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INTRODUCTION

Optimal Movement of the Suspended
Payload

This paper presents one of the possible ways to optimize the movement of
the suspended payload. Application of presented optimization procedure is
shown on grab crane devices such as unloading bridge and harbour crane.
The optimization procedure is divided into two phases. The first phase is
optimization of the cargo and grab (suspended payload) movement. The
second phase is determination of movement, of the grab crane device
mechanisms, upon obtained optimal path and parameters of cargo and
grab (payload) movement. Shape of presented mathematical model makes
possible direct application of optimal control theory methods i.e.
optimization of the payload movement is determined using Pontryagin’s
maximum principle. The basic aim of optimization is to attain the minimal
working (unloading) cycle, spending of energy and material dissipation
during the grab discharging. All relevant expressions are derived
analytically..

Keywords: optimization, unloading cycle, harbour crane, unloading
bridge, maximum principle.

automatic unloading cycle consists of grab transfer from

The terminal for bulk cargo unloading presents the
organization of different activities, connected with
control and handling of material flow from the vessel to
the transport or the storage system of the technological
installations, which provides maximal servicing of
vessels with minimum expenses.

Unloading devices present knot points of unloading
terminal, and in the greatest number of cases the bottle
necks, so their functioning is the basic prerequisite for
optimal work of the whole unloading system.

The unloading (working) cycle of grab crane devices
consist of: material grabbing from the vessel, grab and
cargo transfer from the vessel to the receiving hopper,
grab discharging and empty grab return transfer from
the receiving hopper to the vessel. Full automation of
unloading process of the grab crane devices, is possible
but it is very expensive. On the other side the crane
operator couldn't repeat the optimal unloading cycle in
the longer time period. The only practical feasible
solution is to introduce the half-automatic unloading
cycle which consists of the manual part, where the crane
operator control the grab movement, and of the
automatic part in which the computer controls the grab
movement according to given algorithm.

The manual part of half-automatic unloading cycle
consists of the empty grab lowering to the material
surface in the vessel, from one of the three points of the
end of automatic part of the unloading cycle (fig. 1a,
1b.), material grabbing and grab hoisting with cargo to
one of the three points of the beginning of automatic
part of the unloading cycle. Automatic part of half-
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one of the three points of the beginning of automatic
part of the unloading cycle to the receiving hopper, grab
discharging and empty grab return transfer from the
hopper to the one of the three possible points of the end
of automatic part of the unloading cycle. The position of
three points, which presents the beginning/end of
automatic part of half-automatic unloading cycle, is
virtual and depends on given geometry of the system,
river water level, material level in the vessel, etc. [1]

Optimization of the half-automatic unloading cycle
has sense only in its automatic part where computer
controls the grab movement.

Optimization procedure, which will be presented, is
universal for all unloading grab crane devices and it will
be applied on most common unloading grab crane
devices such as: harbour crane and unloading bridge.

2 MATHEMATICAL MODELS

Fig. 1a and Fig. 1b show a simplified crane devices and
cargo moving scheme on the basis of which the
mathematical models are set. Assumption is that the
rope in the initial time is in the vertical position with
defined initial length, and grab position could be one of
the three possible. This assumption corresponds to the
time immediately before the beginning of automatic part
of the unloading cycle.

2.1 Mathematical model of the harbor crane

A simplified scheme of the harbour crane is shown on
Fig. 1a. Generalized coordinates are: ¢ — angle of the

jib, @ — angle of the lever—luffing. A review of
indications used in the mathematical model: g - gravity

acceleration, M; — mass of the jib, m, — mass of the

lever—luffing, m - grab and cargo mass, | -
instantaneous rope length, I; — length of the jib, I, —
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length of the lever-luffing, w — rope angle, X, —
distance between vessel and hopper, z, - height
distance between the beginning/end point of automatic
part of half-automatic unloading cycle and discharging
point of the grab, M 5 — driving momentum acting on

jib, Mg — driving momentum acting on lever—luffing,
F — force in the rope, l;; — distance between point A
and centre of gravity of a jib, |, — distance between
point B and centre of gravity of a lever—luffing, Jp —

inertial momentum of a jib upon the axis through point
A, J., —inertial momentum of a lever—luffing upon the

axis through the centre of gravity of a lever—luffing. It is
adopted that centres of gravity of a jib and a lever—
luffing are on straight lines between points A and B and
B and C respectively. Driving momentum’s M, and

