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Abstract. In this paper, we prove some fixed point theorems for 1-monotone maps on partially ordered
S-metric spaces. Our results generalize fixed point theorems in [1] and [7] for maps on metric spaces to the
structure of S-metric spaces. Also, we give examples to demonstrate the validity of the results.

1. Introduction and Preliminaries

The fixed point theory in generalized metric spaced were investigated by many authors. In 2012, Sedghi
et al. [23] introduced the notion of an S-metric space and proved that this notion is a generalization of a
metric space. Also, they proved some properties of S-metric spaces and stated some fixed point theorems
on such spaces. An interesting work naturally rises is to transport certain results in metric spaces and
known generalized metric spaces to S-metric spaces. After that, Sedghi and Dung [22] proved a general
fixed point theorem in S-metric spaces which is a generalization of [23, Theorem 3.1] and obtained many
analogues of fixed point theorems in metric spaces for S-metric spaces. In 2013, Dung [8] used the notion
of a mixed weakly monotone pair of maps to state a coupled common fixed point theorem for maps on
partially ordered S-metric spaces and generalized the main results of [6], [10], [15] into the structure of
S-metric spaces. In recent times, Hieu et al. [11] proved a fixed point theorem for a class of maps depending
on another map on S-metric spaces and obtained the fixed point theorems in [16] and [23]. Very recent, An
et al. [4] showed some relations between S-metric spaces and metric-type space in the sense of Khamsi [17].

In 2008, Ćirić et al. [7] introduced the concept of a 1-monotone map and proved some common fixed
point theorems for 1-monotone generalized nonlinear contractions in partially ordered complete metric
spaces. These results give rise to stating analogous fixed point theorems for maps on partially ordered
S-metric spaces.

In this paper, we prove some fixed point theorems for 1-monotone maps on partially ordered S-metric
spaces and generalize fixed point theorems in [1] and [7] on metric spaces to the structure of S-metric spaces.
Also, we give examples to demonstrate the validity of the results.

First, we recall some notions and lemmas which will be useful in what follows.
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Definition 1.1 ([23], Definition 2.1). Let X be a non-empty set and S : X × X × X −→ [0,∞) be a function such
that for all x, y, z, a ∈ X,

1. S(x, y, z) = 0 if and only if x = y = z.
2. S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

Then S is called an S-metric on X and (X,S) is called an S-metric space.

The following is the intuitive geometric example for S-metric spaces.

Example 1.2 ([23], Example 2.4). Let X = R2 and d be the ordinary metric on X. Put

S(x, y, z) = d(x, y) + d(x, z) + d(y, z)

for all x, y, z ∈ R2, that is, S is the perimeter of the triangle given by x, y, z. Then S is an S-metric on X.

Lemma 1.3 ([23], Lemma 2.5). Let (X,S) be an S-metric space. Then S(x, x, y) = S(y, y, x) for all x, y ∈ X.

Lemma 1.4 ([8], Lemma 1.6). Let (X,S) be an S-metric space. Then

S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z) and S(x, x, z) ≤ 2S(x, x, y) + S(z, z, y)

for all x, y, z ∈ X.

Proof. It is a direct consequence of Definition 1.1 and Lemma 1.3.

Definition 1.5 ([23]). Let (X,S) be an S-metric space.

1. A sequence {xn} is called convergent to x in (X,S), written lim
n→∞

xn = x, if lim
n→∞

S(xn, xn, x) = 0.

2. A sequence {xn} is called Cauchy in (X,S) if lim
n,m→∞

S(xn, xn, xm) = 0.

3. (X,S) is called complete if every Cauchy sequence in (X,S) is a convergent sequence in (X,S).

From [23, Examples in page 260], we have the following.

Example 1.6. 1. Let R be the real line. Then S(x, y, z) = |x − z| + |y − z| for all x, y, z ∈ R, is an S-metric on R.
This S-metric is called the usual S-metric on R. Furthermore, the usual S-metric space R is complete.

2. Let Y be a non-empty set ofR. Then S(x, y, z) = |x− z|+ |y− z| for all x, y, z ∈ Y, is an S-metric on Y. If Y is a
closed subset of the usual metric space R, then the S-metric space Y is complete.

Lemma 1.7 ([23], Lemma 2.12). Let (X,S) be an S-metric space. If lim
n→∞

xn = x and lim
n→∞

yn = y then lim
n→∞

S(xn, xn, yn) =

S(x, x, y).

The following lemma shows that every metric space is an S-metric space.

Lemma 1.8 ([8], Lemma 1.10). Let (X, d) be a metric space. Then we have

1. Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X.
2. lim

n→∞
xn = x in (X, d) if and only if lim

n→∞
xn = x in (X,Sd).

3. {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Sd).
4. (X, d) is complete if and only if (X,Sd) is complete.

The following example proves that the inversion of Lemma 1.8 does not hold.
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Example 1.9 ([8], Example 1.10). Let X = R and let S(x, y, z) = |y + z − 2x| + |y − z| for all x, y, z ∈ X. By [23,
Example (1), page 260], (X,S) is an S-metric space. We prove that there does not exist any metric d such that
S(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X. Indeed, suppose to the contrary that there exists a metric d with

S(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X. Then d(x, z) =
1
2
S(x, x, z) = |x − z| and d(x, y) = S(x, y, y) = 2|x − y|

for all x, y, z ∈ X. It is a contradiction.

Definition 1.10 ([7], Definition 2.1). Let (X,�) be a partially ordered set and let F, 1 : X −→ X be two maps.

1. F is called 1-non-decreasing if 1x � 1y implies Fx � Fy for all x, y ∈ X.
2. F is called 1-non-increasing if 1x � 1y implies Fy � Fx for all x, y ∈ X.

Definition 1.11. Let X be a non-empty set and let f , 1 : X −→ X be two maps.

