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The application of industrial robots for machining is currently limited to
tasks with low precision demands due to the low stiffness of industrial
robots as compared to machine tools. This paper analytically describes an
experiment-based compliance identification and analysis method for a 5-
axis vertical articulated machining robot. An expansion of the
conventional method for the calculation of the robot’s Cartesian space
compliance that takes into consideration joint compliances and the
Jacobian matrix is used. The analytical analysis considers the effects of the
individual joint compliances on the resulting Cartesian space compliance.
Experimentally, the Cartesian space compliance is obtained by direct
measurement of the absolute displacements induced by static forces along
3-Cartesian directions at the tool tip from which the joint compliances are
identified.
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1. INTRODUCTION

Industrial robots are promising cost-effective and
flexible alternatives for certain multi-axis milling
applications. Compared to machine tools, industrial
robots are cheaper and more flexible with a potentially
larger workspace. For these reasons, researchers, robot
and CAM software manufacturers as well as people
from machining shops find it feasible to replace
machine tools by robots for some machining
applications. It is well known that poor accuracy,
stiffness and the complexity of programming are the
most important limiting factors for wider adoption of
robotic machining in machine shops [1,2].

Stiffness modelling, analysis, synthesis and control
in robotic machining have attracted the attention of
many researchers. As stated in [2] the major position
error sources in robotic machining can be classified into
two categories: (i) cutting force induced errors, and (ii)
motion errors (e.g., kinematic, dynamic, etc.).

Motion errors, typically in the range of 0.1 mm, are
inherent and rooted in the robot’s position controller,
and they would appear even in non-contact tasks. As
milling cutting forces are of several hundred N, the
force—induced errors could easily exceed 1 mm. The
latter statement is quite logical because the stiffness for
typical articulated robots is usually less than 1 N/pum,
while standard CNC machine tools often have stiffness
values greater than 50 N/um. Similar statements are also
given in [3].
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The sources that determine the stiffness of a typical
robot manipulator are the compliance of its joints,
actuators and other transmission elements, geometric
and material properties of the links, base, and the active
stiffness provided by its position control system. For the
purpose of this research, we assume that the compliance
of the actuators and of the transmission elements is the
dominant source of the stiffness, and it can be
represented by a linear torsional spring for each joint,
while the Ilinks are infinitely stiff. The active
compliance of the actuators due to the robot’s position
control system, provided by the original equipment
manufacturer, does not vary with time although an
integral controller can increase the active compliance,
depending on the positioning error [4].

Unlike multi-axis CNC machine tools, robot tool tip
displacements are coupled and vary even when
subjected to the same force at different workspace
locations. Such coupling results in displacements not
only in the direction of the reaction force, but can also
generate some counter-intuitive results. Mainly, three
kinds of deviations occur due to the compliance of a
machining robot during high speed -cutting: static
displacements, low frequency and high frequency
oscillations [5].

In this paper, the static displacements which have
the highest impact on overall cutting accuracy are
analysed.

In order to contribute to efficient use of robots for
machining applications, research and development of
reconfigurable robotic machining systems was initiated
[6] that considers two classes of problems. The first
relates to the realization of a specialized 5-axis vertical
articulated machining robot with an integrated motor
spindle in order to improve robotic machining accuracy.
The second refers to the development of the machining
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robot’s control and programming system which can be
directly used by CNC machine tool programmers and
operators [7].

In order to obtain the Cartesian space compliance
matrix of the 5-axis vertical articulated machining robot,
two methods, similar to [8], were used in this paper. The
first method is an analytically-based approach that
calculates the Cartesian space compliance using joint
compliances and the Jacobian matrix [9,10].

In this method, only five experiments are required to
evaluate the robot’s Cartesian space compliance matrix
throughout its workspace. This conventional method is
expanded in the present paper with the aim of analyzing
the effects of the compliance of each individual joint on
the robot’s Cartesian space compliance. The analysis of
compliance effects of each individual joint on the
Cartesian space compliance could be of crucial
importance for a robot manufacturer’s experts in the
design of specialized machining robots.

