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Compared with serial structured machine tools and robots, parallel 
kinematic machine tools and robots have many advantages. Many different 
topologies of parallel mechanisms with 3-6 DOF have been used. 
Considering that some limitations are indeed due to the use of parallel 
mechanisms, it is appealing to investigate architectures based on hybrid 
arrangements where serial and parallel concepts are combined. This paper 
is aimed at presenting a study on the kinematic modelling of the Tricept 
based five-axis vertical machine tool. Since the machine comprises 3-DOF 
parallel structure and 2-DOF serial wris,t direct and inverse kinematics 
also comprise serial and parallel part. Inverse kinematics is solved 
analytically while direct kinematics consists of an analytical and 
numerical part. Based on machine inverse kinematics, the workspace has 
been analysed in order to select machine prototype design parameters. 
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1. INTRODUCTION  
 

Compared with serial structured machine tools and 
robots, parallel kinematic machine tools and robots have 
many advantages. Basic knowledge about diverse 
aspects of parallel kinematic machines has already been 
published. Many different topologies of parallel 
mechanisms with 3-6 DOF has been used [1-4]. 
Considering that some limitations are indeed due to the 
use of parallel mechanisms, it is appealing to investigate 
architectures based on hybrid arrangements where serial 
and parallel concepts are combined [4]. The Tricept 
robot or Tricept machine tool is based on parallel tripod 
combined with passive chain, and equipped with serial 
3- or 2- DOF wrist. The inventor of this structure is 
K.-E. Neuman [5], while the mechanics has been 
constructed by Neos [6]. 

The primary application of commercially available 
Tricept robots was the area of assembly where large 
insertion forces are required, e.g. as in the automobile 
industry. Other applications included deburring, milling, 
wood machining, laser and water-jet cutting, spot and 
laser welding. 

The conceptual model of the Tricept based vertical 
five-axis machine tool considered in this paper, Figure 
1a, is the basic option of the planned reconfigurable 
multi-axis machining system for HSC-milling of 
aluminium, steel as well as large size model making, 
plastic and foam machining.  

The machine has a three-DOF structure of parallel 
type to execute translational motions and 2-DOF serial 
wrist to execute rotational motion i.e. tool orientation. 

The basic module of Tricept based five-axis machine 
tool can be built as a plug-and-play module to configure 
different machines by placing it vertically Figure 1a, on 

an incline, Figure 1b, and horizontally, Figure 1c. 

 
Figure 1. Reconfigurability of the Tricept based machine 
tool 
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This paper is aimed at presenting a study on the 
kinematic modelling of the Tricept based five-axis 
machine tool. Since the machine comprises 3-DOF 
parallel structure and 2-DOF serial wrist direct and 
inverse kinematics also comprise serial and parallel part. 
Inverse kinematics is solved analytically while direct 
kinematics consists of an analytical and numerical part. 
 
2. KINEMATIC MODELLING 

 
Figure 2 represents a geometric model of the Tricept 
based vertical five-axis machine tool, Figure 1a, which 
comprises 3-DOF parallel structure and 2-DOF serial 
wrist. Parallel structure consists of four kinematic 
chains, including three variable length legs with 
identical topology and one passive leg connecting the 
fixed base B and the moving platform P. Three variable 

length legs with actuated prismatic joints di, i =1,2,3 are 
connected to the base B by Cardan joints and to 
movable platform P by spherical joints. The fourth 
chain (central leg) connecting the centre of the base B to 
the platform P is passive constraining leg. It consists of 
a Cardan joint, a moving link, a prismatic joint and the 
second moving link fixed to the platform P. This fourth 
leg is used to constrain the motion of the platform to 
only 3-DOF. These 3-DOF are described by spherical 

coordinates i.e. by the axial translation M
Op Opp  p  

along the central leg and by two rotations  and   
about two axes orthogonal to the central leg itself. Two-
DOF serial wrist executes rotational motions i.e. tool 

orientation with actuated rotational joints 1 and 2 . 