1. f and 1 are called to commute at x ∈ X if f (1x) = 1( f x).
2. f and 1 are called to commute [14] if f (1x) = 1( f x) for all x ∈ X.

In 2006, Mustafa and Sims [18] introduced the notion of a G-metric. Then, fixed point theory in G-metric
spaces were investigated by many authors [2], [5], [9], [19], [20].

Definition 1.12 ([18], Definition 3). Let X be a non-empty set and G : X × X × X −→ [0,∞) be a function such
that for all x, y, z, a ∈ X,

(G1) G(x, y, z) = 0 if x = y = z.
(G2) 0 < G(x, x, y) if x , y.
(G3) G(x, x, y) ≤ G(x, y, z) if y , z.
(G4) The symmetry on three variables

G(x, y, z) = G(x, z, y) = G(y, x, z) = G(y, z, x) = G(z, x, y) = G(z, y, x).

(G5) The rectangle inequality G(x, y, z) ≤ G(x, a, a) + G(a, y, z).

Then G is called a G-metric on X and the pair (X,G) is called a G-metric space.

2. Main Results

In 2012, Sedghi et al. [23] asserted that an S-metric is a generalization of a G-metric, that is, every G-metric
is an S-metric, see [23, Remarks 1.3] and [23, Remarks 2.2]. The following Example 2.1 and Example 2.2
show that this assertion is not correct. Moreover, the class of all S-metrics and the class of all G-metrics are
distinct.

Example 2.1. There exists a G-metric which is not an S-metric.

Proof. Let X be the G-metric space in [18, Example 1]. Then we have

2 = G(a, b, b) > 1 = G(a, a, b) + G(b, b, b) + G(b, b, b).

This proves that G is not an S-metric on X.

Example 2.2. There exists an S-metric which is not a G-metric.

Proof. Let (X,S) be the S-metric space in Example 1.9. We have

S(1, 0, 2) = |0 + 2 − 2| + |0 − 2| = 2

S(2, 0, 1) = |0 + 1 − 4| + |0 − 1| = 4.

Then S(1, 0, 2) , S(2, 0, 1). This proves that S is not a G-metric.
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Also in 2012, Jeli and Samet [12] showed that a G-metric is not a real generalization of a metric. Further,
they proved that the fixed point theorems proved in G-metric spaces can be obtained by usual metric
arguments. The similar approach may be found in [3]. The key of that approach is the following lemma.

Lemma 2.3 ([12]). Let (X,G) be a G-metric space. Then we have

1. d(x, y) = max
{
G(x, y, y),G(y, x, x)

}
for all x, y ∈ X is a metric on X.

2. d(x, y) = G(x, y, y) for all x, y ∈ X is a quasi-metric on X.

The following example shows that Lemma 2.3 does not hold if the G-metric is replaced by an S-metric
space. Then, in general, arguments in [3], [12] are not applicable to S-metric spaces.

Example 2.4. 1. There exists an S-metric space (X,S) such that

d(x, y) = max
{
S(x, y, y),S(y, x, x)

}
for all x, y ∈ X is not a metric on X.

2. There exists an S-metric space (X,S) such that d(x, y) = S(x, y, y) for all x, y ∈ X is not a quasi-metric on X.

Proof. (1). Let X = {1, 2, 3} and let S be defined as follows.

S(1, 1, 1) = S(2, 2, 2) = S(3, 3, 3) = 0,
S(1, 2, 3) = S(1, 3, 2) = S(2, 1, 3) = S(3, 1, 2) = 4,
S(2, 3, 1) = S(3, 2, 1) = S(1, 1, 2) = S(1, 1, 3) = S(2, 2, 1) = S(3, 3, 1) = 2,
S(2, 2, 3) = S(3, 3, 2) = 6,
S(2, 3, 2) = S(3, 2, 2) = S(3, 2, 3) = S(2, 3, 3) = 3,
S(1, 2, 1) = S(2, 1, 1) = S(1, 3, 1) = S(3, 1, 1) = S(2, 1, 2) = S(1, 2, 2) = S(3, 1, 3) = S(1, 3, 3) = 1.

We have S(x, y, z) ≥ 0 for all x, y, z ∈ X and S(x, y, z) = 0 if and only if x = y = z. By simple calculations as in
Table 1, we see that the inequality

S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a)

holds for all x, y, z, a ∈ X. Then S is an S-metric on X.

S(x, y, z) a S(x, x, a) + S(y, y, a) + S(z, z, a)
S(1, 2, 3) = 4 1 S(1, 1, 1) + S(2, 2, 1) + S(3, 3, 1) = 0 + 2 + 2 = 4

2 S(1, 1, 2) + S(2, 2, 2) + S(3, 3, 2) = 2 + 0 + 6 = 8
3 S(1, 1, 3) + S(2, 2, 3) + S(3, 3, 3) = 2 + 6 + 0 = 8

S(1, 3, 2) = 4 1 S(1, 1, 1) + S(3, 3, 1) + S(2, 2, 1) = 0 + 2 + 2 = 4
2 S(1, 1, 2) + S(3, 3, 2) + S(2, 2, 2) = 2 + 6 + 0 = 8
3 S(1, 1, 3) + S(3, 3, 3) + S(2, 2, 3) = 2 + 0 + 6 = 8

S(2, 1, 3) = 4 1 S(2, 2, 1) + S(1, 1, 1) + S(3, 3, 1) = 2 + 0 + 2 = 4
2 S(2, 2, 2) + S(1, 1, 2) + S(3, 3, 2) = 0 + 2 + 6 = 8
3 S(2, 2, 3) + S(1, 1, 3) + S(3, 3, 3) = 6 + 2 + 0 = 8