The second method obtains the robot’s Cartesian
space compliance matrix throughout its workspace by
direct measurement of the absolute displacements of the
tool-tip induced by static forces along 3-Cartesian
directions. This method improves the results of the
analytical method, because it takes into account all
deformations including the joint and link flexibilities
along and about all the axes, however, it requires a large
number of measurements.

2. PROBLEM STATEMENT

A basic module of the proposed concept of the robotic
machining system presented in [7] is the specialized 5-
axis vertical articulated robot, Figure 1, with an
integrated motor spindle, similar to [8, 11] and with a
larger workspace, higher payload and stiffness. The
development of the specialized 5-axis vertical
articulated machining robot was a joint project with a
robot manufacturer.

For the compliance identification and analysis a six-
axis vertical articulated robot, Figure 1, was used as a
testbed in the way that axis number six was blocked.
The robot is equipped with a high speed motor spindle
with the maximal speed of 18,000 min™.

Figure 1. The experimental 5-axis machining robot in
reference position
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As evident from Figure 1, the experimental five-axis
machining robot is further considered as a five-axis
vertical milling machine (X, Y, Z, A, B) of the spindle-
tilting type [12], where machining is performed on a
work table in front of the robot. The configured system
as well as the limited motions in joints relative to the
reference position provide for: (i) conveniences related
to stiffness [1], (ii) taking into account only one solution
of the inverse kinematics, and (iii) avoiding the robot's
singularities [13].

The focus of the current research, one part of the
results being presented in this paper, is related to
compliance identification and analysis of the
experimental 5-axis vertical articulated machining ro-
bot, which includes: (i) an analytically-based Cartesian
compliance identification, (ii) an experimentally-based
Cartesian compliance identification, and (iii) machining
experiments.

3. KINEMATIC MODELING

As it was mentioned, the 5-axis vertical articulated
robot in Figure 1 will be considered below as a specific
configuration of a 5-axis spindle-tilting type vertical
milling machine (X, Y, Z, A, B). Figure 2 represents the
kinematic model of the robot.

The robot reference frame {M} has been adopted
according to the standard for this machine type [14] and
coincides with the robot’s base frame (x,, vy, zp). The
tool frame {T} is attached to the milling tool tip, T, in a
way that the z7 axis coincides with the tool axis and also
coincides with the axis of the last link of the robot to
which the motor spindle is attached. Vector v,
referenced in frame {M}, is denoted by v.

A 720

22.¥3

850 mm

a

- Jas=285 mmey
T |11=50 - 150 mm

Figure 2. Kinematic model of the robot

The joint coordinate vector for this 5-axis vertical
articulated robot is represented by:

0=[o, 0, 05 05 0s] 0]
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where &, i = 1,2,...,5 are scalar joint variables controlled
by the actuators.

Given that the robot has 5 DOF, only the direction of
the tool’s zr axis is controllable, while axes x7 and yr
will have uncontrollable rotations about it. The position
and orientation of the tool frame, {T}, relative to the
robot’s reference frame, {M}, is given by the
homogeneous coordinate transformation matrix [15,
16]:

Xu @)
Yy

where the position vector “p; represents the position,
while A}I R represents the orientation of the tool frame,

{T}, with respect to the robot’s reference frame, {M}.
As only the orientation of the tool axis z7 specified by
the unit vector “k;=[kz kry kr.]" is of interest, equation
(2), the tool orientation angles, 4 and B, can be
determined in the usual way [7, 12, 15], so that the
world coordinate vector can be expressed as:

x=[xy Yy Zy, 4 BJ 3)

3.1 Jacobian matrix

To model the robot, the Denavit-Hartenberg (D-H)
notation [15, 16] is used. To perform the kinematic
analysis, first the coordinate frames are rigidly attached
to each link, Figure 2. The homogeneous transformation
describing the relation between links is traditionally
referred to as an 4 matrix.