 

 
Figure 2. Geometric model of the Tricept based vertical five-axis machine tool 
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To adequately control the position and orientation of 
the tool during machining processes, kinematic model is 
required to establish mathematical description for the 
machine tool. Kinematic modelling of parallel structure 
involves solving inverse kinematics, Jacobian matrix as 
the basis for numerical solution of direct kinematics, 
and direct kinematics. Kinematic modelling for 2-DOF 
serial wrist involves solving direct and inverse 
kinematics in a well-known way [7-9]. Based on 
machine inverse kinematics the workspace has been 
analysed in order to select machine prototype design 
parameters. 
 
2.1 Machine joint and world coordinates 
 
As can be concluded from Figure 1a i.e. Figure 2, 
Tricept based five-axis machine tool will be considered 
below as a specific configuration of the five-axis 
vertical milling machine (X, Y, Z, B, C) spindle-tilting 
type [10]. 

The machine reference frame {M} has been adopted 
according to the standard for this machine type [11]. 
Frame {P} is attached to the moving platform in a way 
that zp axis coincides with the axis of the central leg and 
with the axis of joint ϴ1. The tool frame {T} is attached 
to the milling tool at the tool tip T so that the axis zt 
coincides with tool axis, and the frame {W} is attached 
to the work piece. Vectors v referenced in frames {M}, 
{W}, {P} and {T} are denoted by MV, Wv, Pv and Tv.  

To solve direct and inverse kinematics, joint and 
world coordinates will be defined first. 

Joint coordinates vector for this 5-axis Tricept based 
machine tool is represented as  

  Tθθddd 21321q  (1) 

where id , i=1,2,3 and i , i=1,2 are scalar joint 

variables controlled by actuators. 
The description of world coordinates is based on 

tool path calculated by CAD/CAM systems defined by 
the set of successive tool positions and orientations in 
the work piece frame {W}, Figure 2. The thus 
calculated tool path is machine independent and is 
known as a cutter location file (CLF). A tool pose is 
defined by the position vector of the tool tip T in the 
work piece frame {W} as 

  TTwTwTwT
W zyxp  (2) 

and tool orientation is defined by unit vector of the tool 
axis as 

  TTwzTwyTwxT
W kkkk  (3) 

As the axes of frames {M} and {W} need not be 
parallel, the tool tip position vector and unit vector of 
tool axis direction in the machine reference frame {M} 
can be expressed as  

   T
WM

WOw
MT

MMMT
M RZYX ppp   (4) 

   T
WM

W
T

TzTyTxT
M Rkkk kk    (5) 

where  TOwOwOwOw
M zyxp  is the position 

vector of the origin of work piece frame {W}. It should 

be noted that determining the position vector Ow
M p  

and orientation of the work piece frame {W}, is 
conducted according to the procedure for 5-axis CNC 

machine tools and thereafter the orientation matrix RM
W  

in equations (4) and (5) is determined and executed in a 
control system [9]. 

To complete the vector of world coordinates, it is 
also needed to determine the tool orientation angles B 
and C which define only the direction of tool axis Tz  

that also coincides with the axis of the last link i.e. 
motor spindle, Figure 2. Given that machine has 5 DOF, 
only the direction of the Tz  axis is controllable, while 

the axes Tx  and Ty  will have uncontrollable rotation 

about the axis Tz . 

