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Anisotropy Analysis of Turbulent Swirl 
Flow 
 
Anisotropy invariant map proposed by Lumley and Newman and 
barycentric map proposed by Banerjee et al. were used in order to 
estimate the degree of anisotropy in turbulent swirl flow. The differences in 
visual interpretations of anisotropy states in these two maps were analysed 
and mathematical basis of these two maps was derived. Experimental data 
reveal that there is significant influence of swirl on the anisotropy of 
turbulence. Anisotropy invariant mapping shows that different flow regions 
of swirl flow are characterized by different anisotropy states.  
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1. INTRODUCTION  
 

From a computational point of view, it is of 
considerable interest to have some knowledge about the 
expected anisotropy in the flow field [1]. The modelling 
of the Reynolds stress anisotropy tensor is the most 
important and delicate element in the Reynolds stress 
model, where the knowledge of the departure from 
isotropy is essential. In [2] and [3] the anisotropy of 
turbulent flow was analysed. Useful tools to quantify 
the degree of anisotropy in turbulent flows are 
anisotropy invariant maps. These maps represent a 
domain within which all realisable Reynolds stress 
invariants must lie. In current work, two representations 
of these maps are used: anisotropy invariant map (AIM) 
which is a representation proposed by Lumley and 
Newman [4] and a barycentric map (BM), a 
representation proposed by Banerjee et al. [5]. In this 
paper, the anisotropy analyses is conducted using these 
two maps in case of a swirl flow.  

Swirl flows are an important class of flows, common 
in nature and in many technical applications. These 
highly complex flows have been studied for a long time, 
but the modelling and understanding of such flows still 
represents a challenge to turbulence modellers. 

Tangential velocity distributions from experimental 
investigations of swirl flows showed that there are four 
regions in the flow: vortex core, shear vortex layer, 
main flow and wall region [6]. Each of these regions has 
important properties and their existence makes physical-
mathematical modelling of such flows very 
complicated. Experimental results from a great number 
of experimental studies demonstrated that swirl decayed 
with axial distance.  

Negative eddy viscosities were observed in certain 
parts of swirl flow [7]. Obviously, standard two-
equation model cannot successfully predict these flows. 
The reason is that swirl flow is characterized by 
anisotropy in eddy viscosity in contrast to two-equation 

model of turbulence, which assumes the eddy viscosity 
to be isotropic. Reynolds stress model is suggested in 
order to predict turbulence in swirl flow field 
successfully [8]. The motivation for the development of 
the Reynolds stress model is the inability of any eddy-
viscosity model to allow a non-local relationship 
between Reynolds stress tensor and mean strain rate 
tensor, that is, history effects.  

The aim of this paper is to present and analyse part 
of experimental results from [9] in order to improve our 
knowledge of the anisotropy in swirl flow. The AIM 
and BM were used in order to obtain easier 
understanding of swirl influence on the anisotropy of 
turbulence. Mathematical basis of both maps are 
explained in the paper. Differences between these two 
maps were analysed in order to determine which map 
gives better graphical result. 
 
2. SWIRL FLOW PROPERTIES 
 
Radial distributions of mean velocity components and 
terms of Reynolds stress tensor are presented in this 
section. Measurements of these quantities were carried 
out in 12 appropriately selected points in one cross 
section of a straight circular pipe. More details about 
experiment can be found in [9]. 
 
2.1 Mean velocity distribution 
 
Profiles of tangential mean and axial mean velocities are 
plotted in Figure 1. These velocities are normalized with 
bulk velocity mU . Radial velocity component is 

negligible and this velocity profile is not shown. 
As it is said earlier, there are four characteristic 

regions within the swirling flow. These regions have 
important structural and statistical properties. 

Vortex core is characterized by linear variation of 
the tangential velocity component with radial distance 
from the pipe centreline. Vortex core, for the velocity 
profile plotted in Figure 1, extends up to 0.23r R  . 

