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Compared with serial structured machine tools and robots, parallel
kinematic machine tools and robots have many advantages. Many different
topologies of parallel mechanisms with 3-6 DOF have been used.
Considering that some limitations are indeed due to the use of parallel
mechanisms, it is appealing to investigate architectures based on hybrid
arrangements where serial and parallel concepts are combined. This paper
is aimed at presenting a study on the kinematic modelling of the Tricept
based five-axis vertical machine tool. Since the machine comprises 3-DOF
parallel structure and 2-DOF serial wris,t direct and inverse kinematics
also comprise serial and parallel part. Inverse kinematics is solved
analytically while direct kinematics consists of an analytical and

numerical part. Based on machine inverse kinematics, the workspace has
been analysed in order to select machine prototype design parameters.
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1. INTRODUCTION

an incline, Figure 1b, and horizontally, Figure 1c.

Compared with serial structured machine tools and
robots, parallel kinematic machine tools and robots have
many advantages. Basic knowledge about diverse
aspects of parallel kinematic machines has already been
published. Many different topologies of parallel
mechanisms with 3-6 DOF has been used [1-4].
Considering that some limitations are indeed due to the
use of parallel mechanisms, it is appealing to investigate
architectures based on hybrid arrangements where serial
and parallel concepts are combined [4]. The Tricept
robot or Tricept machine tool is based on parallel tripod
combined with passive chain, and equipped with serial
3- or 2- DOF wrist. The inventor of this structure is
K.-E. Neuman [5], while the mechanics has been
constructed by Neos [6].

The primary application of commercially available
Tricept robots was the area of assembly where large
insertion forces are required, e.g. as in the automobile
industry. Other applications included deburring, milling,
wood machining, laser and water-jet cutting, spot and
laser welding.

The conceptual model of the Tricept based vertical
five-axis machine tool considered in this paper, Figure
la, is the basic option of the planned reconfigurable
multi-axis machining system for HSC-milling of
aluminium, steel as well as large size model making,
plastic and foam machining.

The machine has a three-DOF structure of parallel
type to execute translational motions and 2-DOF serial
wrist to execute rotational motion i.e. tool orientation.

The basic module of Tricept based five-axis machine
tool can be built as a plug-and-play module to configure
different machines by placing it vertically Figure la, on
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Figure 1. Reconfigurability of the Tricept based machine
tool
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This paper is aimed at presenting a study on the
kinematic modelling of the Tricept based five-axis
machine tool. Since the machine comprises 3-DOF
parallel structure and 2-DOF serial wrist direct and
inverse kinematics also comprise serial and parallel part.
Inverse kinematics is solved analytically while direct
kinematics consists of an analytical and numerical part.

2. KINEMATIC MODELLING

Figure 2 represents a geometric model of the Tricept
based vertical five-axis machine tool, Figure la, which
comprises 3-DOF parallel structure and 2-DOF serial
wrist. Parallel structure consists of four kinematic
chains, including three variable length legs with
identical topology and one passive leg connecting the
fixed base B and the moving platform P. Three variable

length legs with actuated prismatic joints d;, i =1,2,3 are
connected to the base B by Cardan joints and to
movable platform P by spherical joints. The fourth
chain (central leg) connecting the centre of the base B to
the platform P is passive constraining leg. It consists of
a Cardan joint, a moving link, a prismatic joint and the
second moving link fixed to the platform P. This fourth
leg is used to constrain the motion of the platform to
only 3-DOF. These 3-DOF are described by spherical

coordinates i.e. by the axial translation pg, = ‘M pop‘

along the central leg and by two rotations ‘¥ and 0

about two axes orthogonal to the central leg itself. Two-

DOF serial wrist executes rotational motions i.e. tool
o

orientation with actuated rotational joints N ang 02
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Figure 2. Geometric model of the Tricept based vertical five-axis machine tool
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To adequately control the position and orientation of
the tool during machining processes, kinematic model is
required to establish mathematical description for the
machine tool. Kinematic modelling of parallel structure
involves solving inverse kinematics, Jacobian matrix as
the basis for numerical solution of direct kinematics,
and direct kinematics. Kinematic modelling for 2-DOF
serial wrist involves solving direct and inverse
kinematics in a well-known way [7-9]. Based on
machine inverse kinematics the workspace has been
analysed in order to select machine prototype design
parameters.