S(2, 3, 1) = 2 1 S(2, 2, 1) + S(3, 3, 1) + S(1, 1, 1) = 2 + 2 + 0 = 4
2 S(2, 2, 2) + S(3, 3, 2) + S(1, 1, 2) = 0 + 6 + 2 = 8
3 S(2, 2, 3) + S(3, 3, 3) + S(1, 1, 3) = 6 + 0 + 2 = 8

S(3, 1, 2) = 4 1 S(3, 3, 1) + S(1, 1, 1) + S(2, 2, 1) = 2 + 0 + 2 = 4
2 S(3, 3, 2) + S(1, 1, 2) + S(2, 2, 2) = 6 + 2 + 0 = 8
3 S(3, 3, 3) + S(1, 1, 3) + S(2, 2, 3) = 0 + 2 + 6 = 8
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S(3, 2, 1) = 2 1 S(3, 3, 1) + S(2, 2, 1) + S(1, 1, 1) = 2 + 2 + 0 = 4
2 S(3, 3, 2) + S(2, 2, 2) + S(1, 1, 2) = 6 + 0 + 2 = 8
3 S(3, 3, 3) + S(2, 2, 3) + S(1, 1, 3) = 0 + 6 + 2 = 8

S(1, 1, 2) = 2 1 S(1, 1, 1) + S(1, 1, 1) + S(2, 2, 1) = 0 + 0 + 2 = 2
2 S(1, 1, 2) + S(1, 1, 2) + S(2, 2, 2) = 2 + 2 + 0 = 4
3 S(1, 1, 3) + S(1, 1, 3) + S(2, 2, 3) = 2 + 2 + 6 = 10

S(1, 2, 1) = 1 1 S(1, 1, 1) + S(2, 2, 1) + S(1, 1, 1) = 0 + 2 + 0 = 2
2 S(1, 1, 2) + S(2, 2, 2) + S(1, 1, 2) = 2 + 0 + 2 = 4
3 S(1, 1, 3) + S(2, 2, 3) + S(1, 1, 3) = 2 + 6 + 2 = 10

S(2, 1, 1) = 1 1 S(2, 2, 1) + S(1, 1, 1) + S(1, 1, 1) = 2 + 0 + 0 = 2
2 S(2, 2, 2) + S(1, 1, 2) + S(1, 1, 2) = 0 + 2 + 2 = 4
3 S(2, 2, 3) + S(1, 1, 3) + S(1, 1, 3) = 6 + 2 + 2 = 10

S(1, 1, 3) = 2 1 S(1, 1, 1) + S(1, 1, 1) + S(3, 3, 1) = 0 + 0 + 2 = 2
2 S(1, 1, 2) + S(1, 1, 2) + S(3, 3, 2) = 2 + 2 + 6 = 10
3 S(1, 1, 3) + S(1, 1, 3) + S(3, 3, 3) = 2 + 2 + 0 = 4

S(1, 3, 1) = 1 1 S(1, 1, 1) + S(3, 3, 1) + S(1, 1, 1) = 0 + 2 + 0 = 2
2 S(1, 1, 2) + S(3, 3, 2) + S(1, 1, 2) = 2 + 6 + 2 = 10
3 S(1, 1, 3) + S(3, 3, 3) + S(1, 1, 3) = 2 + 0 + 2 = 4

S(3, 1, 1) = 1 1 S(3, 3, 1) + S(1, 1, 1) + S(1, 1, 1) = 2 + 0 + 0 = 2
2 S(3, 3, 2) + S(1, 1, 2) + S(1, 1, 2) = 6 + 2 + 2 = 10
3 S(3, 3, 3) + S(1, 1, 3) + S(1, 1, 3) = 0 + 2 + 2 = 4

S(2, 2, 1) = 2 1 S(2, 2, 1) + S(2, 2, 1) + S(1, 1, 1) = 2 + 2 + 0 = 4
2 S(2, 2, 2) + S(2, 2, 2) + S(1, 1, 2) = 0 + 0 + 2 = 4
3 S(2, 2, 3) + S(2, 2, 3) + S(1, 1, 3) = 6 + 6 + 2 = 14

S(2, 1, 2) = 1 1 S(2, 2, 1) + S(1, 1, 1) + S(2, 2, 1) = 2 + 0 + 2 = 4
2 S(2, 2, 2) + S(1, 1, 2) + S(2, 2, 2) = 0 + 2 + 0 = 2
3 S(2, 2, 3) + S(1, 1, 3) + S(2, 2, 3) = 6 + 2 + 6 = 14

S(1, 2, 2) = 1 1 S(1, 1, 1) + S(2, 2, 1) + S(2, 2, 1) = 0 + 2 + 2 = 4
2 S(1, 1, 2) + S(2, 2, 2) + S(2, 2, 2) = 2 + 0 + 0 = 2
3 S(1, 1, 3) + S(2, 2, 3) + S(2, 2, 3) = 2 + 6 + 6 = 14

S(1, 3, 3) = 1 1 S(1, 1, 1) + S(3, 3, 1) + S(3, 3, 1) = 0 + 2 + 2 = 4
2 S(1, 1, 2) + S(3, 3, 2) + S(3, 3, 2) = 2 + 6 + 6 = 14
3 S(1, 1, 3) + S(3, 3, 3) + S(3, 3, 3) = 2 + 0 + 0 = 2

S(3, 1, 3) = 1 1 S(3, 3, 1) + S(1, 1, 1) + S(3, 3, 1) = 2 + 0 + 2 = 4
2 S(3, 3, 2) + S(1, 1, 2) + S(3, 3, 2) = 6 + 2 + 6 = 14
3 S(3, 3, 3) + S(1, 1, 3) + S(3, 3, 3) = 0 + 2 + 0 = 2