Shear flow region is characterized by weak tangential 
velocity variation. It extends approximately between 
0.23 0.56r R   for velocity profile shown in Figure 

1. Mean flow region is characterized with free vortex 
distribution. For considered velocity profile beginning 
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Figure 1. Normalized mean velocity profiles  

of this region is defined at 0.56.r R   Near the wall, 

tangential velocity distribution reaches zero very 
rapidly. Measurements could not be made near the wall 
and due to this fact, end of the mean flow region i.e. 
beginning of the wall region is not specified for the 
velocity profile from Figure 1.  
 
2.2 Reynolds stresses distributions 
 
Radial distributions of turbulence intensities normalized 
with bulk velocity mU  are shown in Figure 2. These 

distributions have similar profiles. Turbulence 
intensities are in range from 8 to 27 percent of the bulk 
velocity mU . 

 
Figure 2. Normalized distributions of turbulence intensities 

Turbulent shear stresses distributions over cross 
section are presented in Figure 3. These distributions do 
not have similar profiles in contrast to distributions of 
turbulence intensities shown in Figure 2. Reynolds 

stress component uv  has negative values in region 
0.05 0.62r R   and a small positive value in region 
0.62 0.96r R  . The component vw is positive 

through the range in which the measurements are 

performed. The Reynolds stress uw  is positive in the 

region 0.05 0.38r R  , negative for 0.38 0.7r R   

and negligible for 0.7 0.96r R  . 

 
Figure 3. Normalized profiles of off-diagonal components 
of the Reynolds stress tensor 

There is a big interaction between mean and 
fluctuating velocity field. This interaction causes the 
highly complex flow field. 
 
3. REPRESENTATION OF ANISOTROPY IN 

TURBULENCE 
 
The Reynolds stress tensor is a symmetric second-order 
tensor, given by 

 

2

2

2

.ij

u uv uw

T vu v vw

wu wv w



 
 
 

   
 
 
 

  

It is useful to decompose this tensor into the sum of 

its deviator (traceless tensor), '
ij  and a spherical 

(isotropic) tensor, ij  , as follows: 

 ' .ij ij ij      

The spherical part is defined as  

 21 1
,

3 3ij kk ij ijq       

where 2q  represents the trace of the Reynolds stress 

tensor and it is equal to twice the kinetic energy of 

turbulence 2 2q k . 

The deviator is now expressed as 

 ' 21 1
.

3 3ij ij kk ij i j iju u q          
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When the deviator '
ij  is normalised with the trace of 

Reynolds stress tensor 2 ,q  the anisotropy tensor 

ijA a  is obtained as follows [4] 

 
'

2 2

1
.

3
ij i j

ij ij
u u

a
q q


    (1) 

It isolates the property of anisotropy of Reynolds 
stress tensor from other flow properties. The anisotropy 
tensor is dimensionless, has zero trace and in the case of 
isotropy it vanishes identically.  

Having in mind that the anisotropy tensor is 
symmetric, i.e. ij jia a , it is possible to find an 

orthonomal basis  1 2 3, ,n n n such that:  

 ,i i iA n n   

or in matrix form  
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Vectors in that diagonalize anisotropy tensor A  are 

called eigenvectors (or principal directions) and i are 

called eigenvalues (or principal values) of anisotropy 
tensor A . The symmetry property of anisotropy tensor 

A  ensures that all three eigenvalues and the associated 

eigenvalues are real. The eigenvalues of anisotropy 
tensor A are determined by solving the characteristic 

equation  

 det( ) 0A I   or 0.ij ija     

Evaluation of this determinant leads to a characteristic 
polynomial of A , which is given by 

 3 2
1 2 3 0,I I I       (2)  

where  
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The scalar coefficients I1, I2 and I3 are called the 
first, second and third invariant of A . With respect to 

(1), it is clear that the first invariant I1 is equal to zero, 
and the second and third invariant are reduced to:  
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Instead of the second and third invariant, I2 and I3, 
the turbulence state is analysed with invariants IIa and 
IIIa which differ from former invariants by only a 
numerical factor as follows  

 
a 2

a 3

2  and

3 .

ij ji

ij jk ki

II I a a

III I a a a
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 
  

A cross-plot of aII versus ,aIII  shown in Figure 4, 

represents anisotropy invariant map (AIM) where aII  

represents the degree of anisotropy and aIII  indicates 

the nature of anisotropy [3].  