2.1 Machine joint and world coordinates

As can be concluded from Figure la i.e. Figure 2,
Tricept based five-axis machine tool will be considered
below as a specific configuration of the five-axis
vertical milling machine (X, Y, Z, B, C) spindle-tilting
type [10].

The machine reference frame {M} has been adopted
according to the standard for this machine type [11].
Frame {P} is attached to the moving platform in a way
that z, axis coincides with the axis of the central leg and
with the axis of joint ©,. The tool frame {T} is attached
to the milling tool at the tool tip T so that the axis z
coincides with tool axis, and the frame {W} is attached
to the work piece. Vectors v referenced in frames {M},
{W}, {P} and {T} are denoted by My, Wv, Pv and Tv.

To solve direct and inverse kinematics, joint and
world coordinates will be defined first.

Joint coordinates vector for this 5-axis Tricept based
machine tool is represented as

a=[d, dy d3 6, 0,] (1)

where d;, i=1,2,3 and 6;, i=1,2 are scalar joint
variables controlled by actuators.

The description of world coordinates is based on
tool path calculated by CAD/CAM systems defined by
the set of successive tool positions and orientations in
the work piece frame {W}, Figure 2. The thus
calculated tool path is machine independent and is
known as a cutter location file (CLF). A tool pose is
defined by the position vector of the tool tip T in the
work piece frame {W} as

WPT=[XTW V1w ZTW]T 2

and tool orientation is defined by unit vector of the tool
axis as

WkT:[kwa kTwy kTwz]T (3)

As the axes of frames {M} and {W} need not be
parallel, the tool tip position vector and unit vector of
tool axis direction in the machine reference frame {M}
can be expressed as

Mor =Xy Y Zul =MpoutwR"pr @

M M W
krz[ka kry sz]T:WR' kr ®)
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where M Pow = [xow Yow ZOW]T is the position
vector of the origin of work piece frame {W}. It should
be noted that determining the position vector Pow

and orientation of the work piece frame {W}, is
conducted according to the procedure for 5-axis CNC

machine tools and thereafter the orientation matrix AV{/[ R

in equations (4) and (5) is determined and executed in a
control system [9].

To complete the vector of world coordinates, it is
also needed to determine the tool orientation angles B
and C which define only the direction of tool axis zp

that also coincides with the axis of the last link i.e.
motor spindle, Figure 2. Given that machine has 5 DOF,
only the direction of the zy axis is controllable, while
the axes xy and yr will have uncontrollable rotation
about the axis z7 .

The description of the position and orientation of
one frame relative to another e.g. in this case of the
frame {T} relative to the frame {M} can be represented
through homogenous coordinate transformation matrix
4x4,[7,12,13], as

ire Jre krx iXM (6)
_|in Jn i Yy

iz Jr: ke | Zy

where rotation matrix A}IR presents the orientation,

while vector M pr presents the position of the frame

{T} with respect to the machine reference frame {M}.
To bring the tool axis i.e. the axis zy of the frame {T}

to a desirable angular position with respect to the frame
{M}, the frame {T} must be rotated first about the axis
Yy, by the angle B, and then about the axis Z;, by the

angle C, as prescribed by the convention for 5-axis
machine tools (X, Y, Z, B, C) spindle-tilting type. The

derivation of equivalent rotation matrix Ay/{R can be
further derived as

A}[R =Rz Ry =
cC-cB —-sC c¢C-sB iy Jre krx
=sC-cB cC sC-sB|=|ip, Jjp, kpy
- sB 0 cB ir. Jrz: kg

where rotation matrices Ry, z and Ry, ¢ are so called

basic rotation matrices [13]. “c* and “s* refer to cosine
and sine functions. As it is of interest only orientation of
the tool axis zy specified by unit vector