1

The matrix _}A designates the D-H transformation

matrix relating frame (7) to frame (i-1). Figure 2 shows
the D-H coordinate frames for the 5-axis robot from
Figure 1 in the reference position, taking into account
the ranges of joint motions.

The D-H model adopts 4 parameters (ai, ai, di, 0i) to
describe the transformation, including translations and
rotations from link (i-1) to link (7). After the D-H
coordinate frame is assigned to each link, the
transformation between successive frames (i-1) and (i)
is described as follows:

4= Rot(z,,,6,) Trans(0,0,d,) - Trans(a,,0,0) - Rot(x,,a,) =

4)

S L e
0 0 0 \ 1

Considering the above-mentioned remarks and
constraints, a list of D-H kinematic parameters for each
link is given in Table 1.
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Table 1. D-H kinematic parameters

link i oi[°] ajlmm] | difmm] 0i[°]
1 90 0 0 01-90
2 0 ay 0 672+90
3 90 0 0 03
4 -90 0 dg -04
5 0 as 0 05+180

Substituting the D-H parameters of the links into
equation (4) the transformation matrices i_} A, i =

1,2,...,5 are obtained first. Considering that the robot is
considered in the present paper as a 5-axis spindle-
tilting type vertical milling machine (X, Y, Z, A, B),
importance is given to frame {T} whose z; axis must
coincide with the tool axis. As noticeable from Figure 2,
frame {T} can be described relative to the frame (xs, ys,

z5) by the homogeneous transformation matrix ;T .

Now, as it is well-known [15, 16], the tool position
and orientation, i.e., the position and orientation of
frame {T} with respect to the robot’s reference frame
{M}, Figure 1, for the given joint coordinates vector 0
and specified link parameters can be determined as:

Mg 0,1,2,3,4,5
TT=\Ay A3A4-JA5A3T =

ire Jrx ke i Xy
|
0 0 o0 1 i Jrz kr | Zu
'z JTz KT LM
0 0 0] 1

In equation (5), apart from the position of tool tip T in
the reference frame {M} “pr=[Xy Yy Zu]’, the third

column “k,;= lkr Koy sz]T of the rotation matrix A}I R is

of significance as the robot has only 5-DOF.
Considering that the robot reference frame, {M}, and
the robot base frame (xy, yy zy) coincide and that the
tool tip, T, is the origin of frame {T} and also the origin
of frame(xs, ys, zs5), Figure 2, it is obvious that:

Mpr="pr="pos (6)

The position and orientation of an arbitrary frame (i)
attached to link (7) with respect to the robot’s reference
frame, {M}, i.e., robot base frame (x, y, zy) can be
expressed as:

/=1 (7
0 o 0. 0. 0 0
_| R Poi || i i ki | "poi
0 0 01 1 0 0 0| 1

for i = 1,2,...,n where n=5 is the number of joints.

The robot’s Jacobian matrix relates joint velocities
to Cartesian velocities of the tool tip. The mapping
between the static forces applied at the end-effector and
the resulting torques at the joints can also be described
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by the Jacobian matrix [15-18]. Considering that the
robot consists of five revolute joints, the Jacobian
matrix has as many rows as there are degrees of
freedom and the number of columns is equal to the
number of joints:

J=[I 3, . J,] (8)
with column vectors
0 0 0
Ji — ki*l x (OpOn_ Poi-1 9)
ki

Substituting the vectors from equation (7) into
equation (9) the Jacobian matrix columns Ji, i = 1,2,...,5
are obtained.

