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Cartesian Compliance Identification 
and Analysis of an Articulated 
Machining Robot 
 
The application of industrial robots for machining is currently limited to 
tasks with low precision demands due to the low stiffness of industrial 
robots as compared to machine tools. This paper analytically describes an 
experiment-based compliance identification and analysis method for a 5-
axis vertical articulated machining robot. An expansion of the 
conventional method for the calculation of the robot’s Cartesian space 
compliance that takes into consideration joint compliances and the 
Jacobian matrix is used. The analytical analysis considers the effects of the 
individual joint compliances on the resulting Cartesian space compliance. 
Experimentally, the Cartesian space compliance is obtained by direct 
measurement of the absolute displacements induced by static forces along 
3-Cartesian directions at the tool tip from which the joint compliances are 
identified. 
 
Keywords: machining robot, compliance identification, compliance 
analysis. 
 

 
 

1. INTRODUCTION  
 

Industrial robots are promising cost-effective and 
flexible alternatives for certain multi-axis milling 
applications. Compared to machine tools, industrial 
robots are cheaper and more flexible with a potentially 
larger workspace. For these reasons, researchers, robot 
and CAM software manufacturers as well as people 
from machining shops find it feasible to replace 
machine tools by robots for some machining 
applications. It is well known that poor accuracy, 
stiffness and the complexity of programming are the 
most important limiting factors for wider adoption of 
robotic machining in machine shops [1,2].  

Stiffness modelling, analysis, synthesis and control 
in robotic machining have attracted the attention of 
many researchers. As stated in [2] the major position 
error sources in robotic machining can be classified into 
two categories: (i) cutting force induced errors, and (ii) 
motion errors (e.g., kinematic, dynamic, etc.). 

Motion errors, typically in the range of 0.1 mm, are 
inherent and rooted in the robot’s position controller, 
and they would appear even in non-contact tasks. As 
milling cutting forces are of several hundred N, the 
force–induced errors could easily exceed 1 mm. The 
latter statement is quite logical because the stiffness for 
typical articulated robots is usually less than 1 N/μm, 
while standard CNC machine tools often have stiffness 
values greater than 50 N/μm. Similar statements are also 
given in [3]. 

The sources that determine the stiffness of a typical 
robot manipulator are the compliance of its joints, 
actuators and other transmission elements, geometric 
and material properties of the links, base, and the active 
stiffness provided by its position control system. For the 
purpose of this research, we assume that the compliance 
of the actuators and of the transmission elements is the 
dominant source of the stiffness, and it can be 
represented by a linear torsional spring for each joint, 
while the links are infinitely stiff. The active 
compliance of the actuators due to the robot’s position 
control system, provided by the original equipment 
manufacturer, does not vary with time although an 
integral controller can increase the active compliance, 
depending on the positioning error [4]. 

Unlike multi-axis CNC machine tools, robot tool tip 
displacements are coupled and vary even when 
subjected to the same force at different workspace 
locations. Such coupling results in displacements not 
only in the direction of the reaction force, but can also 
generate some counter-intuitive results. Mainly, three 
kinds of deviations occur due to the compliance of a 
machining robot during high speed cutting: static 
displacements, low frequency and high frequency 
oscillations [5].  

In this paper, the static displacements which have 
the highest impact on overall cutting accuracy are 
analysed. 

In order to contribute to efficient use of robots for 
machining applications, research and development of 
reconfigurable robotic machining systems was initiated 
[6] that considers two classes of problems. The first 
relates to the realization of a specialized 5-axis vertical 
articulated machining robot with an integrated motor 
spindle in order to improve robotic machining accuracy. 
The second refers to the development of the machining 
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robot’s control and programming system which can be 
directly used by CNC machine tool programmers and 
operators [7]. 

In order to obtain the Cartesian space compliance 
matrix of the 5-axis vertical articulated machining robot, 
two methods, similar to [8], were used in this paper. The 
first method is an analytically-based approach that 
calculates the Cartesian space compliance using joint 
compliances and the Jacobian matrix [9,10].  