Mg are reduced to points A and B. Obtaining real

driving momentum’s requires decomposing of the
whole driving structure of the crane which is not the
same for all harbour cranes (depends on manufacturer),
and it is not the subject of this work. Forces in rope that
connects lever-luffing and construction of harbour crane
are taken into consideration by reducing real driving
momentums into points A and B.
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Figure 1a. Simplified scheme of the harbour crane [2]

Differential equations which describe movement of
harbour crane mechanisms are:

(Ia+Ml7)§ —[mylyley sin(p— 0))6 +
[m,l,l; cos(p - 0))p* =
=M —mgle; cos@—mygl; cos g
—Fl; cosly — ¢),
1 (l// f/’) (1a)
—[maliley sin(p - 0)p+ (Icp +Myldy)6 -

[malles sin(p - 0)lp” =
=Mg +Myglg, sin @+ Fly sin(y — ).
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2.2 Mathematical model of the unloading bridge

A simplified scheme of the unloading bridge is shown
in Fig. 1b. Generalized coordinate is: £ — instantaneous

centre of gravity position of the crane trolley. Review of
indications used in the mathematical model: y — rope

angle, g — gravity acceleration, m — grab and cargo
mass, X, — distance between vessel and hopper, 7, —

height distance between beginning/end point of
automatic part of half-automatic unloading cycle and
discharging point of the grab, z; — height distance

between the beginning/end point of automatic part of
half-automatic unloading cycle and rope suspension
point, m; —mass of the crane trolley, | — instantaneous

rope length, Fy — driving force of trolley, F — force in
the rope.
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Figure 1b. Simplified scheme of the unloading bridge [3]

Differential equation which describes movement of
unloading bridge trolley is:

my & =Fy —F -siny (1b)

where:  &=X+I-siny,
S=Xx+(zx—-2)-1gy.

l=(zy —2)/cosy, ie.

3 OPTIMIZATION PROCEDURE

The main objectives of the optimization process are
minimal working (unloading) cycle, minimal rope
incline angle, minimal dissipation of material and
therefore minimal spending of energy needed for the
movement of grab crane devices.

The optimization procedure of the grab crane
devices (harbour crane and unloading bridge) working
cycle will be divided into two phases. The first phase is
optimization of the cargo and grab (suspended payload)
movement. The second phase is the determination of
movement, of the grab crane device mechanisms, upon
obtained optimal path and parameters of cargo and grab
(payload) movement. According to that movement of
the crane mechanisms and movement of the grab and
cargo will be observed separately.
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3.1 Optimization of the cargo and grab movement —
| phase of optimization

The movement of the grab and cargo is suitable to
analyze in the coordinate system xOz (Fig. 2). At the
beginning of the movement grab and cargo are at point
0.
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Figure 2. Forces which acts on the grab and cargo

In that case differential equations which describe the
movement of grab and cargo are:

mX = Fsiny, mZ=Fcosy —mg, E:S,
m ()
X=Ssiny, Z=Scosy -0,

Grab and cargo, for the time interval known in
advance[0,t. ], from initial state:

t=0, x(0)=0; x(0)=0;
2(0)=0; 2(0)=0; 3
should came to ending state:
t=t., X(tc)=X: X(t:)=0;
2t) =2 2(te)=0;

with limitation that grab and cargo should pass through
point (X, /2,zy) and after that continue to move

“

horizontally i.e.
X(0)=Xc/2; 2(r)=12y; z2(r<t<ty)=1z (5)
where the moment of time 7 is not known in advance.

If such functions w(t),S(t)>0 can be found,
together with following conditions:

w(0)=0; y(0)=0; S(0)=g
pte)=0; y(te)=0; Ste)=g’

in a way that appropriate solutions of (2) fulfils
conditions (3), (4) and (5), the whole system can be
controlled.

By increasing the order of differential equations (2)
those equations can be written as:

Q)

X = Ssiny + Sy cosy

oG . ™
Z = Scosy — Sy siny
and conditions (6) can be written as:
X(0)=0; X(0)=0; Z(0)=0;
(®)

X(t)=0; X(t;)=0; Z(t;)=0.
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In that way the task of controlled movement of the
grab and cargo can be stated in a following form:

xV = Uy, 2V =u, ©)

x(0)=0; x(0)=0; X(0)=0; X(0)=0;
2(0)=0; 2(0)=0; Z(0)=0;

X(te) =Xk; X(tc)=0; X(tc)=0; X(tc)=0;(10)
2(te) =zy; ) =0; Z(te)=0;

X(t) =X /2; 2(r)=12y; zZ(r<t<ty)=12y

where U, and U, are allowed values of control which

belongs to an open set.

