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Optimal Movement of the Suspended 
Payload 
 
This paper presents one of the possible ways to optimize the movement of 
the suspended payload. Application of presented optimization procedure is 
shown on grab crane devices such as unloading bridge and harbour crane. 
The optimization procedure is divided into two phases. The first phase is 
optimization of the cargo and grab (suspended payload) movement. The 
second phase is determination of movement, of the grab crane device 
mechanisms, upon obtained optimal path and parameters of cargo and 
grab (payload) movement. Shape of presented mathematical model makes 
possible direct application of optimal control theory methods i.e. 
optimization of the payload movement is determined using Pontryagin’s 
maximum principle. The basic aim of optimization is to attain the minimal 
working (unloading) cycle, spending of energy and material dissipation 
during the grab discharging. All relevant expressions are derived 
analytically.. 
 
Keywords: optimization, unloading cycle, harbour crane, unloading 
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1 INTRODUCTION 
 
The terminal for bulk cargo unloading presents the 
organization of different activities, connected with 
control and handling of material flow from the vessel to 
the transport or the storage system of the technological 
installations, which provides maximal servicing of 
vessels with minimum expenses. 

Unloading devices present knot points of unloading 
terminal, and in the greatest number of cases the bottle 
necks, so their functioning is the basic prerequisite for 
optimal work of the whole unloading system.  

The unloading (working) cycle of grab crane devices 
consist of: material grabbing from the vessel, grab and 
cargo transfer from the vessel to the receiving hopper, 
grab discharging and empty grab return transfer from 
the receiving hopper to the vessel. Full automation of 
unloading process of the grab crane devices, is possible 
but it is very expensive. On the other side the crane 
operator couldn't repeat the optimal unloading cycle in 
the longer time period. The only practical feasible 
solution is to introduce the half-automatic unloading 
cycle which consists of the manual part, where the crane 
operator control the grab movement, and of the 
automatic part in which the computer controls the grab 
movement according to given algorithm.  

The manual part of half-automatic unloading cycle 
consists of the empty grab lowering to the material 
surface in the vessel, from one of the three points of the 
end of automatic part of the unloading cycle (fig. 1a, 
1b.), material grabbing and grab hoisting with cargo to 
one of the three points of the beginning of automatic 
part of the unloading cycle. Automatic part of half-

automatic unloading cycle consists of grab transfer from 
one of the three points of the beginning of automatic 
part of the unloading cycle to the receiving hopper, grab 
discharging and empty grab return transfer from the 
hopper to the one of the three possible points of the end 
of automatic part of the unloading cycle. The position of 
three points, which presents the beginning/end of 
automatic part of half-automatic unloading cycle, is 
virtual and depends on given geometry of the system, 
river water level, material level in the vessel, etc. [1] 

Optimization of the half-automatic unloading cycle 
has sense only in its automatic part where computer 
controls the grab movement.  

Optimization procedure, which will be presented, is 
universal for all unloading grab crane devices and it will 
be applied on most common unloading grab crane 
devices such as: harbour crane and unloading bridge. 
 
2 MATHEMATICAL MODELS 
 
Fig. 1a and Fig. 1b show a simplified crane devices and 
cargo moving scheme on the basis of which the 
mathematical models are set. Assumption is that the 
rope in the initial time is in the vertical position with 
defined initial length, and grab position could be one of 
the three possible. This assumption corresponds to the 
time immediately before the beginning of automatic part 
of the unloading cycle. 
 
2.1 Mathematical model of the harbor crane 
 
A simplified scheme of the harbour crane is shown on 
Fig. 1a. Generalized coordinates are:   – angle of the 

jib,   – angle of the lever–luffing. A review of 
indications used in the mathematical model: g  - gravity 

acceleration, 1m  – mass of the jib, 2m  – mass of the 

lever–luffing, m  – grab and cargo mass, l  – 
instantaneous rope length, 1l  – length of the jib, 2l  – 
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length of the lever–luffing,   – rope angle, kx  – 

distance between vessel and hopper, kz  – height 

distance between the beginning/end point of automatic 
part of half-automatic unloading cycle and discharging 
point of the grab, AM  – driving momentum acting on 

jib, BM  – driving momentum acting on lever–luffing, 

F  – force in the rope, 1cl  – distance between point A 

and centre of gravity of a jib, 2cl  – distance between 

point B and centre of gravity of a lever–luffing, AJ  – 

inertial momentum of a jib upon the axis through point 
A, 2cJ  – inertial momentum of a lever–luffing upon the 

axis through the centre of gravity of a lever–luffing. It is 
adopted that centres of gravity of a jib and a lever–
luffing are on straight lines between points A and B and 
B and C respectively. Driving momentum’s AM  and 