 
Figure 4. Anisotropy invariant map (AIM) 

Characteristic states of turbulence are represented by 
the boundaries of this map. There are two curves 
extending from the origin. Right curve 

(
2/33 4

aa 2 3
IIIII    

 
) corresponds to axisymmetric 

expansion in which one diagonal component of 
Reynolds stress tensor is larger than the other two, equal 

components. The left curve (
2/33 4

aa 2 3
IIIII    

 
) 

represents an axisymmetric contraction in which one 
component is smaller than the other two components, 
which are equal.  

Limiting points at the end of these curves are 
important: isotropic turbulence at the origin  0,0 , 

isotropic two-component turbulence 
1 1

,
36 6

  
 

at the 

end of the left curve and one-component turbulence 
2 2

,
9 3

 
 
 

 at the end of right curve. Upper boundary line 

of the AIM represents the two-component turbulence 

( a a
2

2
9

II III  ) which is reached near the solid walls 

where the wall-normal component of the fluctuations 
vanishes much faster than the other components [8]. 
Anisotropy invariants  a a,II III  are nonlinear 

functions of Reynolds stress tensor components which 
is the main flaw of this concept.  

Another way to visualize the anisotropy of the 
turbulence is using a barycentric map (BM). The 
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anisotropy states in this map are linear functions of the 
Reynolds stresses. The BM is shown in Figure 5. 

The turbulence state in BM is characterised by 

reorganised anisotropy tensor rA  that can be written in 

the matrix form as 

 
1

r
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A
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


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where the eigenvalues 1 2 3,   and     are sorted in 

decreasing order, i.e. 1 max ,  2 int   and 

3 min   where max int,     and min  denote 

maximum, intermediate and minimum value of the roots 
of the characteristic polynomial (2). It is straightforward 
to prove (with respect to (1)) that interval between 

which eigenvalues can be calculated is 
1 2

.
3 3i    

The limiting states of turbulence are determined by the 

number of non-zero eigenvalues of tensor rA and by 

equalities between them. These limiting states are: one-

component state 1 2 3
2 1

( ,  )
3 3

      , two-

component state 1 2 3
1 1

( , )
6 3

       and three-

component state 1 2 3( 0).      Corresponding 

basis matrices are 

 r
1c
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0 1/ 3 0

0 0 1/ 3

A

 
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r
2c
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A
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0 0 0 .
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A
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Every realisable turbulence state can be expressed as a 
combination of the above limiting states as  

 r r r ra a a
1c 2c 3c1c 2c 3c

,A C A C A C A    (3) 

where: 

  a a a
1c 2c 3c, ,C C C   

are coefficients such that  

 a a a
1c 2c 3c 1,C C C     

and the values of these coefficients is in the range  0,1 .  

A value of 1 corresponds to respective limiting state and 
a value of 0 means that the respective limiting state is 
away from the observed state. Above properties are 

satisfied by setting the coefficients  a a a
1c 2c 3c, ,C C C  as 

the functions of the eigenvalues of the tensor r ,A as 

follows:  

  

a
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In order to plot BM, the basis matrices r
1c

A , r
2c

A  and 

r
3c

A are identified as the three vertices of the triangle, 

with coordinates 1c 1c 2c 2c( , ),  ( , ) x y x y and 3c 3c( , ).x y  

The coordinates of vertices should satisfy the form of 
the equilateral triangle because this form does not 
introduce visual bias of the limiting states.  

The coordinates of a new point are calculated, as an 
analogy to (3), as:  

 n 1c 1c 2c 2c 3c 3c

n 1c 1c 2c 2c 3c 3c

,

.

x C x C x C x

y C y C y C y

  

  
  

 
Figure 5. Barycentric map (BM) 

 
4. INVARIANT MAPS APPLICATION IN TURBULENT 

SWIRL FLOW 
 
Figure 6 shows radial distributions of components of the 
Reynolds stress anisotropy tensor ija . The variations in 

these distributions show highly complex structure of 
turbulence.  