In this method, only five experiments are required to 
evaluate the robot’s Cartesian space compliance matrix 
throughout its workspace. This conventional method is 
expanded in the present paper with the aim of analyzing 
the effects of the compliance of each individual joint on 
the robot’s Cartesian space compliance. The analysis of 
compliance effects of each individual joint on the 
Cartesian space compliance could be of crucial 
importance for a robot manufacturer’s experts in the 
design of specialized machining robots.  

The second method obtains the robot’s Cartesian 
space compliance matrix throughout its workspace by 
direct measurement of the absolute displacements of the 
tool-tip induced by static forces along 3-Cartesian 
directions. This method improves the results of the 
analytical method, because it takes into account all 
deformations including the joint and link flexibilities 
along and about all the axes, however, it requires a large 
number of measurements.  
 
2. PROBLEM STATEMENT 
 
A basic module of the proposed concept of the robotic 
machining system presented in [7] is the specialized 5-
axis vertical articulated robot, Figure 1, with an 
integrated motor spindle, similar to [8, 11] and with a 
larger workspace, higher payload and stiffness. The 
development of the specialized 5-axis vertical 
articulated machining robot was a joint project with a 
robot manufacturer. 

For the compliance identification and analysis a six-
axis vertical articulated robot, Figure 1, was used as a 
testbed in the way that axis number six was blocked. 
The robot is equipped with a high speed motor spindle 
with the maximal speed of 18,000 min-1. 

 

 
Figure 1. The experimental 5-axis machining robot in 
reference position 

      As evident from Figure 1, the experimental five-axis 
machining robot is further considered as a five-axis 
vertical milling machine (X, Y, Z, A, B) of the spindle-
tilting type [12], where machining is performed on a 
work table in front of the robot. The configured system 
as well as the limited motions in joints relative to the 
reference position provide for: (i) conveniences related 
to stiffness [1], (ii) taking into account only one solution 
of the inverse kinematics, and (iii) avoiding the robot's 
singularities [13]. 

The focus of the current research, one part of the 
results being presented in this paper, is related to 
compliance identification and analysis of the 
experimental 5-axis vertical articulated machining ro-
bot, which includes: (i) an analytically-based Cartesian 
compliance identification, (ii) an experimentally-based 
Cartesian compliance identification, and (iii) machining 
experiments.  

 
3. KINEMATIC MODELING 

 
As it was mentioned, the 5-axis vertical articulated 
robot in Figure 1 will be considered below as a specific 
configuration of a 5-axis spindle-tilting type vertical 
milling machine (X, Y, Z, A, B). Figure 2 represents the 
kinematic model of the robot.  

The robot reference frame {M} has been adopted 
according to the standard for this machine type [14] and 
coincides with the robot’s base frame (x0, y0, z0). The 
tool frame {T} is attached to the milling tool tip, T, in a 
way that the zT axis coincides with the tool axis and also 
coincides with the axis of the last link of the robot to 
which the motor spindle is attached. Vector v, 
referenced in frame {M}, is denoted by Mv.  
 

 
Figure 2. Kinematic model of the robot 

The joint coordinate vector for this 5-axis vertical 
articulated robot is represented by:  

 

 [ ]Tθθθθθ 54321=θ   (1) 
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where θi, i = 1,2,...,5 are scalar joint variables controlled 
by the actuators. 

Given that the robot has 5 DOF, only the direction of 
the tool’s zT axis is controllable, while axes xT and yT 
will have uncontrollable rotations about it. The position 
and orientation of the tool frame, {T}, relative to the 
robot’s reference frame, {M}, is given by the 
homogeneous coordinate transformation matrix [15, 
16]: 
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where the position vector MpT represents the position, 
while RM

T  represents the orientation of the tool frame, 
{T}, with respect to the robot’s reference frame, {M}. 
As only the orientation of the tool axis zT specified by 
the unit vector MkT=[kTx kTy kTz]T is of interest, equation 
(2), the tool orientation angles, A and B, can be 
determined in the usual way [7, 12, 15], so that the 
world coordinate vector can be expressed as:  
 

 [ ]TMMM BAZYX=x  (3) 

 
3.1 Jacobian matrix 
 
To model the robot, the Denavit-Hartenberg (D-H) 
notation [15, 16] is used. To perform the kinematic 
analysis, first the coordinate frames are rigidly attached 
to each link, Figure 2. The homogeneous transformation 
describing the relation between links is traditionally 
referred to as an A matrix.  
      The matrix Ai

i
1−  designates the D-H transformation 

matrix relating frame (i) to frame (i-1). Figure 2 shows 
the D-H coordinate frames for the 5-axis robot from 
Figure 1 in the reference position, taking into account 
the ranges of joint motions. 