M kr = [ka kry kTZ]T, whose description is above
given by equating the corresponding members of matrix

A}[R from equation (7) the angles B and C can be
determined as

VOL. 41,No 1,2013 =3



B = Atan2(\1-k% . kp.) (8)
and

C = Atan2(kg, kry) )

Although in equation (8) a second solution exists, by
using the positive square root the single solution for
which B > 0°is always computed [7,14]. As can be seen
from equation (7), equation (9) is valid only when sB#0
i.e. B#0° As tool can freely rotate in case when B=0°
value for angle C can be arbitrary adopted. This way,
the world coordinates vector of the machine can be
expressed as

=[xy v zy B Cf (10)

2.2 Kinematic modelling of parallel mechanism

For further analysis it is necessary to specify world
coordinates of the parallel mechanism first. As it was
mentioned, the passive central leg is used to constrain
the motion of the platform to only 3-DOF. According to
Figure 2 these 3-DOF can be described by spherical
coordinates

%y =po, ¥ Of (11

where:

°* pop= ‘M pOp‘ is axial translation along
central leg, and

e V¥ and @are the rotation angles of the central
leg’s Cardan joint about axes X;sand Y,

respectively.

M T .

Vector pop:[xp Yp zp] =xp Is the
position vector of origin Op of the frame {P} attached to
the moving platform with respect to machine reference
frame {M}, and represents Cartesian world coordinates
vector.

As noticeable from Figure 2 joint axes of 2-DOF
serial wrist intersect at point D (wrist centre). From this
fact it is easy to conclude that the position of wrist
centre D, ie., M pp is influenced only by joint
coordinates dy, d,, and ds of parallel mechanism.

For specified position vector of the tool tip

Mopr =[xy Y Zyl

orientation angles B and C the rotation matrix A}’R from

and for specified tool

equation (7) is calculated first. Then by using only

vector M ks from calculated rotation matrix A74~R the

M

position vector © pp of the wrist center D and its

module pp, according to Figure 2 can be calculated as

4:VOL. 41, No 1, 2013

XD
MPD— Yp|= Prt Prp=
z
P (12)
Xy +1p-cC-sB
= pT +12 MkT: YM +12'SC‘SB

ZM +12 -cB

and
2 2 2
pp=[Yeo|=\xbybzh (3

As the position vectors Mpop , MpD and MppD
are collinear and coincide with central leg, and as
‘MpPD‘:ll the module pg, :‘Mpop‘ can be
calculated as

Pop =Pp-h (14)

Now, the description of the position and orientation
of the frame {P} attached to the moving platform with
respect to machine reference frame {M} can be
represented as

M "M
Mr—| PR "Pop (15)
0007 T

where rotation matrix Aﬁ R represents the orientation
while vector ¥ Pop, represents the position of frame

{P} with respect to the machine frame {M}. Frame A}IJT

can be further derived wusing homogenous
transformation matrices 4x4 as
MT =Trot -Trof, Ttra =
Pt = (Xy,Y) (1,0) "Z\po,) =
cl 0 50 : ~Pop 50

s¥Y-s6 ¥ —-s¥- 06’: Pop - sY-co
-c¥-s60 s¥ Y-l '_POp ey-co| (16)

I R R 01 |
R0 | Mpo,(¥.0)
000 | 1
where
—Ppop - s9 Xp
MpOp: pOp's\P'CH =\ Vp (17)

—pop ¥ -cl Zp

As the vectors ¥ pp and M Po, are collinear,

calculated components of vector

= [xD Yp Zp ]T in equation (12) can also be
described by spherical coordinates according to
equation (17) as