The description of the position and orientation of 
one frame relative to another e.g. in this case of the 
frame {T} relative to the frame {M} can be represented 
through homogenous coordinate transformation matrix 
4 x 4, [7,12,13], as 
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where rotation matrix RM
T  presents the orientation, 

while vector T
M p  presents the position of the frame 

{T} with respect to the machine reference frame {M}. 
To bring the tool axis i.e. the axis Tz  of the frame {T} 

to a desirable angular position with respect to the frame 
{M}, the frame {T} must be rotated first about the axis 

MY  by the angle B, and then about the axis MZ  by the 

angle C, as prescribed by the convention for 5-axis 
machine tools (X, Y, Z, B, C) spindle-tilting type. The 

derivation of equivalent rotation matrix RM
T  can be 

further derived as 
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where rotation matrices BYMR ,  and CZMR ,  are so called 

basic rotation matrices [13]. “c“ and “s“ refer to cosine 
and sine functions. As it is of interest only orientation of 
the tool axis Tz  specified by unit vector 

 TTzTyTxT
M kkkk , whose description is above 

given by equating the corresponding members of matrix 

RM
T  from equation (7) the angles B and C can be 

determined as 
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 ) ,1(2tan 2
TzTz kkAB   (8) 

and 

 ) (2tan , TxTy kkAC   (9) 

Although in equation (8) a second solution exists, by 
using the positive square root the single solution for 
which  0B is always computed [7,14]. As can be seen 
from equation (7), equation (9) is valid only when sB≠0 
i.e. B≠0º. As tool can freely rotate in case when B=0º 
value for angle C can be arbitrary adopted. This way, 
the world coordinates vector of the machine can be 
expressed as 

  TMMM CBZYXx  (10) 

 
2.2 Kinematic modelling of parallel mechanism 

 
For further analysis it is necessary to specify world 
coordinates of the parallel mechanism first. As it was 
mentioned, the passive central leg is used to constrain 
the motion of the platform to only 3-DOF. According to 
Figure 2 these 3-DOF can be described by spherical 
coordinates 

  TOpsp p x  (11) 

where:  
 

 Op
M

Opp p  is axial translation along 

central leg, and 

   and  are the rotation angles of the central 
leg’s Cardan joint about axes MX and MY  

respectively.  

 

Vector   P
T

pppOp
M zyx xp   is the 

position vector of origin Op of the frame {P} attached to 
the moving platform with respect to machine reference 
frame {M}, and represents Cartesian world coordinates 
vector. 

As noticeable from Figure 2 joint axes of 2-DOF 
serial wrist intersect at point D (wrist centre). From this 
fact it is easy to conclude that the position of wrist 

centre D, i.e., D
M p  is influenced only by joint 

coordinates 1d , 2d , and 3d  of parallel mechanism. 

For specified position vector of the tool tip 

 TMMMT
M ZYXp  and for specified tool 

orientation angles B and C the rotation matrix RM
T  from 

equation (7) is calculated first. Then by using only 

vector T
M k  from calculated rotation matrix RM

T  the 

position vector D
M p  of the wrist center D and its 

module Dp , according to Figure 2 can be calculated as 
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 (12) 

and 

 222p DDDD
M

D zyx  p  (13) 

As the position vectors Op
M p , D

M p  and PD
M p  

are collinear and coincide with central leg, and as 

1lPD
M p  the module Op

M
Opp p  can be 

calculated as 

 1   l-pp DOp   (14) 

Now, the description of the position and orientation 
of the frame {P} attached to the moving platform with 
respect to machine reference frame {M} can be 
represented as 
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where rotation matrix RM
P  represents the orientation 

while vector Op
M p  represents the position of frame 

{P} with respect to the machine frame {M}. Frame TM
P  

can be further derived using homogenous 
transformation matrices 4x4 as 
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where  
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As the vectors D
M p  and Op

M p  are collinear, 

calculated components of vector 

 TDDDD
M zyxp  in equation (12) can also be 

described by spherical coordinates according to 
equation (17) as 
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From equations (18), (12) and (13) the platform’s 
orientation angles  and  can be determined as 

 ))/(1,/(2tan 2
DDDD pxpxA   (19) 

 ),(2tan DD zyA   (20) 

As can be seen from equation (18), equation (20) is 

valid when 0c  i.e. 90 . This condition is 
always satisfied since angles   and   usually vary 
within the limits 

 
33


  and 

33


   (21) 

specified by the ranges of passive joints motions. 
This way, the spherical world coordinates vector of 

parallel mechanism spx  in equation (11) or Cartesian 

world coordinates vector px  in equation (17) are 

completed. 
 