S(3, 3, 1) = 2 1 S(3, 3, 1) + S(3, 3, 1) + S(1, 1, 1) = 2 + 2 + 0 = 4
2 S(3, 3, 2) + S(3, 3, 2) + S(1, 1, 2) = 6 + 6 + 2 = 14
3 S(3, 3, 3) + S(3, 3, 3) + S(1, 1, 3) = 0 + 0 + 2 = 2

S(2, 2, 3) = 6 1 S(2, 2, 1) + S(2, 2, 1) + S(3, 3, 1) = 2 + 2 + 2 = 6
2 S(2, 2, 2) + S(2, 2, 2) + S(3, 3, 2) = 0 + 0 + 6 = 6
3 S(2, 2, 3) + S(2, 2, 3) + S(3, 3, 3) = 6 + 6 + 0 = 12

S(2, 3, 2) = 3 1 S(2, 2, 1) + S(3, 3, 1) + S(2, 2, 1) = 2 + 2 + 2 = 6
2 S(2, 2, 2) + S(3, 3, 2) + S(2, 2, 2) = 0 + 6 + 0 = 6
3 S(2, 2, 3) + S(3, 3, 3) + S(2, 2, 3) = 6 + 0 + 6 = 12

S(3, 2, 2) = 3 1 S(3, 3, 1) + S(2, 2, 1) + S(2, 2, 1) = 2 + 2 + 2 = 6
2 S(3, 3, 2) + S(2, 2, 2) + S(2, 2, 2) = 6 + 0 + 0 = 6
3 S(3, 3, 3) + S(2, 2, 3) + S(2, 2, 3) = 0 + 6 + 6 = 12

S(3, 3, 2) = 6 1 S(3, 3, 1) + S(3, 3, 1) + S(2, 2, 1) = 2 + 2 + 2 = 6
2 S(3, 3, 2) + S(3, 3, 2) + S(2, 2, 2) = 6 + 6 + 0 = 12
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3 S(3, 3, 3) + S(3, 3, 3) + S(2, 2, 3) = 0 + 0 + 6 = 6
S(3, 2, 3) = 3 1 S(3, 3, 1) + S(2, 2, 1) + S(3, 3, 1) = 2 + 2 + 2 = 6

2 S(3, 3, 2) + S(2, 2, 2) + S(3, 3, 2) = 6 + 0 + 6 = 12
3 S(3, 3, 3) + S(2, 2, 3) + S(3, 3, 3) = 0 + 6 + 0 = 6

S(2, 3, 3) = 3 1 S(2, 2, 1) + S(3, 3, 1) + S(3, 3, 1) = 2 + 2 + 2 = 6
2 S(2, 2, 2) + S(3, 3, 2) + S(3, 3, 2) = 0 + 6 + 6 = 12
3 S(2, 2, 3) + S(3, 3, 3) + S(3, 3, 3) = 6 + 0 + 0 = 6

S(1, 1, 1) = 0 1 S(1, 1, 1) + S(1, 1, 1) + S(1, 1, 1) = 0 + 0 + 0 = 0
2 S(1, 1, 2) + S(1, 1, 2) + S(1, 1, 2) = 2 + 2 + 2 = 6
3 S(1, 1, 3) + S(1, 1, 3) + S(1, 1, 3) = 2 + 2 + 2 = 6

S(2, 2, 2) = 0 1 S(2, 2, 1) + S(2, 2, 1) + S(2, 2, 1) = 2 + 2 + 2 = 6
2 S(2, 2, 2) + S(2, 2, 2) + S(2, 2, 2) = 0 + 0 + 0 = 0
3 S(2, 2, 3) + S(2, 2, 3) + S(2, 2, 3) = 6 + 6 + 6 = 18

S(3, 3, 3) = 0 1 S(3, 3, 1) + S(3, 3, 1) + S(3, 3, 1) = 2 + 2 + 2 = 6
2 S(3, 3, 2) + S(3, 3, 2) + S(3, 3, 2) = 6 + 6 + 6 = 18
3 S(3, 3, 3) + S(3, 3, 3) + S(3, 3, 3) = 0 + 0 + 0 = 0

Table 1: Calculations on S

On the other hand, if d(x, y) = max
{
S(x, y, y),S(y, x, x)

}
for all x, y ∈ X, then we have

d(1, 1) = d(2, 2) = d(3, 3) = 0,
d(1, 2) = d(2, 1) = d(1, 3) = d(3, 1) = 1,
d(2, 3) = d(3, 2) = 3.

It implies that 3 = d(2, 3) ≥ d(2, 1) + d(1, 3) = 1 + 1 = 2. Then d is not a metric on X.
(2). We consider the S-metric as in (1). If d(x, y) = S(x, y, y) for all x, y ∈ X, then we have

d(1, 1) = d(2, 2) = d(3, 3) = 0,
d(1, 2) = d(2, 1) = d(1, 3) = d(3, 1) = 1,
d(2, 3) = d(3, 2) = 3.

It implies that 3 = d(2, 3) ≥ d(2, 1) + d(1, 3) = 1 + 1 = 2. Then d is not a quasi-metric on X.

Now, we investigate the fixed point problem on S-metric spaces. The following result states the existence
of a common fixed point of two maps F and 1 on partially ordered S-metric spaces. For the existence of
a common fixed point of two maps F and 1 on partially ordered metric spaces, see [1, Theorem 2.2], [1,
Theorem 2.3] and [7, Theorem 2.2].

Theorem 2.5. Let (X,�,S) be a partially ordered S-metric space, F, 1 : X −→ X be two maps and ϕ : [0,∞) −→
[0,∞) be a function such that

1. X is complete.
2. ϕ is continuous and ϕ(t) < t for all t > 0.
3. F(X) ⊂ 1(X), F is a 1-non-decreasing map, 1(X) is closed and 1x0 � Fx0 for some x0 ∈ X.
4. For all x, y ∈ X with 1x � 1y,

S(Fx,Fx,Fy) ≤ max
{
ϕ(S(1x, 1x, 1y), ϕ(S(1x, 1x,Fx)), ϕ(S(1y, 1y,Fy)), ϕ

(
S(1x, 1x,Fy) + S(1y, 1y,Fx)

3

)}
.