3.2 Machining robot workspace

Based on the inverse kinematics, it is possible to
determine the position and orientation workspace of the
robot considered here as a vertical 5-axis milling
machine [7]. The position and orientation workspace are
given by:

Ws(X ys.Yas»Zas» A, B) = {01} (10)

which represents a Boolean function, whose value is
equal to 1 if the tool pose defined by the world
coordinates vector x is reachable without exceeding the
limited motion range of the joints. Starting from a
selected point in the workspace volume, the
determination is made by a specific step-by-step
strategy that locates the tool in a given pose in the
workspace and that determines whether the pose is
reachable or not by taking into account the limited
motion range of the joints given in Figure 2. The portion
of workspace for 3-axis machining (4=0°, B=0°, i.e.,
spindle orientation is perpendicular to the Xy Yy plane)
with boundaries logical for machining (Z,,,,=-400 mm,
Zyima=100 mm) is shown in Figure 3. For programmers
and operators familiar with CNC machine tools, this
workspace is reduced to the parallelepiped XjxYyxZy =
1200x600x500 mm’, as indicated in Figure 3.

Figure 3. Workspace in the case of 3-axis machining (A=0°,
B=0°)
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As it is known [15, 18], det(J) represents the
manipulability measure usually adopted as a distance of
the robot from its singular configurations. Figure 4
shows the distributions of the values of det(J) in the
planes Z,,=-400mm and Z,,~100mm in the adopted
port3i0n of the workspace XjxY)xZ,, = 1200x600x500
mm’.

Figure 4. Distributions of det(J) values in the planes Zy=-
400 mm and Z;=100 mm

Similar distributions of the values of det(J) are also
found in the planes from Z;,=-400 mm to Z;~100 mm.
The presented distributions of the values for det(J)
exhibit good force and speed transmission ratios of the
tool with driving forces and speeds throughout the
selected portion of the workspace.

4. ANALYTICALLY-BASED CARTESIAN
COMPLIANCE IDENTIFICATION

The knowledge of the robot’s stiffness or compliance
reflected at its end point is of prime importance to
successfully conduct contact and noncontact tasks [4].
As stated in [2,3,8,19] the elastic properties of the
robot’s links are insignificant, so the subsequent
analysis of the compliance model in Cartesian space
will be based on joint compliances. The analysis will be
conducted on the existing experimental machining robot
shown in Figure 1 as a basis for realizing the machining
robot concept with integrated motor spindle from
Figure 1.

The Cartesian compliance model should allow for
generating the robot’s compliance maps which indicate
the robot’s end point compliance as a function of the
joint compliances and robot configurations throughout
its workspace.

Based on the principle of virtual work, the
conventional formulation for the mapping of the joint
compliance matrix, Cg into the Cartesian space
compliance matrix, Cx(0), is expressed as [8-10]:

Cx(0)=J(0)-Cy-J(0) an
where Cy is a constant matrix of diagonal form:

Cy = diag(Cyy ., Cop) (12)
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and J(0) is the Jacobian matrix given by equation (8).

The practical application of equation (11) to
determine the robot’s compliance center and the
machining robot’s compliance analysis were presented
in [10] and [8]. It was shown how suitable it is, for it
allows the mapping of the joint compliance matrix Cy
into the Cartesian compliance matrix Cy(0) without
calculating any inverse kinematic functions.

Since Cyis diagonal, the Cartesian space compliance
matrix Cx(0), equation (11), in this paper is considered
as the sum of the joint compliances associated with each
individual joint as:

Cx(0)=Cx(Co)++Cxy (Ca) =Y Cxi(Cq) (13)
i=1

where

Cxi(C) = Cg 3 I =
JiJu i Dicds JiJa JiJs
SoioJu JoiJu JoiJai JoicJa oo (13)
Co-|J3i-Ju JaiJu Jai-Jy JaiJa Sz Jdsi ),
Joi i JaiJu Jai Iy Jai e Jaio s
Isi-Ju JsioJai s Ty s Jy JsiJs;

i=12,...,n,n=>5

represents a part of Cartesian space compliance matrix
Cx(0) originating from the i-th joint compliance Cg,
while J; are column vectors given by equation (9).