BM  are reduced to points A and B. Obtaining real 

driving momentum’s requires decomposing of the 
whole driving structure of the crane which is not the 
same for all harbour cranes (depends on manufacturer), 
and it is not the subject of this work. Forces in rope that 
connects lever-luffing and construction of harbour crane 
are taken into consideration by reducing real driving 
momentums into points A and B. 
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Figure 1a. Simplified scheme of the harbour crane [2] 

Differential equations which describe movement of 
harbour crane mechanisms are:  
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2.2 Mathematical model of the unloading bridge 
 
A simplified scheme of the unloading bridge is shown 
in Fig. 1b. Generalized coordinate is:   – instantaneous 

centre of gravity position of the crane trolley. Review of 
indications used in the mathematical model:   – rope 

angle, g  – gravity acceleration, m  – grab and cargo 

mass, kx  – distance between vessel and hopper, kz  – 

height distance between beginning/end point of 
automatic part of half-automatic unloading cycle and 
discharging point of the grab, tz  – height distance 

between the beginning/end point of automatic part of 
half-automatic unloading cycle and rope suspension 
point, 1m  – mass of the crane trolley, l  – instantaneous 

rope length, dF  – driving force of trolley, F  – force in 

the rope. 

1 2 3

m



zk

C



z

Fd

l

xk

x

0

 
Figure 1b. Simplified scheme of the unloading bridge [3] 

Differential equation which describes movement of 
unloading bridge trolley is: 

  sin1  FFm d
  (1b) 

where:  sin lx , cos/)( zzl t  , i.e. 

 tg)(  zzx t . 

 
3 OPTIMIZATION PROCEDURE 
 
The main objectives of the optimization process are 
minimal working (unloading) cycle, minimal rope 
incline angle, minimal dissipation of material and 
therefore minimal spending of energy needed for the 
movement of grab crane devices.  

The optimization procedure of the grab crane 
devices (harbour crane and unloading bridge) working 
cycle will be divided into two phases. The first phase is 
optimization of the cargo and grab (suspended payload) 
movement. The second phase is the determination of 
movement, of the grab crane device mechanisms, upon 
obtained optimal path and parameters of cargo and grab 
(payload) movement. According to that movement of 
the crane mechanisms and movement of the grab and 
cargo will be observed separately. 
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3.1 Optimization of the cargo and grab movement – 
I phase of optimization 

 
The movement of the grab and cargo is suitable to 
analyze in the coordinate system xOz (Fig. 2). At the 
beginning of the movement grab and cargo are at point 
O. 

x

z
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mg
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Figure 2. Forces which acts on the grab and cargo 

In that case differential equations which describe the 
movement of grab and cargo are:  
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should came to ending state: 
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with limitation that grab and cargo should pass through 
point ( 2/kx , kz ) and after that continue to move 

horizontally i.e.  

 kckk zttzzzxx  )(;)(;2/)(   (5) 

where the moment of time   is not known in advance. 
If such functions 0)(),( tSt  can be found, 

together with following conditions: 
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in a way that appropriate solutions of (2) fulfils 
conditions (3), (4) and (5), the whole system can be 
controlled. 

By increasing the order of differential equations (2) 
those equations can be written as: 
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and conditions (6) can be written as: 
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In that way the task of controlled movement of the 
grab and cargo can be stated in a following form: 
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where xu  and zu  are allowed values of control which 

belongs to an open set. 
Initial condition for z  is not set in order to ensure 

movement in z – direction at the beginning of the 
movement, while ending condition for z  is 
automatically fulfilled due to transverse condition.  

According to (2) and (7) equations (9) and 
conditions (11) are equivalent with equations (2) and 
conditions (3), (4), (5) and (6). 

By introducing new variables )8,,2,1( iyi  where 
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zy 8 , the system of equations (2) and (7) can be 
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According to (11), control (9) and conditions (10) can 
be written in the following form:  
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which allowed direct application of Pontryagin’s 
maximum principle. Values xu  and zu  are control 

values in x  and z direction. [4-6]. 
During the grab and cargo transfer from vessel to 

hopper and vice versa minimal rope incline angle as 
well as no more than one oscillation of the grab and 
cargo are required. Beside that, changes in rope load as 
a result of grab and cargo transfer should be reduced to 
minimum. In that sense, the condition of optimality (14) 
presents good enough measure of behaviour of those 
values 
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Differential equations (12) and conditions (13) 
together with the condition of optimality (14) present 
the task of optimal control. 