5. If {1xn} is a non-decreasing sequence with lim
n→∞
1xn = 1z in 1(X), then 1xn � 1z � 1(1z) for all n ∈N.

Then F and 1 have a coincidence point. Furthermore, if F and 1 commute at the coincidence point, then F and 1
have a common fixed point.
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Proof. Since F(X) ⊂ 1(X), we can choose x1 ∈ X such that 1x1 = Fx0. Again, from F(X) ⊂ 1(X) we can choose
x2 ∈ X such that 1x2 = Fx1. Continuing this process, we can choose a sequence {xn} in X such that

1xn+1 = Fxn (1)

for all n ∈ N. Since 1x0 � Fx0 and Fx0 = 1x1, we have 1x0 � 1x1. Since F is 1-non-decreasing, we get
Fx0 � Fx1. By using (1), we have 1x1 � 1x2. Again, since F is 1-non-decreasing, we get Fx1 � Fx2, that is,
1x2 � 1x3. Continuing this process, we obtain

Fxn � Fxn+1, 1xn � 1xn+1 (2)

for all n ∈N. To prove that F and 1 have a coincidence point, we consider two following cases.
Case 1. There exists n0 such that S(Fxn0 ,Fxn0 ,Fxn0+1) = 0. It implies that Fxn0+1 = Fxn0 . By (1), we get

Fxn0+1 = 1xn0+1. (3)

Therefore, xn0+1 is a coincidence point of F and 1.
Case 2. S(Fxn,Fxn,Fxn+1) > 0 for all n ∈N. We will show that

S(Fxn,Fxn,Fxn+1) < S(Fxn−1,Fxn−1,Fxn) (4)

for all n ∈N. It follows from the assumption (4) and (2) that

S(Fxn,Fxn,Fxn+1) ≤ max
{
ϕ(S(1xn, 1xn, 1xn+1)), ϕ(S(1xn, 1xn,Fxn)), ϕ(S(1xn+1, 1xn+1,Fxn+1)),

ϕ

(
S(1xn, 1xn,Fxn+1) + S(1xn+1, 1xn+1,Fxn)

3

) }
.

Thus by (1), we get

S(Fxn,Fxn,Fxn+1) ≤ max
{
ϕ(S(Fxn−1,Fxn−1,Fxn)), ϕ(S(Fxn−1,Fxn−1,Fxn)), (5)

ϕ(S(Fxn,Fxn,Fxn+1)), ϕ
(

S(Fxn−1,Fxn−1,Fxn+1) + S(Fxn,Fxn,Fxn)
3

) }
= max

{
ϕ(S(Fxn−1,Fxn−1,Fxn)), ϕ(S(Fxn,Fxn,Fxn+1)), ϕ

(
S(Fxn−1,Fxn−1,Fxn+1)

3

)}
.

We consider three following subcases.
Subcase 2.1.

max
{
ϕ(S(Fxn−1,Fxn−1,Fxn)), ϕ(S(Fxn,Fxn,Fxn+1)), ϕ

(
S(Fxn−1,Fxn−1,Fxn+1)

3

)}
= ϕ(S(Fxn−1,Fxn−1,Fxn)).

By (5), we have S(Fxn,Fxn,Fxn+1) ≤ ϕ(S(Fxn−1,Fxn−1,Fxn)). Therefore, (4) holds since ϕ(t) < t for t > 0.
Subcase 2.2.

max
{
ϕ(S(Fxn−1,Fxn−1,Fxn)), ϕ(S(Fxn,Fxn,Fxn+1)), ϕ

(
S(Fxn−1,Fxn−1,Fxn+1)

3

)}
= ϕ(S(Fxn,Fxn,Fxn+1)).

By (5), we have S(Fxn,Fxn,Fxn+1) ≤ ϕ(S(Fxn,Fxn,Fxn+1)). Sinceϕ(t) < t for t > 0, we get S(Fxn,Fxn,Fxn+1) = 0.
It is a contradiction.

Subcase 2.3.

max
{
ϕ(S(Fxn−1,Fxn−1,Fxn)), ϕ(S(Fxn,Fxn,Fxn+1)), ϕ

(
S(Fxn−1,Fxn−1,Fxn+1)

3

)}
= ϕ

(
S(Fxn−1,Fxn−1,Fxn+1)

3

)
.

Note that ϕ(0) = lim
n→∞

ϕ(1/n) ≤ lim
n→∞

1/n = 0, then ϕ(0) = 0.
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If
S(Fxn−1,Fxn−1,Fxn+1)

3
= 0, then by (5), we have S(Fxn,Fxn,Fxn+1) = 0. It is a contradiction.

If
S(Fxn−1,Fxn−1,Fxn+1)

3
> 0, it follows from (5), Lemma 1.4 and the fact ϕ(t) < t for t > 0 that

S(Fxn,Fxn,Fxn+1) ≤ ϕ

(
S(Fxn−1,Fxn−1,Fxn+1)

3

)
<

1
3

S(F(xn−1,Fxn−1,Fxn+1))

≤
1
3

(2S(Fxn−1,Fxn−1,Fxn) + S(Fxn,Fxn,Fxn+1))

Then we have S(Fxn,Fxn,Fxn+1) < S(Fxn−1,Fxn−1,Fxn).By the conclusions of three above subcases that (4) holds.