Equations (13) and (14) provide insight into the
effects of the compliance of each individual joint on the
Cartesian space compliance. This means that the effect
of the corresponding joint is obtained by incorporating
into equation (13) only its compliance, while the other
joints are considered stiff. This is of crucial importance
for the present paper, because it can be useful for a
robot manufacturer’s experts in the design of
specialized machining robots.

For an articulated robot, Cy(0) is a symmetric non-
diagonal and configuration dependent matrix. The force
and robot tool tip displacement in Cartesian space is
coupled, which means that the force applied in one
direction will cause displacements in all possible
directions.

Compliance is also a function of the robot’s
Jacobian matrix J(B) that changes significantly
throughout the entire workspace. Thus, if Cy can be
experimentally determined, the Cartesian space
compliance matrix Cx(0), equation (11) and the linear
displacement of the robot’s tool tip ox=[&x & ]
under an external static force vector F=[Fx Fy Fz]" at
any location in the workspace can be estimated as:

Cxx Cxy Cxz
Xx=Cys0)-F=Cyxx Cyy Cyz|-F (15)
Czx Czy Czz
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where Cys(0) is a submatrix of Cartesian space

compliance matrix Cx(0). In equation (15) direct- and
cross-compliance can be calculated using equations (13)
and (14) us:

Ce. =Y CaJi (16)

The experimental determination of the compound
joint compliance parameters is critical for the robot’s
compliance analysis. For the measurement of each
joint’s compliance the robot structure was not
disassembled.

To assure the decoupling of the joints only one joint
at a time was loaded [8]. Therefore, while measuring the
compliance of joint (i) all joints from the base to joint
(i-1) were blocked. Table 2 shows the experimentally
identified compound joint compliances.

Table 2. Experimentally identified joint compliances

Joint number { 1 2 3 4 5

Compliance Cy

[rad/N ]10_7 7.14 10.12 12.30 17.32 | 91.35
rad/Nm]-

4.1 Analytical results

Using equation (16) and the experimentally identified
compound joint compliances, Table 2, the direct- and
cross-compliances were calculated in the adopted
workspace shown in Figure 3.

Figure 5 shows the distribution of the analytically
determined compliances in the Z,~=0 plane. The
distributions of direct-compliances C,,, C,,, and C.. are
presented in Figures 5a, Se, and 5i respectively.

The distributions of cross-compliances C,,, C.,, and
C,, are given in Figures 5b, 5c, and 5f respectively.
Figure 5 can be also viewed as the Cartesian space
compliance matrix Cx(0) in the Z,~0 plane in the
adopted workspace shown in Figure 3.
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Figure 5. Distributions of analytically determined compliances in the plane Z;=0

As it is noticeable from Figures 5a and 5i, the direct-
compliances C,, and C,, are decreasing in the positive
Y), direction. At constant Y,, positions the direct-
compliances C,, and C., are increasing in the negative
and positive X, directions. The direct-compliance C,,,
Figure Se, is increasing in the positive Y, direction and
decreasing in the negative and positive X, directions at
a constant Y, positions.

The distributions of the all components of the direct-
compliances originating from individual joints,
summands in equation (16), are shown in Figure 6. The
direct-compliances C,, and C,,, Figures 6a and 6b, are
predominantly affected by joint compliances Cg;, Co;,
and Cy. The direct-compliance C,,, Figure 6c, is
predominantly affected only by joint compliances Cg,
and ng.

In order to complete the impact analysis of
compliances of each joint, this paper also considers their
impact on cross-compliances.

88 = VOL. 41, No 2, 2013

The distributions of the all components of the cross-
compliances originating from individual joints,
summands in equation (16), are shown in Figure 7.