2.3 Inverse kinematics of parallel mechanism 
 
The inverse kinematics of parallel mechanism from 
Figure 2 deals with calculating the leg lengths id , 

i=1,2,3 when the platform pose is given. 
Observing geometric relations in the example of a 

leg vector 2dM  shown in Figure 2, the following 

equations can be derived 
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where: 

  Tiziyixi
M dddd , i=1,2,3 (23) 

are vectors of the actuated legs defined in 
the machine frame {M}, 

  TpppOp
M zyxp is the position 

vector of the origin Op of the frame {P} 
attached to the moving platform with respect 
to machine frame {M} and is given in 
equation (17), 
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the frame {P}, 

 i
PM
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M R pp  ),(  , i=1,2,3 (24) 

are position vectors of the joint centres of 
the platform expressed in the machine frame 
{M}, 
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defined in the frame {M}. 

By substituting corresponding vectors in equation 

(22) vectors  Tiziyixi
M dddd , i=1,2,3 can be 

obtained from which inverse kinematics equations  

 222
iziyixi dddd  , i=1,2,3 (25) 

are derived as 
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This way, the joint coordinates vector of parallel 
mechanism can be expressed as 

  Tddd 321d  (29) 

 
2.4 Jacobian matrix and direct kinematics of parallel 
mechanism 
 
The direct kinematics problem for parallel mechanism 
consists of finding the vector of world coordinates 

 TOpsp p x  or  TpppP zyxx  as a 

function of joint coordinates  Tddd 321d . 

Generally, such problem does not have analytical 
solutions and different numerical algorithms based on 
Jacobian matrix are used. 

Differential equations (26) – (28) with respect to the 
time the Jacobian matrix is obtained as 
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where: 
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This so called analytical Jacobian matrix [15,16] 
relates the spherical velocity vector 
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for simple numerical algorithm to solve direct 
kinematics for the purpose of simulation. For some 
advanced algorithms [16] so called geometric Jacobian 
matrix [15] that relates the Cartesian velocity vector 
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As it was mentioned, among several algorithms 

based on Jacobian matrix the simple numerical 
algorithm is selected to solve direct kinematics for the 
purpose of simulation. This algorithm is based on the 
constant Jacobian matrix calculated for the centre of 
workspace [17] i.e. for the initial position [18]. 

At step (n+1), the estimated position of the platform 
is given by 

 )(),( 00
1

1 nspspnspn J dddxxx  
  (31) 

where: 

  TnnOpnspn p 1111   x  is the 

estimated position of the platform at the step 
n+1, 

  TnnOpnspn p x  is the estimated 

position of the platform at the step n, 

 T
nnnn ddd ][ 321d  joint position (leg 

lengths) corresponding to the estimated 
platform position at the step n, result of the 
inverse kinematics of point spnx ,  

 ),( 00
1 dxspJ   is the inverse Jacobian matrix 

for the initial platform position 0spx  and joint 

position 0d  as the result of inverse kinematics 

of point 0spx . 

For the purpose of simulation, this algorithm 
converge in 1 to 5 steps, depending on the distance 
between the initial position and actual position. This 
comes from the large workspace of the parallel 
mechanism on one hand and the other hand from the 
high accuracy provided by predicted position sensors 
(this implies a high accuracy for the computation 
process). Consequently, the direct kinematics model 
takes almost twice as much time as the inverse model. 
 