It follows from (4) that the sequence {S(Fxn,Fxn,Fxn+1)} of real numbers is monotone decreasing. Then
there exists δ ≥ 0 such that

lim
n→∞

S(Fxn,Fxn,Fxn+1) = δ. (6)

Now we shall prove that δ = 0. It follows from Lemma 1.4 and (4) that

1
3

S(Fxn−1,Fxn−1,Fxn+1) ≤
1
3

(
2S(Fxn−1,Fxn−1,Fxn) + S(Fxn,Fxn,Fxn+1)

)
(7)

<
1
3

(
2S(Fxn−1,Fxn−1,Fxn) + S(Fxn−1,Fxn−1,Fxn)

)
= S(Fxn−1,Fxn−1,Fxn).

Taking the upper limit as n→∞ in (7), we get

lim sup
n→∞

1
3
S(Fxn−1,Fxn−1,Fxn+1) ≤ lim sup

n→∞
S(Fxn−1,Fxn−1,Fxn).

Put

b = lim sup
n→∞

1
3

S(Fxn−1,Fxn−1,Fxn+1) (8)

then 0 ≤ b ≤ δ. Now taking the upper limit as n→∞ in (5) and note that ϕ(t) is continuous, we get

lim
n→∞

S(Fxn,Fxn,Fxn+1) ≤ max
{
ϕ( lim

n→∞
S(Fxn−1,Fxn−1,Fxn)), ϕ( lim

n→∞
S(Fxn,Fxn,Fxn+1)), (9)

ϕ

(
lim sup

n→∞

S(Fxn−1,Fxn−1,Fxn+1)
3

) }
.

Using (6), (8) and (9), we have δ ≤ max{ϕ(δ), ϕ(b)}. If δ > 0, then

δ ≤ max{ϕ(δ), ϕ(b)} < max{δ, b} = δ. (10)

It is a contradiction. Therefore, δ = 0. It follows from (6) that

lim
n→∞

S(Fxn,Fxn,Fxn+1) = 0. (11)

Now we shall prove that {Fxn} is a Cauchy sequence. Suppose to the contrary that {Fxn} is not a Cauchy
sequence. Then there exists ε > 0 and two sequences of integers {nk} and {mk}with mk > nk > k and

rk = S(Fxnk ,Fxnk ,Fxmk ) ≥ ε (12)
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for all k ∈N. We can choose mk that is the smallest number with mk > nk > k and (12) holds. Then

S(Fxnk ,Fxnk ,Fxmk−1) < ε. (13)

From Lemma 1.4, Lemma 1.3 and (12), (13), we have

ε ≤ rk (14)
= S(Fxnk ,Fxnk ,Fxmk )
= S(Fxmk ,Fxmk ,Fxnk )
≤ 2S(Fxmk ,Fxmk ,Fxmk−1) + S(Fxnk ,Fxnk ,Fxmk−1)
< 2S(Fxmk ,Fxmk ,Fxmk−1) + ε.

Taking the limit as k→∞ in (14) and using (11), we obtain

lim
k→∞

rk = ε. (15)

It follows from (1) and (2) that 1xnk+1 = Fxnk � Fxmk = 1xmk+1. Now, by using the assumptions (4) and (1),
we have

S(Fxnk+1,Fxnk+1,Fxmk+1) ≤ max
{
ϕ(S(1xnk+1, 1xnk+1, 1xmk+1), ϕ(S(1xnk+1, 1xnk+1,Fxnk+1)), (16)

ϕ(S(1xmk+1, 1xmk+1,Fxmk+1)),

ϕ

(
S(1xnk+1, 1xnk+1,Fxmk+1) + S(1xmk+1, 1xmk+1,Fxnk+1)

3

) }
= max

{
ϕ(S(Fxnk ,Fxnk ,Fxmk ), ϕ(S(Fxnk ,Fxnk ,Fxnk+1)), ϕ(S(Fxmk ,Fxmk ,Fxmk+1)),

ϕ

(
S(Fxnk ,Fxnk ,Fxmk+1) + S(Fxmk ,Fxmk ,Fxnk+1)

3

) }
.

Denoting δn = S(Fxn,Fxn,Fxn+1) for all n ∈ N, then lim
n→∞

δn = 0 by (11). From (16), Lemma 1.3 and (12),
we have

S(Fxnk+1,Fxnk+1,Fxmk+1) ≤ max
{
ϕ(rk), ϕ(δnk ), ϕ(δmk ), ϕ

(
S(Fxnk ,Fxnk ,Fxmk+1) + S(Fxmk ,Fxmk ,Fxnk+1)

3

)}
. (17)

Using Lemma 1.4 again, we get

rk ≤ 2S(Fxnk ,Fxnk ,Fxnk+1) + S(Fxmk ,Fxmk ,Fxnk+1) (18)
≤ 2S(Fxnk ,Fxnk ,Fxnk+1) + 2S(Fxmk ,Fxmk ,Fxmk+1) + S(Fxnk+1,Fxnk+1,Fxmk+1)
= 2δnk + 2δmk + S(Fxnk+1,Fxnk+1,Fxmk+1).

From (12), (17) and (18), we have

ε ≤ rk (19)

≤ 2δnk + 2δmk + max
{
ϕ(rk), ϕ(δnk ), ϕ(δmk ), ϕ

(
S(Fxnk ,Fxnk ,Fxmk+1) + S(Fxmk ,Fxmk ,Fxnk+1)

3

)}
.

Next, we will show that

lim
n→∞

S(Fxnk ,Fxnk ,Fxmk+1) + S(Fxmk ,Fxmk ,Fxnk+1)
3

=
2
3
ε. (20)
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Indeed, by using Lemma 1.4, (12) and (13), we obtain

ε ≤ rk

= S(Fxmk ,Fxmk ,Fxnk )
≤ 2δmk + S(Fxnk ,Fxnk ,Fxmk+1)

and

S(Fxnk ,Fxnk ,Fxmk+1) = S(Fxmk+1,Fxmk+1,Fxnk )
≤ 2S(Fxmk+1,Fxmk+1,Fxmk−1) + S(Fxnk ,Fxnk ,Fxmk−1)
≤ 4S(Fxmk+1,Fxmk+1,Fxmk ) + 2S(Fxmk−1,Fxmk−1,Fxmk ) + S(Fxnk ,Fxnk ,Fxmk−1)
< 4δmk + 2δmk−1 + ε.