Initial condition for 7' is not set in order to ensure
movement in z — direction at the beginning of the
movement, while ending condition for 7 is
automatically fulfilled due to transverse condition.

According to (2) and (7) equations (9) and
conditions (11) are equivalent with equations (2) and
conditions (3), (4), (5) and (6).

By introducing new variables y;(i =1,2,...,8) where
yl:X’y2:X’ySZX’y4:.).(.vy5:Z’y6:Z.’y7:Zand
yg =7, the system of equations (2) and (7) can be
presented as:

yl =X, y2 :X:
y3 =S -siny, y4=S~siny/+Soy}-cosy/ (11
y5 =1, y6 :Zn

y7 =S-cosy—0, Yg =S.cosy —S-y-siny

According to (11), control (9) and conditions (10) can
be written in the following form:

Y1 =VY2; Y2 =Y3; ¥3=VYa; Ya =Uy;

. . . . (12)
Ys=Y6: Y6 = Y7, Y7 = Y8, Yg =U;
or
y1 =% Yy =S-siny;
Y3 =S siny +S-y-cosy; Vg =Uy;
Y5 =2, Y6 = S-cosy —0;
Y7 :S~cosy/—8-y)~siny/; yg =U,
and

y1(0)=0; y2(0)=0; y3(0)=0; y,4(0)=0;
y5(0)=0; ys(0)=0; y;(0)=0;
Yitte)=Xk; Yalte)=0; ys3(te)=0; yu(tc)=0;(13)
Ys(tc)=2ks Ye(te)=0; y7(tc)=0;
Yi(@)=Xx /2y ys(r)=2zy; Ys(r<t<ty)=17y
or

X(0) = 0, X(0) = 0, %(0) = 0, X(0) = 0,

2(0)=0,2(0)=0, Z(0) =0,

X(te) = X, X(tg) =0, X(t;) =0, X(te) =0,

2(te) = k., 2(tc) =0, Z(tc) = 0,

X()=Xc /2, z(r<t<ty) =12y
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which allowed direct application of Pontryagin’s
maximum principle. Values uy, and u, are control
values in x and z direction. [4-6].

During the grab and cargo transfer from vessel to
hopper and vice versa minimal rope incline angle as
well as no more than one oscillation of the grab and
cargo are required. Beside that, changes in rope load as
a result of grab and cargo transfer should be reduced to
minimum. In that sense, the condition of optimality (14)
presents good enough measure of behaviour of those
values

C

J =J%(y32+y£+uf+y§)dt—>inf (14)
0
or
tC
J= B[s2 (sin2 y +2)+ §2 +u§] dt —>inf
0

Differential equations (12) and conditions (13)
together with the condition of optimality (14) present
the task of optimal control.

In another words, on the basis of equation system
(2), it can be concluded that rope inclination and angular
velocity of rope have greater influence on the movement
in x—direction i.e. on values Yy;, Yy, and Uy, while

change of rope load has greater influence on movement
in z—direction i.e. on the value yg. So, minimal value of

(14) fulfils required demands and represents optimality
criterion for discussed problem and it provides that the
values of control and rope incline angle not become so
big, minimal number of oscillations, continuousness of
the force in rope, uniform work, etc.

The problem defined by the relations (12), (13) and
(14) is reduced to the form which makes possible the
direct application of maximum principle. For these
reasons, considering (12) and (14), the function is
established:

1
H=-1ly +v3 +ud + vi o

+AY2 +AY3 +A3Y4 + 44Uy + (15)
+ 456 +A6Y7 + A7Y5 + AU,

or
H = —52sin? P — 52 sin v cos ¥ —%uf —

—%Scos2 Y+ SSQLsinwcosw — %SQLQ +

+ANT + MSsiny + A3 Ssine) +

+/\3Sl/} cosy + Mu, + AsZ +

+AgS cost — Agg — /\7S'cosw —

-8 1/} siny +

+Aqu,
where the values 4; satisfied the differential equations
system:
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. OoH .
Aj=——(i=1...98),
=y ( )

/1120; 12 :_ﬂ‘l;
Ay =Yq -3 As =0;
A7 =g Ag =Yg —A7.