2.5 Kinematic modelling of 2-DOF serial wrist 
 
To model 2-DOF serial wrist, the Denavit-Hartenberg 
(D-H) notation is used [7,19,20]. As noticeable from 
Figure 3 the serial wrist has two moving links connected 
together by two rotational joints. The first moving link 
is connected with supporting link fixed to moving 
platform {P} whose axis coincides with the axis of 
central leg. Second moving link is attached with a tool. 
To perform kinematic analysis, first coordinate frames 
are rigidly attached to each link. Relative position and 
orientation between these coordinate frames can be 
described by homogenous transformation traditionally 

referred to as an A matrix. Matrix Ai
i
1  [13] designates 

D-H transformation matrix relating frame (i) to frame 
(i-1). Figure 3 shows D-H coordinate frames for 2-DOF 
serial wrist in the reference position with respect to the 
platform frame {P}. 

 
Figure. 3 Link coordinate frames for 2-DOF serial wrist in 
the reference position with respect to frame {P} 
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Prior to making the list of D-H parameters complete 
for each link of 2-DOF serial wrist, it is needed to make 
two important remarks: 

 The frame {P} attached to the moving platform 
is adopted as the wrist reference frame; 

 To make the wrist reference position second 

joint was rotated for 902   and tool frame 

{T} was introduced according to Figure 3. 
Considering the above mentioned remarks a list of 

D-H parameters for each link is shown in Table 1. 

Table 1. D-H kinematic parameters 

Link i ][i  ][mmai  ][mmdi  ][i  

1 90 0 1l  1  

2 0 2l  0 902   

 
Substituting D-H parameters of the links from Table 1 

the transformation matrices AP
1  and A1

2  are obtained 

first [13]. As noticeable from Figure 3, the tool frame 
{T} can be described relative to the frame ),,( 222 zyx  

by homogenous transformation matrix as 

 

























1000

0010

0001

0100

2TT  (32) 

Now, as it is well known [7,12,13], the tool position 
and orientation i.e. the position and orientation of frame 
{T} with respect to moving plate frame {P} (Figure 3) 
for the given joint coordinates 1  and 2  and specified 

link parameters can be determined as 





































1000

)(0

1000

),(),(

12222

21221121

21221121

212121
21

lclcs

sslssccs

sclscscc

R
TAAT T

PP
T

T
PP

T





 p

 (33) 

where 

 







































)( 122

212

212

lcl

ssl

scl

z

y

x

TP

TP

TP

T
P





p  (34) 

This way, direct kinematics problem for 2-DOF 
serial wrist is solved locally with respect to frame {P}. 
Since, 2-DOF serial wrist is attached to the moving 
platform its solution of direct and inverse kinematic will 
be considered further as a part of complete machine 
inverse and direct kinematic solutions.  
 
2.6 Machine inverse and direct kinematics 
 
Using the determined position and orientation of the 
platform frame {P} with respect to the machine frame 

{M}, TM
P  equation (16), and determined position and 

orientation of the tool frame {T} with respect to the 

platform frame {P}, TP
T  equation (33), the tool tip 

position and orientation with respect to machine frame 
{M} can be determined as 

(35)                                            
1000

),,(),(

1000

),,(),(),(),(),( 2121
























 



MMMT
MM

T

OpOp
M

T
PM

P
P
T

M
P

P
T

M
P

M
T

ZYXCBR

pRRR

TTT

p

pp 

from which machine inverse and direct kinematics are 
solved. 

 
Machine inverse kinematics: 
 
Machine inverse kinematics comprises already 
analytically solved parallel part described in section 2.3 
and serial part which will be considered in detail. 
 
Parallel part of inverse kinematics: 
 
For specified tool orientation angles B and C, the 

rotation matrix RM
T  from equation (7) is calculated 

first. Then, by using only vector T
M k  from calculated 

matrix RM
T , the position vector of wrist centre D, i.e. 

D
M p  equation (12), its module Dp , equation (13), and 

the module Op
M

OpP p , equation (14) are 

calculated. Using equations (18), (19) and (20) angles 
  and   are obtained. 

By substituting calculated spherical coordinates 

Opp ,   and   into inverse kinematics (26) – (28) 

joint coordinates 1d , 2d  and 3d  are calculated i.e. 

parallel part of inverse kinematics is solved. 
 