An important characteristic of turbulent swirl flow is 
distribution of anisotropy component uva . Negative 

values of this component in vortex core and shear flow 
region mean that the transfer of axial linear momentum 
is directed toward the pipe axis, which will result with 
smoother downstream velocity profile [9]. 

While components of anisotropy tensor ija  

represent the degree of anisotropy of Reynolds stress 
tensor components, overall anisotropy can be more 
clearly seen from anisotropy maps. The AIM is plotted 
in Figure 7, and the BM is plotted in Figure 8.  

The visualisation of tensor fields improves the 
understanding and interpretation of tensor data. Due to 
that fact, the shape of Reynolds stress tensor for 
characteristic measuring points is given in Figure 7. The 
equation which defines the shape of Reynolds stress 
tensor is  
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This is an ellipsoid equation whose principal axes 
coincide with the stress axes and radii are equal to the 
absolute value of the eigenvalues 1 ,  2  and 3  of 

the Reynolds stress tensor. If the 1  is large and the 

other two eigenvalues are small but equal, 2 3  , the 

shape of stress tensor would be prolate spheroid. On the 
other hand, if 1  is smaller than the other two 

eigenvalues, the shape of the stress tensor would be the 
oblate spheroid [10]. These observations are confirmed 
in Figure 7: at measuring point number 3 shape of stress 
tensor is oblate spheroid and this shape gradually 
changes toward prolate spheroid at measuring point 
number 7 

The AIM and BM represent the same information 
about overall anisotropy in different ways. Anisotropy 
states in the AIM are nonlinear function of stresses, 
while anisotropy states in the BM are linear function of 
stresses.  

For the first two measuring points, which belong to 
the vortex core, r/R=0.05 and r/R=0.15anisotropy states 
lie close to axisymmetric contraction line in both maps, 
in the AIM (Figure 7) and in the BM (Figure 8). The 

next six measuring points correspond to shear layer. 
With radius increase, corresponding invariants in the 
AIM, i.e. corresponding points in the BM tend toward 
axisymmetric expansion line.  

The last four measuring points correspond to mean 
flow region. Corresponding data shift parallel to 
axisymmetric contraction line in both maps. In order to 
analyse the difference between the AIM and the BM, 
Figure 9 shows radial distribution of principal values of 
anisotropy tensor. Now it will be considered anisotropy 
state from measuring point r/R= 0.50 (number 7 in 
Figures 7, 8 and 9). Figure 9 shows that this state does 
not represent axisymmetric expansion turbulence, since 
principal anisotropy tensor components λ1 and λ2 are not 
equal. Component λ2 is 24% larger than component λ1. 
However, this state lies on axisymmetric expansion 
curve in the AIM (Figure 7), while it is shown a little 
offset from axisymmetric expansion line in the BM 
(Figure 8). 

Another difference between the AIM and the BM is 
observed at r/R= 0.65 (number 9 in Figures 7, 8 and 9). 
Figure 9 shows that there are significant differences 
between principal anisotropy tensor components λ1 and 
λ2 so this state cannot be classified as near to 
axisymmetric expansion turbulence. 

 
Figure 6. Distributions of Reynolds stress anisotropy tensor components 
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Moreover, component 2 is 376%  larger than 1.  

This important fact is neglected in the AIM (Figure 7) 
since the anisotropy state is located near the right curve. 
This same state is equally distanced from left and right 
line in the BM (Figure 8). It seems that the BM is more 
sensitive to difference between anisotropy tensor 
components, which results with better graphical 
interpretation than the AIM.  

