parameter J(II,,IIl,) describes are closer to isotropy

than the corresponding states that parameter
J(Ci¢,Cy.) describes. That means that curve
J(Cy;,Cy,) calculated with coefficients which are
linear functions of Reynolds stresses has a sharper
criterion of isotropy than the curve J(II,,II1,)

calculated with anisotropy invariant coordinates which
are nonlinear function of Reynolds stresses.

5. CONCLUSIONS

Anisotropy invariant map (AIM) and barycentric map
(BM) were used in order to evaluate anisotropy of
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turbulence. Experimental data were utilised to
investigate differences between these two maps. It is
shown that swirl significantly changed the anisotropy of
turbulence. Different states of anisotropy corresponded
to different parts of flow regions: points in vortex core
were close to axisymmetric contraction state, points in
shear layer tended towards axisymmetric expansion
state with radius increase and points in mean flow
region were parallel to axisymmetric contraction state.
Comparing of the same anisotropy states in the AIM
and BM indicates that the BM provides better visual
interpretation than the AIM, when anisotropy state is
close to axisymmetric expansion line in the AIM.

Anisotropy invariants  (II,,/lI,) are nonlinear

functions of anisotropy tensor components while
coefficients used in forming of BM are linear functions
of principal anisotropy tensor components. This is the
reason why differences are observed in these two maps.
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AHAJIM3A AHU30TPOITHOCTH
TYPBYJIEHTHOI' BUXOPHOI' CTPYJAIbA

Hapko P. Panenxosuh, Jena M. Bypa3sep, Bophe M.
HoBkoBuh

VY pany cy npuMemeHe ABe BPCTe HHBApUjaHTHUX Maria
Kako OM ce TPOIEHHO CTENeH aHWU30TPOITHOCTH
TypOyJICeHTHOT BUXOpPHOT cTpyjama. KopumheHe cy
WHBapHjaHTHA Mama, Kojy cy npemiaoxwi Jlammu u
BbymaHn, kao 1 OapULIEHTPUYHA Mamna. AHAJIH3UPaHE Cy
pasimKke |y  BH3YEIHOM  IIPEICTaBJbalby  CTama
AQHW30TPOIHOCTH M W3BEJIEHE Cy MaTeMaTHYKe OCHOBE
3a 00e Mame. AHAIM30M EKCIEPUMEHTAHUX MOJaTaKa
je TOKa3aHO Na IOCTOjW 3Ha4ajaH yTWIa] BHXOpa Ha
aHm3oTponHOCT TypOynenmuje. Kopumheme Mana
AQHM30TPOMHOCTH TOKa3yje Nia Cy pa3iuyuTe 00JacTH
CTPYJHOT MOJba Y BUXOPHOM CTpYjamby OKapakTephCcaHe
PA3IMYNTHM CTalbHMa aHU30TPOIHOCTH.
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