It implies that

ε − 2δmk ≤ S(Fxnk ,Fxnk ,Fxmk+1) < ε + 4δmk + 2δmk−1. (21)

Similarly to (21), we obtain

ε − 2δnk ≤ S(Fxmk ,Fxmk ,Fxnk+1) < ε + 4δnk + 2δnk−1. (22)

It follows from (21) and (22) that

2
3

(
ε − (δmk + δnk )

)
≤

S(Fxnk ,Fxnk ,Fxmk+1) + S(Fxmk ,Fxmk ,Fxnk+1)
3

(23)

≤
2
3

(
ε + 2(δmk + δnk ) + δmk−1 + δnk−1

)
.

Using (11) and taking the limit as n→∞ in (23), we get that (20) holds.
Using (11), (15), (20) and taking the limit as n→∞ in (19) and keeping in mind properties of ϕ, we get

ε ≤ max
{
ϕ(ε), 0, 0, ϕ(2ε/3)

}
< max

{
ε, 0, 0, 2ε/3

}
= ε.

It is a contradiction. Therefore, the assumption (12) is not true, that is, {Fxn} is a Cauchy sequence. From (1),
we have {1xn+1} is also a Cauchy sequence. Since 1(X) is closed, there exists z ∈ X such that

lim
n→∞
1xn = lim

n→∞
Fxn = 1z. (24)

Now we will show that z is a coincidence point of F and 1. By (2), (24) and the assumption (5), we have
1xn � 1z for all n ∈N. By using Lemma 1.4 and the assumption (4), we get

S(1z, 1z,Fz) ≤ 2S(1z, 1z,Fxn) + S(Fxn,Fxn,Fz) (25)

≤ 2S(1z, 1z,Fxn) + max
{
ϕ(S(1xn, 1xn, 1z), ϕ(S(1xn, 1xn,Fxn)), ϕ(S(1z, 1z,Fz)),

ϕ

(
S(1xn, 1xn,Fz) + S(1z, 1z,Fxn)

3

) }
.

By using (24), the continuity of ϕ, Lemma 1.7 and taking the limit as n→∞ in (25), we have

S(1z, 1z,Fz) ≤ max
{
ϕ(S(1z, 1z,Fz)), ϕ(S(1z, 1z,Fz)/3)

}
.

If S(1z, 1z,Fz) > 0, then by the assumption (2),

S(1z, 1z,Fz) < max
{
S(1z, 1z,Fz),S(1z, 1z,Fz)/3

}
= S(1z, 1z,Fz).
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It is a contradiction. Then S(1z, 1z,Fz) = 0, that is, Fz = 1z. Therefore, F and 1 have a coincidence point z.
Furthermore, we will show that 1z is a common fixed point of F and 1 if F and 1 are commutative at the

coincidence point. Indeed, we have F(1z) = 1(Fz) = 1(1z). By (2), (24) and the assumption (5), we obtain
1z � 1(1z). It follows from the assumption (4) and Lemma 1.3 that

S(Fz,Fz,F(1z)) ≤ max
{
ϕ(S(1z, 1z, 1(1z))), ϕ(S(1z, 1z,Fz)), ϕ(S(1(1z), 1(1z),F(1z))), (26)

ϕ

(
S(1z, 1z,F(1z)) + S(1(1z), 1(1z),Fz)

3

) }
= max

{
ϕ(S(1z, 1z, 1(1z))), 0, 0, ϕ

(
S(1z, 1z, 1(1z)) + S(1(1z), 1(1z), 1z)

3

)}
= max

{
ϕ(S(1z, 1z, 1(1z))), 0, 0, ϕ

(
2S(1z, 1z, 1(1z))

3

)}
= max

{
ϕ(S(Fz,Fz, 1(1z))), ϕ

(
2S(Fz,Fz, 1(1z))

3

)}
.

If S(Fz,Fz,F(1z)) > 0, then from (26) and the assumption (2), we have

S(Fz,Fz,F(1z)) < max
{

S(Fz,Fz, 1(1z)),
2S(Fz,Fz, 1(1z))

3

}
= S(Fz,Fz,F(1z)).

It is a contradiction. Then S(Fz,Fz,F(1z)) = 0, that is, F(1z) = 1(1z) = Fz = 1z. This proves that 1z is a
common fixed point of F and 1.

Remark 2.6. The assumption ‘F is 1-non-decreasing’ in Theorem 2.5 can be replaced by ‘F is 1-non-increasing’
provided that ‘1x0 � Fx0’ is replaced by ‘1x0 � Fx0’.

From Theorem 2.5, we get following corollaries.

Corollary 2.7. Let (X,�,S) be a partially ordered S-metric space, F : X −→ X be a map and ϕ : [0,∞) −→ [0,∞)
be a function such that

1. X is complete.
2. ϕ is continuous and ϕ(t) < t for all t > 0.
3. F is a non-decreasing map and x0 � Fx0 for some x0 ∈ X.
4. For all x, y ∈ X with x � y,

S(Fx,Fx,Fy) ≤ max
{
ϕ(S(x, x, y), ϕ(S(x, x,Fx)), ϕ(S(y, y,Fy)), ϕ

(
S(x, x,Fy) + S(y, y,Fx)

3

)}
.

5. If {xn} is a non-decreasing sequence with lim
n→∞

xn = z in 1(X), then xn � z for all n ∈N.

Then F has a fixed point. Furthermore, the assumption (5) can be replaced by ‘F is continuous’.