FME Transactions



—-pp-so Xp
Mpp=| pp-s¥-co |=|yp (18)
—pp-c¥-co zZp

From equations (18), (12) and (13) the platform’s
orientation angles ¥ and & can be determined as

0= Atan2(xp /1~ pp.1—(xp/~pp)*)  (19)
¥ = Atan2(yp,—zp) (20)

As can be seen from equation (18), equation (20) is

valid when c =0 ie. 6#+90°. This condition is
always satisfied since angles ¥ and 6 usually vary
within the limits

Zew<Z gnd -Z<o<t 1)
3 3 3 3

specified by the ranges of passive joints motions.
This way, the spherical world coordinates vector of

parallel mechanism xg, in equation (11) or Cartesian

world coordinates vector x, in equation (17) are

P
completed.

2.3 Inverse kinematics of parallel mechanism

The inverse kinematics of parallel mechanism from
Figure 2 deals with calculating the leg lengths d;,

i=1,2,3 when the platform pose is given.
Observing geometric relations in the example of a

leg vector M d, shown in Figure 2, the following
equations can be derived

dix
M M M_ M
d;=|dy F" Popt+ Pi— b; =
(22)
diz
=M pop+MRW,0)"p,~Mb;, i =123
where:

o Ma;=la, d, d.], =123 (23)
are vectors of the actuated legs defined in
the machine frame {M},

M _ [ ]T . -,

. Pop =1, Vp zp| is the position
vector of the origin Op of the frame {P}
attached to the moving platform with respect
to machine frame {M} and is given in
equation (17),

Pix r-cy;
. Ppl- =| piy |=|7-s7; |, =1,2,3 are position
0 0

vectors of the joint centres at the platform
located on the circle of radius r with angular
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position y; :2%(1' —1), and are defined in

the frame {P},

o Mp =R p;, =123 24)

are position vectors of the joint centres of
the platform expressed in the machine frame

{M},
bix R’C}/l'
My _ .
. b; = b,-y =|R-sy; |, i=1,2.3 are
0 0

position vectors of the join centres at the
base located on the circle of radius R with

angular position y; = 2%(1’ —1) and are
defined in the frame {M}.

By substituting corresponding vectors in equation
(22) vectors Md; =[d, d, d.[, =123 can be

obtained from which inverse kinematics equations

s == R vd} v} L im123 (25)

are derived as

d; :(p%p +r2+R2—2-pOp “R-cO-sY¥Y -

(26)

dy =[pép+r2 +R? +p0p-R-(c6’-s‘~I’—\/§-sH)+
. 27

dy Z[p(z)p+r2 +R? +p0p-R-(c¢9-s‘I’+J§-s0)+
(28)

+%(—3-c€+\/§ -s6’-s‘P—c‘I’)]l/2

This way, the joint coordinates vector of parallel
mechanism can be expressed as

d=[d, d, ds] (29)

2.4 Jacobian matrix and direct kinematics of parallel
mechanism

The direct kinematics problem for parallel mechanism
consists of finding the vector of world coordinates

xsp:[pop Y H]T or xp:[xp Vp zp]T as a

function of joint -coordinates d:[dl dy d3]T .

Generally, such problem does not have analytical
solutions and different numerical algorithms based on
Jacobian matrix are used.

Differential equations (26) — (28) with respect to the
time the Jacobian matrix is obtained as

VOL. 41,No 1,2013 =5



a0y oy o
8§d0p 5;1 aadﬁ Jii Jin Ji3

J= 5 2 2 2|=|Jy Ty Ja3 | (30)
oy OF 00 | | BT
ad3 ad3 ad3 31 32 33

| po, 0¥ 00

where:

‘]11 :(pOp —R'CQ'S\P)/dl
Jo1 =12 pop +R-(cO-s¥ -3-50)1/2-d,

J31=[2-pop +R-(cO-s¥ +/3-50)]/2-d;