A3 =y3—Aa;
e =—14s; (16)

According to the theorem of the principle of
maximum, function (15) for the optimal solution has the
maximal value. According to the needing condition of
extreme:

JH —0 and JH

X z

=0 (17)

the controls in X and z directions are obtained:

—Uy + 44 =0 —Uy =1y
X 4 : X 4 (18)
/1820 _)4820 —)y8=ﬂ7

The following transverse conditions should be added
to conditions (13):

Ag(0) =0; Ag(ts) =0
what is trivially fulfilled in (18).

The structure of differential equation systems (12)
and (16) shows that optimization of grab and cargo
movement in X and z direction can be done separately.
System of differential equations for optimization grab
and cargo movement in X direction has the following
form:

Yi=VY2; Y2=VY3: Y3=VY4;

Y4 = A4;
AR . (19)
=0 Ay =-A; A3 =Y3-4p;
Ay =Y4-43
or
Y2 =X Y3 =Ssiny;
Y4 =Ssiny +Sycosy; V4 =43
Ay =0; Ay =-A; A3 =Ssiny —A,;
/14 =Ssiny + Sy cosy — A3
Boundary conditions are:
t=0, y(0=0  y,(0)=0;
0)=0; 0)=0;
y3(0) Y4(0) 20)
t=t, Yi(te) = X5 Ya(te) =0;
Ya(te) =0, yq(tc)=0.

The system of differential equations for optimization
of the grab and cargo movement in z direction has the
following form:

Vs =VYe: Y6 =Y7: Y7=Y3; Ys=-A¢;

: . . ) Q1)
/15 20; /16 =—/15; 17 :_26; ﬂg =0.

or
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Y =z
y; = Scosy — g;
Yg = Scostp — St sin iy

U, = —Ag;
Ay = 0;
5‘6 = =5
A= =
A =0

Boundary conditions are:

t=0, y5(0)=0; Y6(0) =0;
y7(00=0;  A3(0)=0;

t=r, Y5(7) = Z; Ye(7) =05 )
y7(7) =05 Ag(7) =0;

T<t<ty Ys5(7) =2k Ye (1) =05
y;()=0;,  A(t)=0.

Each system of differential equations systems (19)
and (21) defined on this way, with condition (20) and
(22) presents the two-point boundary value problem.
Due to configuration of the differential equation
systems (19) and (21) each of them can be solved
analytically.

3.2 Analytical solutions

According to differential equation systems (12) and (19)
following relations can be established: (movement in
X _ direction)

Uy =44, A4 =Ly,
/12 =—L1t+|_2,

)
/13:y2+5|_1t —L2t+|_3

14 =Y¥Y3—Y —%thS +%L2t2 - L3t+ L4,

1

. . 1 3 2
Ya=Y2-Y :_Eth +EL2t -Lit+ Ly

Finally, differential equation system (19) can be
reduced to one fourth order differential equation:

yiV -y 4y = —%th3 +%L2t2 ~Lyt+L, (23)

where L;, L,, L3, L are arbitrary constants.

The solution of previous differential equation has the
following form:

Yy == (Ale\/gt/2 + Ble_\/gt/Q)cos(t /2)+
+(Cle\/§’f/ 24 Dle*@/ 2)sin(t / 2) +
+E# + Ft* +
+G\t + H,

Differentiating  previous expression per t

expressions for Yy,, Y3, Y4 and Y4 =Uy are obtained as:
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Yy, =X= 0.5[\/5(—31 + AV cos(t/2) +
+(Dy +Cleﬁt)cos(t/2)—
(B, + AeY)sin(t/2) +
3(-D +Cleﬁt)sin(t/2)}e_‘ﬁt/2 ;

+3E1t2 +2Flt +G1
y3 =X = 0.5[(81 + Ale‘Bt)cos(t/Z) +

+3(=Dy +CreV3tycos(t/2) +
3B, - AeVysin(t/2) +
+(Dy +Cleﬁt)sin(t/2)} eV,

+ 6E1t + 2F1
yq =X =[D1 cos(t/2) +Ce V3t cos(t/2) -

- Ale‘/gt sin(t/2) - B, sin(t/2)}e_‘/§t/2 +6E,

ya=xV -u, = 0.5[—(81 + A cos(t/2) +

+3(=Dy +Cie¥3ycos(t/2)+
3B, - AeY)sint/2) -
—(Dy + Cleﬁt)sin(t/z)} gV32

where A, B,C, Dy, E;, F,G,H; are constants
which are determined upon boundary conditions (3) and

4.