Proof. By taking 1 is the identity map in Theorem 2.5, we get F has a fixed point z. Furthermore, if F is
continuous, then by (24), we have

z = lim
n→∞

xn+1 = lim
n→∞

F(xn) = F( lim
n→∞

xn) = Fz.

This proves that z is a fixed point of F.

The following corollary is an analogue of [1, Theorem 2.3] for maps on partially ordered S-metric spaces.

Corollary 2.8. Let (X,�,S) be a partially ordered S-metric space, F : X −→ X be a map and ϕ : [0,∞) −→ [0,∞)
be a function such that
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1. X is complete.
2. ϕ is continuous and ϕ(t) < t for all t > 0.
3. F is a non-decreasing map and x0 � Fx0 for some x0 ∈ X.
4. For all x, y ∈ X with x � y,

S(Fx,Fx,Fy) ≤ max
{
ϕ(S(x, x, y), ϕ(S(x, x,Fx)), ϕ(S(y, y,Fy))

}
.

5. If {xn} is a non-decreasing sequence with lim
n→∞

xn = z, then xn � z for all n ∈N.

Then F has a fixed point. Furthermore, the assumption (5) can be replaced by ‘F is continuous’.

By choosing ϕ(t) = k.t for all t ∈ [0,∞) and some k ∈ (0, 1) in Corollary 2.7, we get the following corollary
which is an analogue of results in [13], [21].

Corollary 2.9. Let (X,�,S) be a partially ordered S-metric space and F : X −→ X be a map such that

1. X is complete.
2. F is a non-decreasing map and x0 � Fx0 for some x0 ∈ X.
3. For all x, y ∈ X with x � y, there exists k ∈ (0, 1) satisfying

S(Fx,Fx,Fy) ≤ k max
{

S(x, x, y),S(x, x,Fx),S(y, y,Fy),
S(x, x,Fy) + S(y, y,Fx)

3

}
.

4. If {xn} is a non-decreasing sequence with lim
n→∞

xn = z, then xn � z for all n ∈N.

Then F has a fixed point. Furthermore, the assumption (4) can be replaced by ‘F is continuous’.

Finally, we give examples to demonstrate the validity of the above results. The following example
shows that Corollary 2.9 is a proper generalization of [23, Theorem 3.1].

Example 2.10. Let X = {−3,−1, 0, 2, 4} be a complete S-metric space with the S-metric in Example 1.6 and let
F(−3) = F(−1) = F0 = 0,F2 = −1,F4 = −3. We have

S(F2,F2,F4) = S(−1,−1,−3) = 2| − 1 + 3| = 4 = S(2, 2, 4) = 2|2 − 4|.

Then [23, Theorem 3.1] is not applicable to F.
On the other hand, define the partial order on X as follows

x � y if and only if x, y ∈ {−3,−1, 0} and x ≤ y.

Then F is non-decreasing, x0 = 0 � Fx0 = F0 and if {xn} is non-decreasing and lim
n→∞

xn = z, then xn � z. We also
have S(Fx,Fx,Fy) = 0 for all x, y ∈ {−3,−1, 0}. Then, Corollary 2.9 is applicable to F.

The following example shows that Corollary 2.8 is a proper generalization of Corollary 2.9.

Example 2.11. Let X = [0, π/4] with the S-metric defined by S(x, y, z) =
1
2
(|x− z|+ |y− z|) for all x, y, z ∈ X. Define

the partial order on X by x � y if and only if x ≥ y, where ≤ is the usual order on R. Then (X,�,S) is a complete,
partially ordered S-metric space. For each x ∈ X, put Fx = sin x. For all x , y and any k ∈ (0, 1), we have

S(Fx,Fx,Fy) = S(sin x, sin x, sin y) = | sin x − sin y|



Nguyen Van Dung et al. / Filomat 28:9 (2014), 1885–1898 1897

and

k max
{

S(x, x, y),S(x, x,Fx),S(y, y,Fy),
S(x, x,Fy) + S(y, y,Fx)

3

}
= k max

{
S(x, x, y),S(x, x, sin x),S(y, y, sin y),

S(x, x, sin y) + S(y, y, sin x)
3

}
= k max

{
|x − y|, x − sin x, y − sin y,

|x − sin y| + |y − sin x|
3

}
.

For y = 0 � x, we have S(Fx,Fx,Fy) = sin x and

k max
{

S(x, x, y),S(x, x,Fx),S(y, y,Fy),
S(x, x,Fy) + S(y, y,Fx)

3

}
= kx.

Since sin x ≤ kx is not true for all x ∈ X and k ∈ (0, 1), Corollary 2.9 is not applicable to F.
On the other hand, put ϕ(t) = sin t for all t ∈ [0,∞), then ϕ(t) < t for all t > 0. We have that for all x � y,

S(Fx,Fx,Fy) = sin x−sin y ≤ sin(x− y) = ϕ(S(x, x, y)) ≤ max
{
ϕ(S(x, x, y), ϕ(S(x, x,Fx)), ϕ(S(y, y,Fy))

}
. (27)

Note that x0 = 0 � F0 = Fx0 and if {xn} is non-decreasing and lim
n→∞

xn = z, then xn � z. Moreover, F is also
continuous. Therefore, Corollary 2.8 is applicable to F.

The following example shows that our results can not be derived from the techniques used in [12], see
Lemma 2.3, even for trivial maps.

Example 2.12. Let (X,S) be an S-metric space in the proof of Example 2.4 with the usual order and let F, 1 : X −→ X
be defined by Fx = 1x = 1 for all x ∈ X. Then all assumptions of Theorem 2.5 are satisfied. Then Theorem 2.5 is
applicable to F and 1 on (X,S).

It follows from Example 2.4 that the techniques used in [12] are not applicable to F and 1 on (X,S).
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