In another words, on the basis of equation system 
(2), it can be concluded that rope inclination and angular 
velocity of rope have greater influence on the movement 
in x–direction i.e. on values 3y , 4y  and xu , while 

change of rope load has greater influence on movement 
in z–direction i.e. on the value 8y . So, minimal value of 

(14) fulfils required demands and represents optimality 
criterion for discussed problem and it provides that the 
values of control and rope incline angle not become so 
big, minimal number of oscillations, continuousness of 
the force in rope, uniform work, etc. 

The problem defined by the relations (12), (13) and 
(14) is reduced to the form which makes possible the 
direct application of maximum principle. For these 
reasons, considering (12) and (14), the function is 
established: 
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where the values i  satisfied the differential equations 

system: 
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According to the theorem of the principle of 
maximum, function (15) for the optimal solution has the 
maximal value. According to the needing condition of 
extreme: 
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the controls in x  and z  directions are obtained: 
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The following transverse conditions should be added 
to conditions (13): 
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The structure of differential equation systems (12) 

and (16) shows that optimization of grab and cargo 
movement in x  and z direction can be done separately. 
System of differential equations for optimization grab 
and cargo movement in x direction has the following 
form: 
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Boundary conditions are: 
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The system of differential equations for optimization 
of the grab and cargo movement in z  direction has the 
following form: 
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Boundary conditions are:  
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Each system of differential equations systems (19) 
and (21) defined on this way, with condition (20) and 
(22) presents the two-point boundary value problem. 
Due to configuration of the differential equation 
systems (19) and (21) each of them can be solved 
analytically. 
 
3.2 Analytical solutions 
 
According to differential equation systems (12) and (19) 
following relations can be established: (movement in 
x – direction) 
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Finally, differential equation system (19) can be 
reduced to one fourth order differential equation: 
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where 4321 ,,, LLLL  are arbitrary constants. 

The solution of previous differential equation has the 
following form: 
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Differentiating previous expression per t  
expressions for 432 ,, yyy  and xuy 4  are obtained as: 
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where 11111111 ,,,,,,, HGFEDCBA  are constants 
which are determined upon boundary conditions (3) and 
(4). 

For the movement in z – direction according to 
differential equation systems (12) and (21) the 
following relations can be established: 
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where 65, LL  are arbitrary constants. 

Substituting ( 65, LL  ) with ( 22 , BA ) the required 
expressions for the movement in z – direction are 
obtained as: 
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where 222222 ,,,,, FEDCBA  are constants which are 

determined upon boundary conditions (13).  
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Directly from differential equation system (2) the 
expressions for   and S  are obtained as: 

22 )(,arctg gzxS
gz

x



 




 . 

Fig. 3a – Fig. 3f show results of grab and cargo 
optimization process per time. Those results are: change 
of coordinates x  and z  per time (Fig. 3a); change of 
grab and cargo velocity x , acceleration x , jerk x  and 

control x
IV ux   in x –direction per time (Fig. 3b); 

change of grab and cargo velocity z , acceleration z , 

jerk z  and control z
IV uz   in z –direction per time 

(Fig. 3c); change of rope incline angle   and angular 

velocity   of grab and cargo per time (Fig. 3d); change 

of force in the rope mF /  i.e. S  per time (Fig. 3e); and 
optimal path of the grab and cargo )(xfz   (Fig. 3f). 
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Figure 3a. Change of the optimised values – coordinates x, z 
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Figure 3b. Change of the optimised values – velocity, 
acceleration, jerk and control in x-direction 
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Figure 3c. Change of the optimised values – velocity, 
acceleration, jerk and control in z-direction 

t [s]


 

   
[r

ad
],

[r
ad

/s
]



 
Figure 3d. Change of the optimised values - rope incline 
angle and angular velocity of grab and cargo per time 
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Figure 3e. Change of the optimised values – force in the 
rope per time 
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Figure 3f. Change of the optimised values – optimal path of 
grab and cargo 

Values, upon which results shown on Fig. 3a – Fig. 
3f are obtained, are: distance between vessel and hopper 
in x –direction mxk 9 , height distance between 

beginning/end point of automatic part of half-automatic 
unloading cycle and discharging point of the grab 

mzk 8 , stc 20  – time, known in advance, needed 

for obtaining one half of automatic part of half–
automatic unloading cycle i.e. grab transfer from vessel 
to hopper or vice versa, ct  is determined upon maximal 

allowed velocities and accelerations in x  and z  

direction [6] and  21
kxx  – time needed for the 

grab and cargo transfer to one half of distance between 
vessel and hopper i.e.   kc zttz  . 