The cross-compliance C,,, Figure 7a, is
predominantly affected by joint compliances Cgy;, Cgs,
and Cys, while cross-compliances C,,, Figure 7b, and
C,, Figure 7c, are predominantly affected only by the
joint compliance Cy;.

4.2 Simulation of the tool path errors calculated
from the analytically determined Cartesian
compliance

To test the effectiveness of analytically based
compliance model as well as to analyze tool path errors
based on it, simple tasks were chosen. Programmed
linear paths parallel to the X), and Y), axes are shown in
Figures 8a and 8b respectively.
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programmed tool paths

T parallel with X4 axis
Total tool path deviations:
Sy(Fystat.Cyg(0))
Tool path deviations originating
from dominant individual joints:
—_——— 8}’{["}’5131. CXé(CU] )
-« = dy(Fystat, Cx5(Cp3))

- Oy(Fystat, Cy5(Cps))

T ax{FxstaL C‘X(’S(CE)S))

a)
1 Ywmlm]
-0.6 -0.3 0.3 Xmlm]
| ] ] »
3y [um] 3y [um] 3y [um] programmed tool pa.ths
0 100200 0 100200 0 100200 | parallel with Yy axis
T Total tool path deviations:
M Sx(Fxstat.Cx5(0))
“ Tool path deviations originating
T from dominant individual joints:
E 1 -— SX{FXSIQI. C'Xﬁ(cm )
T I-';;s at | T ox(Fxstat. Cx5(Cg3))
Gi) y
o
- \

Figure 8. Tool path deviations in the plane Zy=0

Selected linear paths are on the borders and in the
middle of adopted portion of the workspace in the plane
Z,=0mm. The total tool path deviations as well as the
tool path deviations originating from the dominant
individual joints’ compliances are calculated for the
constant static forces in the feed normal directions, i.e.,
Fxstat = Fystat = 100N. Similar tool path deviations are
also obtained in the planes from Z,=-400 mm to
Zy=100 mm. From these simple simulation examples it
can be easily concluded that it is possible to generate
compliance-induced machining error maps and identify
critical joints and workspace sub-volumes in an efficient
way using an analytically-based compliance model.

5. EXPERIMENTALLY-BASED CARTESIAN
COMPLIANCE IDENTIFICATION

Another approach to obtain the Cartesian compliance of
the machining robot is the direct measurement of the
absolute displacements induced by a load at the tool tip.
The elements of the experimental setup shown in Figure
9 are the experimental machining robot (1) equipped
with a sphere-tip tool (2), fixture (3), cable-pulley
system (4) and a deadweight of 250 N (5) in order to

FME Transactions

b)

exert static forces along 3 Cartesian directions at the
sphere-tip tool. The original and deformed positions of
the sphere-tip tool are measured by a FARO Portable
CMM 3D digitizer (6), from which translational
displacements o&x, oy, and &z are calculated.

Figure 9. Scheme of robot loading and displacements
measurement

VOL. 41, No 2, 2013 = 91



For the analysis of the Cartesian compliance
investigations were conducted within the adopted
portion of the workspace XjxYyxZy, = 1200x600x500
mm’, Figure 3. The workspace was subdivided into
smaller cubes and the displacements of the sphere-tip
tool were measured at 45 points at 6 Zy, levels (Z,,=-400
to 100 mm).

Figure 10. Experimental setup of robot loading and
displacements measurement

The experiment-based compliances are determined
on the basis of the sphere-tip tool’s displacements d, y,
and oz induced by static forces of 250 N in all 3
Cartesian directions. An example of displacement
measurements for the cases of robot loading in the
negative Y), direction is shown in Figure 10.