For the movement in z— direction according to
differential equation systems (12) and (21) the
following relations can be established:

UZ:—/16, /15=L5, 16:—L5t+|_6,
s =47, Vs=-4¢ Vs =Lst—Le
where Ls, Ly are arbitrary constants.
Substituting (L5, —Lg) with ( Ay, B,) the required

expressions for the movement in z-— direction are

obtained as:
y8 = ZIV =UZ :A2t+ Bz

yg =7= %Aztz + th + C2

yr=i=tat+lp2icyt+D,
6 2
y :Z:LAt4+lBt3+lC t> +Dt+E
6 242 62 52 2 2
Y5 =1 :ﬁAzt5 +%th4 +%C2t3 +%D2t2 +
+Eyt+ R

where Ay, B,,C,,D,, E,, F, are constants which are
determined upon boundary conditions (13).

FME Transactions



Directly from differential equation system (2) the 2.01
expressions for  and S are obtained as:

, S=y%*+(Z+9)*.

Fig. 3a — Fig. 3f show results of grab and cargo
optimization process per time. Those results are: change
of coordinates X and z per time (Fig. 3a); change of
grab and cargo velocity X, acceleration X, jerk X and
v

y =arctg
Z+(

control X'° =Uy, in x—direction per time (Fig. 3b);

change of grab and cargo velocity Z, acceleration 7,

jerk 7 and control 2V =u ; In z —direction per time

Z[m/s], Z[m/s?, 2[m/s?), 2" [m/s]

(Fig. 3c); change of rope incline angle y and angular

|
[\
a1

velocity y of grab and cargo per time (Fig. 3d); change

of force in the rope F/m ie. S per time (Fig. 3e); and

timal path of th z = f(x) (Fig. 3f).
optimal path of the grab and cargo (x) (Fig. 30) Figure 3c. Change of the optimised values - velocity,

10.0+ acceleration, jerk and control in z-direction
0.015+
©.010+
7.5
E -c-é Q0.5
~N | B:
< ©-0 S 0.000-
o
>
-0.005
2.5
-0.0101
0.0 -0.915
% %

Figure 3d. Change of the optimised values - rope incline

Figure 3a. Change of the optimised values — coordinates x, z angle and angular velocity of grab and cargo per time
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Figure 3e. Change of the optimised values — force in the

Figure 3b. Change of the optimised values - velocity, rope per time

acceleration, jerk and control in x-direction
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Figure 3f. Change of the optimised values — optimal path of
grab and cargo

Values, upon which results shown on Fig. 3a — Fig.
3f are obtained, are: distance between vessel and hopper
in x—direction X, =9m, height distance between
beginning/end point of automatic part of half-automatic
unloading cycle and discharging point of the grab
Zy =8m, t. =20s — time, known in advance, needed
for obtaining one half of automatic part of half—
automatic unloading cycle i.e. grab transfer from vessel
to hopper or vice versa, t, is determined upon maximal

allowed velocities and accelerations in X and z

direction [6] and 7 = x_l(xk / 2) — time needed for the

grab and cargo transfer to one half of distance between
vessel and hopper i.e. Z(T <t< tc)z Z .

4 OPTIMAL MOVEMENT OF THE GRAB CRANE
DEVICE MECHANISMS - Il PHASE OF
OPTIMIZATION

4.1 Optimal movement of harbour crane
mechanisms

On the basis of previous conception of cargo movement,
the link between cargo movement and crane peak
movement can be established as:

lcosp+1,sin@ +Isiny + x—x, —a=0
l;sing—1,cos@ —lcosy —z+2z +b=0.

Respecting that this is a redundancy system, we can
deem that change of the rope length | or something else
is prominent time function, which generally depends of
construction characteristics of the crane. Change of rope
length | per time should be determined upon real
characteristics of driving mechanisms for specific type
of harbour crane, depending of manufacturer. The
problem now becomes the direct task of dynamics and
unknown momentum’s M, and Mp can be

determined from differential equation system (la) on
the basis of obtained optimal cargo movement.
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4.2 Optimal movement of the unloading bridge
trolley

Due to relatively less complex construction of
unloading bridge than harbour crane driving force Fy,
needed for trolley movement, can be determined
directly from differential equation (1b) on the basis of
obtained optimal cargo movement (direct task of
dynamics).