 
4 OPTIMAL MOVEMENT OF THE GRAB CRANE 

DEVICE MECHANISMS – II PHASE OF 
OPTIMIZATION 

 
4.1 Optimal movement of harbour crane 

mechanisms 
 
On the basis of previous conception of cargo movement, 
the link between cargo movement and crane peak 
movement can be established as: 
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Respecting that this is a redundancy system, we can 
deem that change of the rope length l  or something else 
is prominent time function, which generally depends of 
construction characteristics of the crane. Change of rope 
length l  per time should be determined upon real 
characteristics of driving mechanisms for specific type 
of harbour crane, depending of manufacturer. The 
problem now becomes the direct task of dynamics and 
unknown momentum’s AM  and BM  can be 

determined from differential equation system (1a) on 
the basis of obtained optimal cargo movement. 

 
4.2 Optimal movement of the unloading bridge 

trolley 
 
Due to relatively less complex construction of 
unloading bridge than harbour crane driving force dF , 

needed for trolley movement, can be determined 
directly from differential equation (1b) on the basis of 
obtained optimal cargo movement (direct task of 
dynamics).  

The values needed for calculation of the driving 
force dF  from differential equation (1b) are following: 

height distance between the beginning/end point of 
automatic part of half-automatic unloading cycle and 
rope suspension point mzt 17 , mass of the crane 

trolley kgm 150001  , mass of the grab and 

cargo kgm 12500 . The result is shown on the Fig. 4, 

while change of the rope length is shown on the  
Fig. 5. 
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Figure 4. Driving force needed for optimal unloading bridge 
trolley movement 
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Figure 5. Change of the rope length per time. 
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5 CONCLUSIONS 
 
Presented two phase optimization procedure replaces 
complicated non-linear mathematical models of grab 
crane devices, needed for optimization of the grab and 
cargo movement, with two relatively simple 
mathematical models without losing complexity. In the 
first phase, the general linear model for optimization of 
grab and cargo movement is developed, while in the 
second phase relatively complicated non-linear models 
of crane mechanisms movement (depending on crane 
construction) are used only for obtaining driving forces 
or momentum’s upon optimal path and parameters of 
the cargo and grab movement. 

Presented procedure allows that complicated non-
linear mathematical models of the grab crane devices, 
needed for optimization of the grab and cargo 
movement, should be replaced with general linear 
model of the grab and cargo movement and non-linear 
model for movement of crane mechanisms without 
losing any of their complexity. 

It is important to underline that developed procedure 
for optimization of grab and cargo movement has 
universal application i.e. results of optimization process 
can be applied on any transport device which can 
perform such kind of motion (harbour cranes, unloading 
bridges, overhead cranes etc.). 

The characteristic of bulk cargo is the fact that the 
transport expenses, manipulation and waiting present 
the important part of their values. Unloading bulk cargo 
terminal works 24 hours seven days a week during the 
sailing period. Presented optimized working cycle of 
grab crane devices reduces rope inclination angle, force 
in a rope and therefore needed energy for performing 
such kind of motion. 

The application of the results obtained is in 
introducing of the half automatic unloading cycle during 
the bulk cargo material unloading. In that case it is 
possible to achieve the optimal unloading cycle, 
dissipation of material during the grab discharging can 
be reduced to the minimum, dynamic strains of cranes 
can be smaller and it is also possible to eliminate the 
influence of the human factor in unloading process 
(training of operator, weather conditions, night work, 
etc.). 
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ОПТИМАЛНО КРЕТАЊЕ ВИСЕЋЕГ ТЕРЕТА 

 
Угљеша Бугарић, Јосиф Вуковић, Душан 

Глишић, Душан Петровић 
 
У раду је приказан један од могућих начина 
оптимизације кретања висећег терета. Развијена 
процедура оптимизације је примењена на дизаличне 
уређаје са грабилицом, као што су претоварни мост 
и лучка дизалица. Процедура оптимизације је 
подељена у две фазе. Прва фаза представља 
оптимизацију кретања грабилице и терета тј. 
висећег терета. Друга фаза оптимизације састоји се 
из одрђивања кретања механизама дизаличних 
уређаја, на основу добијених оптималних путања и 
параметара кретања грабилице и терета. Облик 
приказаног математичког модела омогућује 
директну примену модела теорије оптималног 
управљања тј. оптимизација кретања висећег терета 
је изведена применом Понтрјагиновог принципа 
максимума. Основни циљ оптимизације је 
постизање минималног радног (истоварног) 
циклуса, смањење потрошње енергије као и 
расипања материјала током пражњења грабилице. 
Сви релевантни изрази су изведени у аналитичком 
облику.

 