5.1 Experimental results

Direct- and cross-compliances were calculated from the
measured displacements as:

C.. =0x(Fx)/Fx C,y = ox(Fy)/Fy

C,, =0x(Fz)/Fz C\x = 0y(Fx)/Fx
Cyy =0y(Fy)/Fy

C,, =0z(Fx)/Fx

Cy, =0y(Fz)/Fz
C., =0z(Fy)/Fy

C,, =0z(Fz)/Fz 17

The distributions of direct-compliances Cy,, C,,, and
C., are shown in Figures 11a, 11e and 111 respectively.
The distributions of cross-compliances C,,, C.,, Cy,, C.,,
C.. and C,, are shown in Figures 11b, 11c, 11d, 11f, 11g
and 11h respectively.

Figure 11. Distributions of experimentally determined compliances in the ZM=0 plane

92 = VOL. 41, No 2, 2013
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Comparing the experimental with the analytically
determined compliances, Figure 5, it can be inferred that
the character of their distributions is similar, but the
experimentally obtained compliances are slightly
higher. The higher values of the experimentally
obtained compliances compared to those determined
analytically originate from the compliance of the
structural elements, motor spindle and the tool itself.

In order to identify the joint compliances Cy,
i=1,2,...,5 the experimentally determined direct- and
cross-compliances form equation (17) can be substituted
in equation (16). For example, at the selected nine
points (T1-T9), shown in Figure 12, an over-determined
system of 81 equations was derived from which the
joint compliances Cy4, i=1,2,...,5 were identified using
the Matlab function Isqcurvefit. Table 3 shows the
determined joint compliances.

Ymlm]
-0.6 03 0.3 0.6 Xmlm]
-1.0,
T7 T8 To
-13
T4 TS T6
-1.6
Tl T2 T3

Figure 12. Selected points in the Zy=0 plane for joint
compliance identification

Table 3. Joint compliances identified based on
experimental Cartesian compliances in the Z,=0 plane

Joint number i 1 2 3 4 5
Compliance Cy

9.03 11.17 14.74 27.65 | 97.58
[rad/Nm]-107

With the identified joint compliances, Table 3, the
Cartesian space compliance submatrix Cys5(0) was

calculated again using equation (16). Figure 13 shows
the distributions of the calculated direct- and cross-
compliances in the Z,~=0 plane based on the identified
joint compliances given in Table 3. The distributions of
experimentally determined compliances from Figure 11
are also shown in Figure 13.

Comparing the joint compliances identified based on
experimental Cartesian compliances, Table 3, with
experimentally identified joint compliances from Table
2 it can be inferred that their values are slightly higher.
5.2 Milling test
Milling tests were carried out on aluminum
workpieces placed on a 3-component dynamometer (D),
Figure 14. The programmed linear path was in the plane
Z)~= 0 in the positive X), direction around the point (X ,,
= 0 mm, Y, = -1300 mm). The tool used was a three-
flute flat endmill with a diameter of 8 mm. The milling
operation was endmilling with a cutting width of 8 mm,

depth of cut 2 mm, spindle speed 12,000 min™', and feed
velocity 30 mm/s.
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Figure 13. Distributions of calculated and experimentally determined compliances in the Zy=0 plane
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Figure 14. Robot milling tests

Figure 15 shows measured dynamic forces in the
feed normal, i.e., the Y}, direction. To observe the static
force component, Fystat, the force signal was filtered
with a cut off frequency of f,=50Hz. As it can be
noticed a constant static force level is approximately
Fystat =100 N.

The machined flute is displayed in Figure 16 from
which it can be seen that in the Y,, direction the
deviation from the correct path is about 0.3 mm. For the
static force of approximately Fystat=100 N, Figure 15,
the calculated displacement from the analytically
determined compliance from Figure 5 is 0.23 mm, while
the calculated displacement from the experimentally
determined compliance, Figure 13, is approximately
0.29 mm. From this simple milling test it can be readily
noticed that the calculated displacement from the
experimentally determined compliance is approximately
equal to the measured tool path deviation on the
workpiece. The calculated displacement based on the
analytically determined compliance is nearly three
quarters of the real displacements.