The D-H model adopts 4 parameters (ai, αi, di, θi) to 
describe the transformation, including translations and 
rotations from link (i-1) to link (i). After the D-H 
coordinate frame is assigned to each link, the 
transformation between successive frames (i-1) and (i) 
is described as follows:  
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Considering the above-mentioned remarks and 

constraints, a list of D-H kinematic parameters for each 
link is given in Table 1. 
 
 

Table 1. D-H kinematic parameters  

link i αi[
o] ai[mm] di[mm] θi[

o]  

1 90 0 0 θ1-90 

2 0 a2 0 θ2+90 

3 90 0 0 θ3 

4 -90 0 d4 -θ4 

5 0 a5 0 θ5+180 
 
Substituting the D-H parameters of the links into 

equation (4) the transformation matrices Ai
i
1− , i = 

1,2,...,5 are obtained first. Considering that the robot is 
considered in the present paper as a 5-axis spindle-
tilting type vertical milling machine (X, Y, Z, A, B), 
importance is given to frame {T} whose zT axis must 
coincide with the tool axis. As noticeable from Figure 2, 
frame {T} can be described relative to the frame (x5, y5, 
z5) by the homogeneous transformation matrix TT

5 . 
Now, as it is well-known [15, 16], the tool position 

and orientation, i.e., the position and orientation of 
frame {T} with respect to the robot’s reference frame 
{M}, Figure 1, for the given joint coordinates vector θ 
and specified link parameters can be determined as: 
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In equation (5), apart from the position of tool tip T in 
the reference frame {M} MpT=[XM YM ZM]T, the third 
column MkT=[kTx kTy kTz]T of the rotation matrix RM

T  is 
of significance as the robot has only 5-DOF. 
Considering that the robot reference frame, {M}, and 
the robot base frame (x0, y0, z0) coincide and that the 
tool tip, T, is the origin of frame {T} and also the origin 
of frame(x5, y5, z5), Figure 2, it is obvious that: 

 5
00

OTT
M ppp ==  (6) 

The position and orientation of an arbitrary frame (i) 
attached to link (i) with respect to the robot’s reference 
frame, {M}, i.e., robot base frame (x0, y0, z0) can be 
expressed as: 
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for i = 1,2,...,n where n=5 is the number of joints.  
The robot’s Jacobian matrix relates joint velocities 

to Cartesian velocities of the tool tip. The mapping 
between the static forces applied at the end-effector and 
the resulting torques at the joints can also be described 
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by the Jacobian matrix [15-18]. Considering that the 
robot consists of five revolute joints, the Jacobian 
matrix has as many rows as there are degrees of 
freedom and the number of columns is equal to the 
number of joints: 

 [ ]nJ JJJ ...21=  (8) 

with column vectors 
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Substituting the vectors from equation (7) into 
equation (9) the Jacobian matrix columns Ji, i = 1,2,...,5 
are obtained. 

 
3.2 Machining robot workspace 
 
Based on the inverse kinematics, it is possible to 
determine the position and orientation workspace of the 
robot considered here as a vertical 5-axis milling 
machine [7]. The position and orientation workspace are 
given by: 

 }1,0{),,,,( =BAZYXWs MMM  (10) 

which represents a Boolean function, whose value is 
equal to 1 if the tool pose defined by the world 
coordinates vector x is reachable without exceeding the 
limited motion range of the joints. Starting from a 
selected point in the workspace volume, the 
determination is made by a specific step-by-step 
strategy that locates the tool in a given pose in the 
workspace and that determines whether the pose is 
reachable or not by taking into account the limited 
motion range of the joints given in Figure 2. The portion 
of workspace for 3-axis machining (A=0o, B=0o, i.e., 
spindle orientation is perpendicular to the XMYM plane) 
with boundaries logical for machining (ZMmin=-400 mm, 
ZMmax=100 mm) is shown in Figure 3. For programmers 
and operators familiar with CNC machine tools, this 
workspace is reduced to the parallelepiped XMxYMxZM = 
1200x600x500 mm3, as indicated in Figure 3. 