Ji2=(pop " R-cO-c¥+r-R-s¥)/d,
Jay =[pop R-cO-c¥+r-R-(s¥ =3 -50-c¥)/2]/2-d,

J32 :[pap'R'C@'Cl{’-‘r}"-R-(S\P+\/§~s€-c\}‘)/2]/2.d3

J13=pop R-s6-s¥/d;

T3 =[pop R (=50 s¥ =3 -cO) +
+7-R-(3-50—+3-c0-5%)/2]/2-d,

J33 =[p0p 'R'(_SH'S\P+\/§~C(9)+
+7-R-(3-50+3-c0-5¥)/2]/2-d;

This so called analytical Jacobian matrix [15,16]
relates the spherical velocity vector

T
Xgp =|:p0p v 6’} to the joint velocity vector

T
d= {dl d, d3} and is used in this paper as a basis

for simple numerical algorithm to solve direct
kinematics for the purpose of simulation. For some
advanced algorithms [16] so called geometric Jacobian
matrix [15] that relates the Cartesian velocity vector

T
X, :{xp yp ZP:| to the joint velocity vector is

used.

As it was mentioned, among several algorithms
based on Jacobian matrix the simple numerical
algorithm is selected to solve direct kinematics for the
purpose of simulation. This algorithm is based on the
constant Jacobian matrix calculated for the centre of
workspace [17] i.e. for the initial position [18].

At step (n+1), the estimated position of the platform
is given by

Xspn+1 = Xspn +J_1(Xsp0’d0)'(d_dn) (1)
where:

6=VOL. 41, No 1, 2013

7 .
® Xspn+l = [pOan Y 9n+1:| 18 the
estimated position of the platform at the step
n+1,

Xspn = [popn Y, 6, ]T is the estimated
position of the platform at the step n,

o d,=[d, dy, d3n]T joint position (leg
lengths) corresponding to the estimated

platform position at the step n, result of the

inverse kinematics of point x,, ,

o J _l(xspo,do) is the inverse Jacobian matrix
for the initial platform position X, and joint
position d as the result of inverse kinematics
of point X0 -

For the purpose of simulation, this algorithm
converge in 1 to 5 steps, depending on the distance
between the initial position and actual position. This
comes from the large workspace of the parallel
mechanism on one hand and the other hand from the
high accuracy provided by predicted position sensors
(this implies a high accuracy for the computation
process). Consequently, the direct kinematics model
takes almost twice as much time as the inverse model.

2.5 Kinematic modelling of 2-DOF serial wrist

To model 2-DOF serial wrist, the Denavit-Hartenberg
(D-H) notation is used [7,19,20]. As noticeable from
Figure 3 the serial wrist has two moving links connected
together by two rotational joints. The first moving link
is connected with supporting link fixed to moving
platform {P} whose axis coincides with the axis of
central leg. Second moving link is attached with a tool.
To perform kinematic analysis, first coordinate frames
are rigidly attached to each link. Relative position and
orientation between these coordinate frames can be
described by homogenous transformation traditionally

referred to as an A matrix. Matrix i_}A [13] designates

D-H transformation matrix relating frame (i) to frame
(i-1). Figure 3 shows D-H coordinate frames for 2-DOF
serial wrist in the reference position with respect to the
platform frame {P}.

Figure. 3 Link coordinate frames for 2-DOF serial wrist in
the reference position with respect to frame {P}

FME Transactions



Prior to making the list of D-H parameters complete
for each link of 2-DOF serial wrist, it is needed to make
two important remarks:

e The frame {P} attached to the moving platform
is adopted as the wrist reference frame;
e To make the wrist reference position second

joint was rotated for 6, =—90° and tool frame

{T} was introduced according to Figure 3.
Considering the above mentioned remarks a list of
D-H parameters for each link is shown in Table 1.