The values needed for calculation of the driving
force Fy from differential equation (1b) are following:
height distance between the beginning/end point of
automatic part of half-automatic unloading cycle and
rope suspension point z; =17m, mass of the crane

trolley m; =15000kg, mass of the grab and
cargom =12500kg . The result is shown on the Fig. 4,

while change of the rope length is shown on the
Fig. 5.

6000

Fq [N]

-2000

-4000
©

Figure 4. Driving force needed for optimal unloading bridge
trolley movement
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Figure 5. Change of the rope length per time.
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5 CONCLUSIONS

Presented two phase optimization procedure replaces
complicated non-linear mathematical models of grab
crane devices, needed for optimization of the grab and
cargo movement, with two relatively simple
mathematical models without losing complexity. In the
first phase, the general linear model for optimization of
grab and cargo movement is developed, while in the
second phase relatively complicated non-linear models
of crane mechanisms movement (depending on crane
construction) are used only for obtaining driving forces
or momentum’s upon optimal path and parameters of
the cargo and grab movement.

Presented procedure allows that complicated non-
linear mathematical models of the grab crane devices,
needed for optimization of the grab and cargo
movement, should be replaced with general linear
model of the grab and cargo movement and non-linear
model for movement of crane mechanisms without
losing any of their complexity.

It is important to underline that developed procedure
for optimization of grab and cargo movement has
universal application i.e. results of optimization process
can be applied on any transport device which can
perform such kind of motion (harbour cranes, unloading
bridges, overhead cranes etc.).

The characteristic of bulk cargo is the fact that the
transport expenses, manipulation and waiting present
the important part of their values. Unloading bulk cargo
terminal works 24 hours seven days a week during the
sailing period. Presented optimized working cycle of
grab crane devices reduces rope inclination angle, force
in a rope and therefore needed energy for performing
such kind of motion.

The application of the results obtained is in
introducing of the half automatic unloading cycle during
the bulk cargo material unloading. In that case it is
possible to achieve the optimal unloading cycle,
dissipation of material during the grab discharging can
be reduced to the minimum, dynamic strains of cranes
can be smaller and it is also possible to eliminate the
influence of the human factor in unloading process
(training of operator, weather conditions, night work,
etc.).
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OIITUMAJIHO KPETAIBE BUCEREI' TEPETA

Yrbewa bByrapuh, Jocud Bykosuh, lyman
I'immmh, dyman Ilerposuh

Y pany je nupukazaH jemaH o Moryhux HadnHa
onTHMHU3alMje Kperawma Buceher Tepera. PasBujeHa
npoleaypa ONTUMHU3ALIM]e je PUMEHhCHA Ha TU3ATHYHE
ypehaje ca rpaOWIHIIoM, Kao IITO Cy MPETOBAPHH MOCT
U Jyduka gam3aiauna. [Iporemypa ontuMmzaunmje je
nmojgesbeHa y aBe Qase. [IpBa ¢asza mnpencrasiba
ONTHMHU3AIMjy KpeTama Trpadmwiiie M Tepera Tj.
Buceher Tepera. Jlpyra ¢asa ontummsaiuje cacTtoju ce
U3 oxphuBama KpeTama MeXaHH3ama IU3aIHYHHX
ypebhaja, Ha OCHOBY JOOMjEHMX ONTHMAIIHUX IyTama U
mapaMerapa Kperama Tpabmmmmne u Ttepera. OOk
NpUKa3aHOT  MaTeMaTH4YKor  Mojena  omoryhyje
IOUPEKTHY TPUMEHYy Mojela TeopHje ONTHMAaJIHOT
yIpaBJbatha Tj. ONTHMH3ALMja KpeTama Buceher Tepera
je usBemeHa mpuMeHOM [IOHTpjarHHOBOT MPHUHIMIIA
MakcumMyMa. OCHOBHM LB  ONTUMHU3ALHje  je
NOCTU3ake  MHHAMAIHOT  pagHOr  (MCTOBApHOT)
LUKIyCca, CMamCHke MOTPOLIKBE CHEpruje Kao |
pacumama MaTepujajia TOKOM MpaXibema rpabHiuie.
CBH peneBaHTHH HM3pa3d Cy W3BEICHU Y aHAJIUTHYKOM
00HKy.
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