 
Figure 3. Workspace in the case of 3-axis machining (A=0o, 
B=0o) 

      As it is known [15, 18], det(J) represents the 
manipulability measure usually adopted as a distance of 
the robot from its singular configurations. Figure 4 
shows the distributions of the values of det(J) in the 
planes ZM=-400mm and ZM=100mm in the adopted 
portion of the workspace XMxYMxZM = 1200x600x500 
mm3. 

 

 
Figure 4. Distributions of det(J) values in the planes ZM=-
400 mm and ZM=100 mm 

Similar distributions of the values of det(J) are also 
found in the planes from ZM=-400 mm to ZM=100 mm. 
The presented distributions of the values for det(J) 
exhibit good force and speed transmission ratios of the 
tool with driving forces and speeds throughout the 
selected portion of the workspace. 
 
4. ANALYTICALLY-BASED CARTESIAN 

COMPLIANCE IDENTIFICATION 
 
The knowledge of the robot’s stiffness or compliance 
reflected at its end point is of prime importance to 
successfully conduct contact and noncontact tasks [4]. 
As stated in [2,3,8,19] the elastic properties of the 
robot’s links are insignificant, so the subsequent 
analysis of the compliance model in Cartesian space 
will be based on joint compliances. The analysis will be 
conducted on the existing experimental machining robot 
shown in Figure 1 as a basis for realizing the machining 
robot concept with integrated motor spindle from 
Figure 1.  
      The Cartesian compliance model should allow for 
generating the robot’s compliance maps which indicate 
the robot’s end point compliance as a function of the 
joint compliances and robot configurations throughout 
its workspace.  

Based on the principle of virtual work, the 
conventional formulation for the mapping of the joint 
compliance matrix, Cθ, into the Cartesian space 
compliance matrix, CX(θ), is expressed as [8-10]: 

 T
X JCJC )()()( θθθ ⋅⋅= θ  (11) 

where Cθ  is a constant matrix of diagonal form: 

 ),...,( 1 nCCdiagC θθθ =  (12) 
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and J(θ) is the Jacobian matrix given by equation (8). 
The practical application of equation (11) to 

determine the robot’s compliance center and the 
machining robot’s compliance analysis were presented 
in [10] and [8]. It was shown how suitable it is, for it 
allows the mapping of the joint compliance matrix Cθ  
into the Cartesian compliance matrix CX(θ) without 
calculating any inverse kinematic functions.  

Since Cθ is diagonal, the Cartesian space compliance 
matrix CX(θ), equation (11), in this paper is considered 
as the sum of the joint compliances associated with each 
individual joint as: 
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represents a part of Cartesian space compliance matrix 
CX(θ) originating from the i-th joint compliance Cθi, 
while Ji are column vectors given by equation (9). 

Equations (13) and (14) provide insight into the 
effects of the compliance of each individual joint on the 
Cartesian space compliance. This means that the effect 
of the corresponding joint is obtained by incorporating 
into equation (13) only its compliance, while the other 
joints are considered stiff. This is of crucial importance 
for the present paper, because it can be useful for a 
robot manufacturer’s experts in the design of 
specialized machining robots. 

For an articulated robot, CX(θ) is a symmetric non-
diagonal and configuration dependent matrix. The force 
and robot tool tip displacement in Cartesian space is 
coupled, which means that the force applied in one 
direction will cause displacements in all possible 
directions.  

Compliance is also a function of the robot’s 
Jacobian matrix J(θ) that changes significantly 
throughout the entire workspace. Thus, if Cθ can be 
experimentally determined, the Cartesian space 
compliance matrix CX(θ), equation (11) and the linear 
displacement of the robot’s tool tip δx=[δx δy δz]T 
under an external static force vector F=[Fx Fy Fz]T at 
any location in the workspace can be estimated as: 
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where )(θδXC  is a submatrix of Cartesian space 
compliance matrix CX(θ). In equation (15) direct- and 
cross-compliance can be calculated using equations (13) 
and (14) us: 
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The experimental determination of the compound 

joint compliance parameters is critical for the robot’s 
compliance analysis. For the measurement of each 
joint’s compliance the robot structure was not 
disassembled.  