Table 1. D-H kinematic parameters

Linki | a;lc] | a}[mm] | d;[mm] 0;[°]
1 90 0 -1 6
2 0 I, 0 6, —90

Substituting D-H parameters of the links from Table 1
the transformation matrices If A and 21A are obtained

first [13]. As noticeable from Figure 3, the tool frame
{T} can be described relative to the frame (x;,y5,z,)

by homogenous transformation matrix as

0 0 -110

21 = boo io (32)
0 -1 010
0 0 011

Now, as it is well known [7,12,13], the tool position
and orientation i.e. the position and orientation of frame
{T} with respect to moving plate frame {P} (Figure 3)
for the given joint coordinates @, and 6, and specified

link parameters can be determined as

P L p
Pr_Pylylr - rR(61,0,) | “pr(6,6;) | _

0001 1
06’1~c92 —Sgl —CQ]'SHZ : IZ'CHl'SHZ (33)
|
Sgl '092 0491 —s6’1 ~s92 : 12 ~s91 'ng
56, 0 O, 1—(ly-cOr+1)
0 0 o 1 1
where
Xrp 12'091 'S92
PpT =l Yrp | = 12 ~s6’1 'SHZ (34)
zzp | | —(lp-cOy +1y)

This way, direct kinematics problem for 2-DOF
serial wrist is solved locally with respect to frame {P}.
Since, 2-DOF serial wrist is attached to the moving
platform its solution of direct and inverse kinematic will
be considered further as a part of complete machine
inverse and direct kinematic solutions.

2.6 Machine inverse and direct kinematics

Using the determined position and orientation of the
platform frame {P} with respect to the machine frame

{M}, A}[)T equation (16), and determined position and

FME Transactions

orientation of the tool frame {T} with respect to the

platform frame {P}, [T)T equation (33), the tool tip

position and orientation with respect to machine frame
{M} can be determined as

Mo M P

rI=plrT=

| ¥Ru0TRA.6) | YR O pr(.6)1 Mo, p0, 110
""" R B

| FRBO | MoKt ) G5
000! 1 ’

from which machine inverse and direct kinematics are
solved.

Machine inverse kinematics:

Machine inverse kinematics comprises already
analytically solved parallel part described in section 2.3
and serial part which will be considered in detail.

Parallel part of inverse kinematics:

For specified tool orientation angles B and C, the

rotation matrix A}[R from equation (7) is calculated
first. Then, by using only vector My 7 from calculated
matrix A% R, the position vector of wrist centre D, i.e.
M pp equation (12), its module pp , equation (13), and
the module Fop = ‘M pop‘ , equation (14) are

calculated. Using equations (18), (19) and (20) angles
¥ and 6 are obtained.

By substituting calculated spherical coordinates
Pop, ¥ and O into inverse kinematics (26) — (28)

joint coordinates d;, d, and dz are calculated i.e.
parallel part of inverse kinematics is solved.

Serial part of inverse kinematics:

For inverse orientation kinematics i.e. calculation of
joint coordinates &, and 6, it is started from equation

(35) from which only rotation matrices are used as
Y RB,O=FRW.OTRO.0,)  (36)

From equation (36) matrix A}[ R(6,,0,) canbe
obtained as

TR@G,6)=2R 1,0 RB,C)=
=%R" (1,0)'F R(B.C)

Substituting matrices fR(Hlﬁz), equation (33),

A% R(B,C), equation (7) and %R(l//,t?), equation (16)
into equation (37) it is obtained that

(37

VOL. 41,No 1,2013 =7



cl-cl, —-s6, —cb -s6,
S€1'C02 061 —591'S92 =

Sez 0 6’92 (38)
itpy  JTPx  KTPx

M p-1 M . .
=pR (.0 TR(B,C)=\irpy, Jjrpy krpy
irp;  JrP:  Krp:

As it is possible to control only the tool orientation

axis zp joint angles &) and 6, can be determined by

equating only corresponding members of the third

columns of matrices from the left and right side in
equation (38) as

0, = Atan2(\1-kfp, .kzp, ) (39)