Serial part of inverse kinematics: 
 
For inverse orientation kinematics i.e. calculation of 
joint coordinates 1  and 2  it is started from equation 

(35) from which only rotation matrices are used as 

 ),(),(),( 21  RRCBR P
T

M
P

M
T   (36) 

From equation (36) matrix ),( 21 RM
T  can be 

obtained as  

 
),(),(

),(),(),( 1
21

CBRR

CBRRR
M
T

TM
P

M
T

M
P

P
T



 




 (37) 

Substituting matrices ),( 21 RP
T , equation (33), 

),( CBRM
T , equation (7) and ),( RM

P , equation (16) 

into equation (37) it is obtained that 



 

8 ▪ VOL. 41, No 1, 2013 FME Transactions
 

 







































TPzTPzTPz

TPyTPyTPy

TPxTPxTPx
M
T

M
P

kji

kji

kji

CBRR

cs

ssccs

scscc

),(),(

0

1

22

21121

21121







(38) 

As it is possible to control only the tool orientation 
axis Tz  joint angles 1 and 2  can be determined by 

equating only corresponding members of the third 
columns of matrices from the left and right side in 
equation (38) as 

 )kk(Aθ TPzTPz ,12tan 2
2   (39) 

 )/s/(2tan 221  TPyTPy k,s kAθ   (40) 

where: 

cBccsBsCcssBcCsk

cBssBsCck

cBscsBsCsssBcCck

TPz

TPy

TPz











(41) 

As can be seen from equations (39), (40) and (41) 
the solutions for 1  and 2  depend on tool orientation 

angles B and C as well as on orientation angles   and 
  of the platform. Having calculated joint coordinates 

1d , 2d  and 3d , equations (26) – (28), and 1  and 2 , 

equations (39) – (41), solution of inverse kinematics 
problem of the machine is completed. 
 
Machine direct kinematics: 
 
Machine direct kinematics comprises parallel part 
already solved numerically in section 2.4 and a serial 
part which will be considered in detail. 
 
Parallel part of direct kinematics: 
 
For specified joint coordinates (leg lengths) 

 Tddd 321d  the initial position of the platform 

 TOpSP p 000 x  is adopted for which vector 

 Tddd 3020100 d  is calculated using inverse 

kinematics (26) – (28). For adopted initial position 0spx  

and calculated 0d , constant Jacobian matrix 

),( 00 dxspJ  is calculated using equation (30) and then 

is inverted as ),( 00
1 dxspJ  . Using numerical 

algorithm described by equation (31) the position vector 
of the platform expressed in spherical coordinates 

 TOpsp p x  is calculated. After calculating th 

coordinates  Opp ,  , and   the frame TM
P , i.e., 

rotation matrix RM
P  and position vector Op

M p  from 

equation (16) are determined. This way direct 
kinematics of parallel part is completed. 

 
Serial part of direct kinematics: 
 
For determined spherical coordinates  Opp ,  , and   

in parallel part of direct kinematics, and for specified 

joint coordinates 1  and 2 , matrix ),( RM
P , 

equation (16), vector 

 TPPPOpOp
M zyxp  ),,( p , equation (17), 

matrix ),( 21 RP
T , equation (33), and vector 

 TTPTPTPT
P zyx),( 21 p , equation (34), are 

calculated first. Substituting them in equation (35) the 
position vector of the tool tip can be determined as 
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




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
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PTPTP

M

M

M

T
M

zzccysxsc

yzcsycxss

xzsxc

Z

Y

X






p

(42) 

After multiplying matrices RM
P  and RP

T  in (35) 

vector T
M k  is determined as 
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
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

cccsssscsc

ccssscscss

csscc

k

k

k

Tz

Ty
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T
M k

(43) 

from which tool orientation angles B and C can be 
calculated using equations (8) and (9) and direct 
kinematics of the machine is completed. 
 