To assure the decoupling of the joints only one joint 
at a time was loaded [8]. Therefore, while measuring the 
compliance of joint (i) all joints from the base to joint 
(i-1) were blocked. Table 2 shows the experimentally 
identified compound joint compliances. 
 

Table 2. Experimentally identified joint compliances  
 

Joint number i 1 2 3 4 5 
Compliance Cθi 
[rad/Nm]⋅10-7 

7.14 10.12 12.30 17.32 91.35 

 
 
4.1 Analytical results  
 
Using equation (16) and the experimentally identified 
compound joint compliances, Table 2, the direct- and 
cross-compliances were calculated in the adopted 
workspace shown in Figure 3.  
       Figure 5 shows the distribution of the analytically 
determined compliances in the ZM=0 plane. The 
distributions of direct-compliances Cxx, Cyy, and Czz are 
presented in Figures 5a, 5e, and 5i respectively.  
       The distributions of cross-compliances Cyx, Czx, and 
Czy are given in Figures 5b, 5c, and 5f respectively. 
Figure 5 can be also viewed as the Cartesian space 
compliance matrix CX(θ) in the ZM=0 plane in the 
adopted workspace shown in Figure 3. 
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Figure 5. Distributions of analytically determined compliances in the plane ZM=0 

 
As it is noticeable from Figures 5a and 5i, the direct-

compliances Cxx and Czz are decreasing in the positive 
YM direction. At constant YM positions the direct-
compliances Cxx and Czz are increasing in the negative 
and positive XM directions. The direct-compliance Cyy, 
Figure 5e, is increasing in the positive YM direction and 
decreasing in the negative and positive XM directions at 
a constant YM positions. 

The distributions of the all components of the direct-
compliances originating from individual joints, 
summands in equation (16), are shown in Figure 6. The 
direct-compliances Cxx and Cyy, Figures 6a and 6b, are 
predominantly affected by joint compliances Cθ1, Cθ3, 
and Cθ5. The direct-compliance Czz, Figure 6c, is 
predominantly affected only by joint compliances Cθ2 
and Cθ3. 
      In order to complete the impact analysis of 
compliances of each joint, this paper also considers their 
impact on cross-compliances.  

      The distributions of the all components of the cross-
compliances originating from individual joints, 
summands in equation (16), are shown in Figure 7. 

The cross-compliance Cxy, Figure 7a, is 
predominantly affected by joint compliances Cθ1, Cθ3, 
and Cθ5, while cross-compliances Cxz, Figure 7b, and 
Czy, Figure 7c, are predominantly affected only by the 
joint compliance Cθ3. 

 
 

4.2 Simulation of the tool path errors calculated 
from the analytically determined Cartesian 
compliance  

 

To test the effectiveness of analytically based 
compliance model as well as to analyze tool path errors 
based on it, simple tasks were chosen. Programmed 
linear paths parallel to the XM and YM axes are shown in 
Figures 8a and 8b respectively. 
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Figure 6. Distributions of analytically determined direct-compliances’ components 
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Figure 7. Distributions of analytically determined cross-compliances’ components 
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Figure 8. Tool path deviations in the plane ZM=0 

 
Selected linear paths are on the borders and in the 

middle of adopted portion of the workspace in the plane 
ZM=0mm. The total tool path deviations as well as the 
tool path deviations originating from the dominant 
individual joints’ compliances are calculated for the 
constant static forces in the feed normal directions, i.e., 
Fxstat = Fystat = 100N. Similar tool path deviations are 
also obtained in the planes from ZM=-400 mm to 
ZM=100 mm. From these simple simulation examples it 
can be easily concluded that it is possible to generate 
compliance-induced machining error maps and identify 
critical joints and workspace sub-volumes in an efficient 
way using an analytically-based compliance model. 
 