 
Figure 7. Anisotropy invariant map with ellipsoid shapes 
formed by Reynolds stress tensor in turbulent swirl flow. 
Numbers in figure denote measuring positions: 1, r/R=0.05; 
2, r/R=0.15; 3, r/R=0,25; 4, r/R=0.35; 5, r/R=0,40; 6, r/R=0.45; 
7, r/R=0.50; 8, r/R=0.55; 9, r/R=0.65; 10, r/R=0.75; 11, 
r/R=0.85; 12, r/R=0.96 

 
Figure 8. Barycentric map in turbulent swirl flow. Numbers 
in figure denote measuring positions as in Figure 7 

 
Figure 9. Distribution of principal values of anisotropy 
tensor. Numbers in figure denote measuring positions as in 
Figure 7 

The AIM (Figure 7) shows that the nearest state to 
isotropy is at 0.65r R   (number 9 in Figures 7, 8 and 
9), while the BM (Figure 8) gives different visual 
impression that the nearest state to isotropy is at 

0.55r R   (number 8 in Figures 7, 8 and 9). We 
cannot make clear conclusion which map shows better 
the real state in this case because the differences 
between principal anisotropy components are small at 

0.55r R   and 0.65r R  , which can be seen from 
Figure 9.  

Lumley [1] introduced parameter J  to distinguish 
isotropic from two-component turbulence. The 
vanishing of this parameter ( 0)J   indicates two-
component state but in the case of isotropic turbulence 
this parameter becomes unity ( 1)J  . This parameter 
can be expressed using anisotropy invariant coordinates 
as 

 a a a a
1

( , ) 1 9( ),
2

J II III II III     

but can also be expressed as a function of coefficients 
used in the BM  

 1c 2 1c 2c( , ) 1 ( )cJ C C C C   .  

Figure 10 shows radial distribution of parameter J  
calculated in these two ways.  

 
Figure 10. Distribution of parameter J calculated in 
different ways 

Similar trends for these two curves are observed, 
with the difference that the all anisotropy states that 
parameter a a( , )J II III  describes are closer to isotropy 
than the corresponding states that parameter 

1c 2( , )cJ C C  describes. That means that curve 

1c 2( , )cJ C C  calculated with coefficients which are 
linear functions of Reynolds stresses has a sharper 
criterion of isotropy than the curve a a( , )J II III  
calculated with anisotropy invariant coordinates which 
are nonlinear function of Reynolds stresses. 
 
5. CONCLUSIONS 
 
Anisotropy invariant map (AIM) and barycentric map 
(BM) were used in order to evaluate anisotropy of 
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turbulence. Experimental data were utilised to 
investigate differences between these two maps. It is 
shown that swirl significantly changed the anisotropy of 
turbulence. Different states of anisotropy corresponded 
to different parts of flow regions: points in vortex core 
were close to axisymmetric contraction state, points in 
shear layer tended towards axisymmetric expansion 
state with radius increase and points in mean flow 
region were parallel to axisymmetric contraction state. 
Comparing of the same anisotropy states in the AIM 
and BM indicates that the BM provides better visual 
interpretation than the AIM, when anisotropy state is 
close to axisymmetric expansion line in the AIM. 
Anisotropy invariants  a a,II III  are nonlinear 

functions of anisotropy tensor components while 
coefficients used in forming of BM are linear functions 
of principal anisotropy tensor components. This is the 
reason why differences are observed in these two maps. 
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АНАЛИЗА АНИЗОТРОПНОСТИ 

ТУРБУЛЕНТНОГ ВИХОРНОГ СТРУЈАЊА 
 
Дарко Р. Раденковић, Јела М. Буразер, Ђорђе М. 

Новковић 
 
У раду су примењене две врсте инваријантних мапа 
како би се проценио степен анизотропности 
турбулентног вихорног струјања. Коришћене су 
инваријантна мапа, коју су предложили Ламли и 
Њуман, као и барицентрична мапа. Анализиране су 
разлике у визуелном представљању стања 
анизотропности и изведене су математичке основе 
за обе мапе. Анализом експерименталних података 
је показано да постоји значајан утицај вихора на 
анизотропност турбуленције. Коришћење мапа 
анизотропности показује да су различите области 
струјног поља у вихорном струјању окарактерисане 
различитим стањима анизотропности. 

 