3. WORKSPACE ANALYSIS 
 
Besides the selection of appropriate kinematic topology 
the most important step in the parallel machine design is 
to select the right geometric dimensions [19,20]. 

Based on inverse kinematics, it is possible to 
determine the position and orientation workspace of the 
Tricept based five-axis milling machine. The applied 
approach proved to be very useful and is based on the 
definition of position and orientation workspace for 
parallel kinematic chains [21]. 

In the case of the Tricept based five axis machine 
tool considered in this paper, the position and 
orientation workspace are given by 

 }1,0{),,,,( CBZYXW MMMS  (44) 

which represents a Boolean function whose value is 
equal to 1 if the tool pose-defined by the quintet 

),,,,( CBZYX MMM  is reachable without exceeding the 

limited motion range of the joints. Starting from the 
selected point in the workspace volume, the estimation 
is made by specific step-by-step strategy that locates 
tool in a given pose in the workspace and that 
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determines whether the pose is reachable or not by 
taking into account a limited motion range of the joints 
[10]. Based on selected prototype design parameters: R 
= 350mm, r=100mm, l1=300mm, l2=150mm, 
dmin=934mm, dmax=1520mm the determined workspace 

for three-axis machining (  0,0  CB , i.e., spindle 

axis is perpendicular to the MM YX  plane) is shown in 

Figure 4.  

 
Figure 4. Workspace in the case of three-axis machining 
(B=0, C=0) 

For programmers and operators familiar with CNC 
machine tools, the determined workspace can be 
reduced to the parallelepiped “a” as indicated in Figure 
4. As it is known from practice, the adopted portion of 
workspace in the form of parallelepiped “a” can be 
changed in form “b” or “c” depending on the 
workpieces’ shape and dimensions. 
 
4. CONCLUSION 
 
In order to develop reconfigurable multi-axis machining 
system for HSC-milling of aluminum, steel as well as 
large size model making a conceptual model of the 
Tricept based five-axis machine tool is discussed. The 
results of the study on the kinematic modelling of the 
vertical Tricept based five-axis machine tool have been 
in detail reported in this paper. For parallel structure, 
inverse kinematics is solved analytically while direct 
kinematics is solved numerically based on the constant 
Jacobian matrix calculated for the centre of workspace. 
Direct and inverse kinematics for 2-DOF serial wrist are 
solved analytically. Based on machine inverse 
kinematics, workspace has been analyzed in order to 
select machine prototype design parameters. 
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КИНЕМАТИЧКО МОДЕЛИРАЊЕ ХИБРИДНЕ 

ПАРАЛЕЛНО-СЕРИЈСКЕ ПЕТООСНЕ 
МАШИНЕ АЛАТКЕ 

 
Милан Милутиновић, Никола Славковић, 

Драган Милутиновић 
 

 

Паралелне структуре машина алатки и робота у 
односу на серијске структуре имају низ предности. 
За градњу паралелних машина алатки и робота 
данас се користи већи број механизама са 
паралелном кинематиком различитих топологија са 
3 до 6 степени слободе. Међутим, с обзиром на 
извесна ограничења паралелних механизама 
интензивирана су истраживања на изналажењу 
механизама хибридних архитектура као 
комбинација паралелних и серијских структура. У 
раду су представљени резултати кинематичког 
моделирања хибридне паралелно-серијске петоосне 
машине алатке на бази Трицепт механизма. Како 
оваква машина укључује паралелну структуру са три 
степена слободе и серијску структуру са два степена 
слободе, то решења проблема инверзне и директне 
кинематике такође укључују паралелни и серијски 
део. Инверзни кинематички проблем је решен 
аналитички док решење директног кинематичког 
проблема садржи аналитички и нумерички део. На 
основу решења инверзног кинематичког проблема 
анализиран је радни простор у циљу избора 
пројектних параметара прототипа. 

 