5. EXPERIMENTALLY-BASED CARTESIAN 
COMPLIANCE IDENTIFICATION 

 
Another approach to obtain the Cartesian compliance of 
the machining robot is the direct measurement of the 
absolute displacements induced by a load at the tool tip. 
The elements of the experimental setup shown in Figure 
9 are the experimental machining robot (1) equipped 
with a sphere-tip tool (2), fixture (3), cable-pulley 
system (4) and a deadweight of 250 N (5) in order to 

exert static forces along 3 Cartesian directions at the 
sphere-tip tool. The original and deformed positions of 
the sphere-tip tool are measured by a FARO Portable 
CMM 3D digitizer (6), from which translational 
displacements δx,δy, and δz are calculated.  

 
Figure 9. Scheme of robot loading and displacements 
measurement 
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For the analysis of the Cartesian compliance 
investigations were conducted within the adopted 
portion of the workspace XMxYMxZM = 1200x600x500 
mm3, Figure 3. The workspace was subdivided into 
smaller cubes and the displacements of the sphere-tip 
tool were measured at 45 points at 6 ZM levels (ZM=-400 
to 100 mm).  

 

 
Figure 10. Experimental setup of robot loading and 
displacements measurement 

 
 

The experiment-based compliances are determined 
on the basis of the sphere-tip tool’s displacements δx,δy, 
and δz induced by static forces of 250 N in all 3 
Cartesian directions. An example of displacement 
measurements for the cases of robot loading in the 
negative YM  direction is shown in Figure 10. 
 
5.1 Experimental results 
 
Direct- and cross-compliances were calculated from the 
measured displacements as: 

δx(Fx)/FxCxx =   δx(Fy)/FyCxy =  

δx(Fz)/FzCxz =   δy(Fx)/FxCyx =  

δy(Fy)/FyCyy =   δy(Fz)/FzCyz =   

δz(Fx)/FxCzx =   δz(Fy)/FyCzy =  

δz(Fz)/FzCzz =   (17) 

The distributions of direct-compliances Cxx, Cyy, and 
Czz are shown in Figures 11a, 11e and 11i respectively. 
The distributions of cross-compliances Cyx, Czx, Cxy, Czy, 
Cxz and Cyz are shown in Figures 11b, 11c, 11d, 11f, 11g 
and 11h respectively. 

 

 
Figure 11. Distributions of experimentally determined compliances in the ZM=0 plane 
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Comparing the experimental with the analytically 
determined compliances, Figure 5, it can be inferred that 
the character of their distributions is similar, but the 
experimentally obtained compliances are slightly 
higher. The higher values of the experimentally 
obtained compliances compared to those determined 
analytically originate from the compliance of the 
structural elements, motor spindle and the tool itself. 

In order to identify the joint compliances Cθi, 
i=1,2,...,5 the experimentally determined direct- and 
cross-compliances form equation (17) can be substituted 
in equation (16). For example, at the selected nine 
points (T1-T9), shown in Figure 12, an over-determined 
system of 81 equations was derived from which the 
joint compliances Cθi, i=1,2,...,5 were identified using 
the Matlab function lsqcurvefit. Table 3 shows the 
determined joint compliances. 

 
Figure 12. Selected points in the ZM=0 plane for joint 
compliance identification 

Table 3. Joint compliances identified based on 
experimental Cartesian compliances in the ZM=0 plane 

Joint number i 1 2 3 4 5 
Compliance Cθi 
[rad/Nm]⋅10-7 

9.03 11.17 14.74 27.65 97.58 

 
With the identified joint compliances, Table 3, the 

Cartesian space compliance submatrix )(θδXC  was 
calculated again using equation (16). Figure 13 shows 
the distributions of the calculated direct- and cross-
compliances in the ZM=0 plane based on the identified 
joint compliances given in Table 3. The distributions of 
experimentally determined compliances from Figure 11 
are also shown in Figure 13. 

Comparing the joint compliances identified based on 
experimental Cartesian compliances, Table 3, with 
experimentally identified joint compliances from Table 
2 it can be inferred that their values are slightly higher. 

 
 

5.2 Milling test 
 
Milling tests were carried out on aluminum 

workpieces placed on a 3-component dynamometer (D), 
Figure 14. The programmed linear path was in the plane 
ZM= 0 in the positive XM direction around the point (X M 
= 0 mm, YM = -1300 mm). The tool used was a three-
flute flat endmill with a diameter of 8 mm. The milling 
operation was endmilling with a cutting width of 8 mm, 
depth of cut 2 mm, spindle speed 12,000 min-1, and feed 
velocity 30 mm/s. 