6y = Atan2(~ kyp, /565, ~kpp,/s6y)  (40)

where:
krp, =c0-cC-sB+sy -s0-sC-sB—cy -s0-cB
krp, =cy -sC-sB+s¥Y-cB 41

krp, =50-cC-sB—sy-cO-sC-sB+cy-cO-cB
As can be seen from equations (39), (40) and (41)

the solutions for 6, and 6, depend on tool orientation
angles B and C as well as on orientation angles ¥ and
6 of the platform. Having calculated joint coordinates
dy, dy and d5, equations (26) — (28), and 6, and 6,,

equations (39) — (41), solution of inverse kinematics
problem of the machine is completed.

Machine direct kinematics:

Machine direct kinematics comprises parallel part
already solved numerically in section 2.4 and a serial
part which will be considered in detail.

Parallel part of direct kinematics:

For specified joint coordinates (leg lengths)
d= [dl dy dj ]T the initial position of the platform
Xgpg = [pop Y, 6, ]T is adopted for which vector

dy = [dlo dyg d30]T is calculated using inverse
kinematics (26) — (28). For adopted initial position X,
and calculated d;, constant Jacobian matrix

J(Xgp0,dg) is calculated using equation (30) and then

is inverted as J_l(xspo,do). Using numerical

algorithm described by equation (31) the position vector
of the platform expressed in spherical coordinates

Xgp = [pop k4 H]T is calculated. After calculating th

coordinates rop » ¥, and 6 the frame A}IJT , 1.e.,

M

rotation matrix AI/{R and position vector ™ pg,, from

equation (16) are determined. This way direct
kinematics of parallel part is completed.

8=VOL. 41, No 1, 2013

Serial part of direct kinematics:

For determined spherical coordinates pg, , ¥, and 6
in parallel part of direct kinematics, and for specified
joint coordinates & and 6,, matrix %R(‘P,H),
equation (16), vector
Ypop(pop .0 =[xp yp zp]'. equation (17),
matrix fR(Hl,ﬁz), equation (33), and vector
Ppr@,0)=[xrp yrp zzpl, cquation (34), are

calculated first. Substituting them in equation (35) the
position vector of the tool tip can be determined as

Xy
M
pr=|Yy |=
VA
. (42)
CQ'XTP +S9'ZTP +Xp
=| s¥Y-50 - xpp+c¥ -yrp—sV¥Y-cO-zpp +yp
—C‘P'SH'XTP +S\P'yTP +C‘P'C€'ZTP +zZp
. . . M Py
After multiplying matrices pR and 7R in (35)
vector Mk 7 1s determined as
ka
My, = kg, | =
kr (43)

—cO-c-50, +50-cb,
=|—-s¥Y -50-cO) -5, —c¥-56,-56, —s¥Y -cO-cO,
cV-s0-cO-5s0, —sVY-50,-50, +c¥-cO-cO,

from which tool orientation angles B and C can be
calculated using equations (8) and (9) and direct
kinematics of the machine is completed.

3. WORKSPACE ANALYSIS

Besides the selection of appropriate kinematic topology
the most important step in the parallel machine design is
to select the right geometric dimensions [19,20].

Based on inverse kinematics, it is possible to
determine the position and orientation workspace of the
Tricept based five-axis milling machine. The applied
approach proved to be very useful and is based on the
definition of position and orientation workspace for
parallel kinematic chains [21].