I—‘Fy(iyn
200 - Fystat
Z:150
L
gl(}()
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Figure 15. Measured force in the Yy-direction
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Figure 16. Machined flute

6. CONCLUSION

The paper presents analytically- and experimentally-
based compliance identification and analysis of a 5-axis
vertical articulated machining robot. By expanding the
conventional analytical approach to the mapping of joint
compliances into the robot’s Cartesian space
compliance, it has been shown that it is possible to
analyze the impact of each individual joint’s compliance
on the robot’s Cartesian space compliance. This is of
crucial importance, because it can be useful for a robot
manufacturer’s experts in the design of specialized
machining robots. Also, a satisfactory correlation
between the analytically- and experimentally-based
Cartesian compliances indicates that the analytical
approach is efficient in identifying the Cartesian space
robot compliance, considering that only five
experiments are sufficient to identify the joint
compliances. However, the identification of joint
compliances based on experimentally determined
Cartesian space compliances gives better results since
many tests are performed in different robot
configurations. A suitable model of the process forces
and the expanded compliance model proposed in this
paper also enable the development of virtual robotic
machining systems for further research. The present
research has laid the foundation for an advanced design
method for machining robots as well as for the
development of strategies for real-time tool tip
displacement compensation based on captured process
forces which are already the subject of current research.
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NJAEHTUOUKALINIJA U AHAJIN3A
HNONIMyCT/bUBOCTH Y JTEKAPTOBOM
ITPOCTOPY POBOTA 3A OBPAZlY
BEPTUKAJIHE 3I'/IOBHE KOHOUTI'YPALIUJE

Huxona CnaBkoBuh, Iparan MusayTunosuh,
Bpanko KokoroBuh, Mujiom I'mapomwuh, Cama
Kusanosuh, Kornel Ehmann

[IpuMena WHAYCTPHjCKUX poOOTa BEPTHKAIHE 3rII0OOHE
KOH(Urypanuje 3a BHUIIEOCHY 0Opaay TIJOJameM je
OrpaHHYeHa Ha JIEJOBE OJI MEKIIMX MaTepHjaia HIKe
kiace TayHocTH. OCHOBHH PasJior 32 OBO je HEJAOBOJbHA
KPYTOCT CEpHjCKE CTPYKType poOOTa Koja je HEKOJIUKO
JeceTMHa myTta Mama o Kpyroctd CNC mammnHa
amatki. Y pagy  je  TpeiCTaBbeH ~ METOJ
eKCIIepUMEHTAIHE  HWIACHTU(UKAIMje W aHaIHu3e
MIOITYCTJEUBOCTU 5-0CHOT poboTa 32 00paay BepTHKAITHE
3r100HE koH(urypanuje. 3a onpehuBame
MONYCTJBHUBOCTH poboTa y JlekapToBoM IIpOCTOpY
kopumheH je NPOIIMPEHH KOHBEHLMOHAIHH HPHUCTYII
KOjH je 0azupan Ha €KCIIEPUMEHTAJIHO]
UIeHTUGHUKAIUJH  TOMYCT/BMBOCTH  3rj000Ba |
JakoOujan marpuiy. AHaIWTHYKA aHaiu3a oO0yxBara
yTHUIIa] TOMYyCTJBMBOCTH CBAaKOI 3ryIo0a IOHa0co0 Ha
MIOITyCTJBUBOCT poboTa y JlekapToBOM IIpOCTOpY.
ExcniepumenranHo  oxpehuBame  IMOITYCTIBHBOCTH
pobota y JlekapTOBOM MPOCTOPY j& HU3BPIICHO MEPEHEM
aTliCONyTHUX ~ TIOMepaja Bpxa poOoTa H3a3BaHUX
CTATHYKIM cHJIamMa y cBa TpHu JlekaproBa mnpaBua, H3
KOjUX Cy 3aTuM ojpeheHe MOMyCTIBHUBOCTH CBaKOT
3ry100a.
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