 

 
Figure 13. Distributions of calculated and experimentally determined compliances in the ZM=0 plane 
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Figure 14. Robot milling tests 

Figure 15 shows measured dynamic forces in the 
feed normal, i.e., the YM direction. To observe the static 
force component, Fystat, the force signal was filtered 
with a cut off frequency of fc=50Hz. As it can be 
noticed a constant static force level is approximately 
Fystat =100 N.  

The machined flute is displayed in Figure 16 from 
which it can be seen that in the YM direction the 
deviation from the correct path is about 0.3 mm. For the 
static force of approximately Fystat=100 N, Figure 15, 
the calculated displacement from the analytically 
determined compliance from Figure 5 is 0.23 mm, while 
the calculated displacement from the experimentally 
determined compliance, Figure 13, is approximately 
0.29 mm. From this simple milling test it can be readily 
noticed that the calculated displacement from the 
experimentally determined compliance is approximately 
equal to the measured tool path deviation on the 
workpiece. The calculated displacement based on the 
analytically determined compliance is nearly three 
quarters of the real displacements. 

 
 

Figure 15. Measured force in the YM-direction 

 
Figure 16. Machined flute 

 

6. CONCLUSION 
 

The paper presents analytically- and experimentally-
based compliance identification and analysis of a 5-axis 
vertical articulated machining robot. By expanding the 
conventional analytical approach to the mapping of joint 
compliances into the robot’s Cartesian space 
compliance, it has been shown that it is possible to 
analyze the impact of each individual joint’s compliance 
on the robot’s Cartesian space compliance. This is of 
crucial importance, because it can be useful for a robot 
manufacturer’s experts in the design of specialized 
machining robots. Also, a satisfactory correlation 
between the analytically- and experimentally-based 
Cartesian compliances indicates that the analytical 
approach is efficient in identifying the Cartesian space 
robot compliance, considering that only five 
experiments are sufficient to identify the joint 
compliances. However, the identification of joint 
compliances based on experimentally determined 
Cartesian space compliances gives better results since 
many tests are performed in different robot 
configurations. A suitable model of the process forces 
and the expanded compliance model proposed in this 
paper also enable the development of virtual robotic 
machining systems for further research. The present 
research has laid the foundation for an advanced design 
method for machining robots as well as for the 
development of strategies for real-time tool tip 
displacement compensation based on captured process 
forces which are already the subject of current research. 
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ИДЕНТИФИКАЦИЈА И АНАЛИЗА 

ПОПУСТЉИВОСТИ У ДЕКАРТОВОМ 
ПРОСТОРУ РОБОТА ЗА ОБРАДУ 

ВЕРТИКАЛНЕ ЗГЛОБНЕ КОНФИГУРАЦИЈЕ  
 

Никола Славковић, Драган Милутиновић, 
Бранко Кокотовић, Милош Главоњић, Саша 

Живановић, Kornel Ehmann 
 
Примена индустријских робота вертикалне зглобне 
конфигурације за вишеосну обраду глодањем је 
ограничена на делове од мекших материјала ниже 
класе тачности. Основни разлог за ово је недовољна 
крутост серијске структуре робота која је неколико 
десетина пута мања од крутости CNC машина 
алатки. У раду је представљен метод 
експерименталне идентификације и анализе 
попустљивости 5-осног робота за обраду вертикалне 
зглобне конфигурације. За одређивање 
попустљивости робота у Декартовом простору 
коришћен је проширени конвенционални приступ 
који је базиран на експерименталној 
идентификацији попустљивости зглобова и 
Јакобијан матрици. Аналитичка анализа обухвата 
утицај попустљивости сваког зглоба понаособ на 
попустљивост робота у Декартовом простору. 
Експериментално одређивање попустљивости 
робота у Декартовом простору је извршено мерењем 
апсолутних помераја врха робота изазваних 
статичкiм силaмa у сва три Декартова правца, из 
којих су затим одређене попустљивости сваког 
зглоба.

 
 