In the case of the Tricept based five axis machine
tool considered in this paper, the position and
orientation workspace are given by

WS(XM$YMsZMaBsC):{Osl} (44)

which represents a Boolean function whose value is
equal to 1 if the tool pose-defined by the quintet
(Xpr-Yar-Zyy,B,C) is reachable without exceeding the
limited motion range of the joints. Starting from the
selected point in the workspace volume, the estimation
is made by specific step-by-step strategy that locates
tool in a given pose in the workspace and that

FME Transactions



determines whether the pose is reachable or not by
taking into account a limited motion range of the joints
[10]. Based on selected prototype design parameters: R
= 350mm, r=100mm, [=300mm, 1L=150mm,
dinin=934mm, d,,,,=1520mm the determined workspace

for three-axis machining (B=0°,C=0°, i.e., spindle

axis is perpendicular to the X,,Y;, plane) is shown in

Iy
Yym

Figure 4.

column

Figure 4. Workspace in the case of three-axis machining
(B=0°, C=0°)

For programmers and operators familiar with CNC
machine tools, the determined workspace can be
reduced to the parallelepiped “a” as indicated in Figure
4. As it is known from practice, the adopted portion of
workspace in the form of parallelepiped “a” can be

changed in form “b” or “c” depending on the
workpieces’ shape and dimensions.

4. CONCLUSION

In order to develop reconfigurable multi-axis machining
system for HSC-milling of aluminum, steel as well as
large size model making a conceptual model of the
Tricept based five-axis machine tool is discussed. The
results of the study on the kinematic modelling of the
vertical Tricept based five-axis machine tool have been
in detail reported in this paper. For parallel structure,
inverse kinematics is solved analytically while direct
kinematics is solved numerically based on the constant
Jacobian matrix calculated for the centre of workspace.
Direct and inverse kinematics for 2-DOF serial wrist are
solved analytically. Based on machine inverse
kinematics, workspace has been analyzed in order to
select machine prototype design parameters.
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KNHEMATHUYKO MOJEJIUPAIBLE XUBPUIHE
IMAPAJIEJIHO-CEPUJCKE ITIETOOCHE
MAIIMWHE AJIATKE

Muian Muayrunosuh, Hukona CiaBkoBuh,
JAparan MuiyruHoBuh

10 = VOL. 41, No 1, 2013

[Napanenne CTpyKType MallMHA anaTKu M poboTa y
OJTHOCY Ha CEpHUjCKE CTPYKTYpE UMajy HU3 MPEIHOCTH.
3a rpaamy NapaleHUX MallldHA allaTKu W podora
maHac ce kopuctm Behm Opoj MexaHusama ca
napajieiHOM KHMHEMATHKOM Pa3MHYUTHX TOIMOJIOTHja ca
3 mo 6 cremenu cimobome. Meljyrum, ¢ o03upomM Ha
W3BECHA  OrpaHHYCHa  MapaleHUX  MeXaHU3aMa
WHTCH3WBHPAHA Cy HCTPAXKHBama Ha H3HATAKCHY
MexaHu3aMa XUOPHIHUX apXUTEKTypa Kao
KOMOWHAIja TapajieIHuX U CEePHjCKUX CTPYKTypa. Y
pagy Cy TMpPeACTaBJbCHH pe3yNTaTH KUHEMaTHIKOT
MozeNIupamka XUOpUaHe MapajgeIHO-CepHjCKe MEeTOOCHE
MamuHe ajatke Ha Oasum Tpument mexanmsma. Kaxo
OBaKBa MallliHa YKJbyuyje MapajeiHy CTpyKTypy ca TpH
CTerneHa cii000/1e U CepUjCKy CTPYKTYpY ca JBa CTerneHa
ciobozie, To pemewma npobieMa MHBEP3HE U AMPEKTHE
KHHEMaTHKe Takohe YKIbydyjy MapajelnHH U CepHjCKU
neo. VHBep3HM KHHEMATHYKd MpoOiieM je pelieH
AQHATUTUYKA JOK pelIeHe IUPEKTHOT KHHEMaTHYKOT
npoOneMa Caip)KH aHAMTHYKA M HyMepHukH neo. Ha
OCHOBY peIICHa WHBEP3HOI KMHEMATHYKOI IpodiemMa
aHATM3UpaH je pagHd TpPoCTOp y LWIBy u3bopa
IPOjeKTHHUX ITapaMeTapa NPOTOTHIIA.
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