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Abstract

Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders.
Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an
improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a
new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The
primary model introduces new generalizations of: 1) Weyl fractional derivative operator, 2) Cole equation, and 3) Constant
Phase Element (CPE). These generalizations were described by the novel equation which presented parameter (b) related to
remnant memory and corrected four essential parameters (R0,R?,a,ta): We further generalized single generalized element
by introducing specific partial sum of Maclaurin series determined by parameters (b � ,c,d . . . ): We defined individual
primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole
equation is a special case of our generalized class of models forb1~c~d~ . . . ~0: Previous bioimpedance data analyses of
living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably
improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our
models with new parameters presented in specific partial sum of Maclaurin series also extend representation,
understanding and description of complex systems electrical properties in terms of remnant memory effects.
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Introduction

Application of the mathematics in biology and medicine

requires interdisciplinary approach employing the high level of

theoretical and experimentally based knowledge in all three

disciplines [1],[2]. Here we will briefly introduce thematically

relevant overview of the previous use of fractional calculus related

to electrical impedance with application to human skin. Fractional

calculus is a branch of mathematical analysis that generalizes the

derivative and integral of a function to non-integer order [3],[4].

Application of fractional calculus in classical and modern physics

greatly contributed to the analysis and our understanding of

physico-chemical and bio-physical complex systems [5]. In the

past two decades fractional calculus extended popularity in other

natural science branches such as chemistry, biology and medicine.

Living organisms are the most complex systems composed of over

billons of different interconnecting entities at different spatial and

temporal scales [6]. Therefore, our understanding of biological

systems organization requires fractional calculus as a mathematical

tool [5],[7],[8],[9],[10]. A large number of useful biophysical

studies reported applications of fractional calculus; however, they

were limited to relatively small number of biological model system

examples such as: (1) electrical properties of neurons in neurobi-

ology [11], (2) viscoelastic properties of muscles and bones in tissue

bioengineering [12], [13], (3) kinetic properties of cell growth and

differentiation during morphogenesis in developmental biology

[14].

Fractional calculus is a mathematical field extending classical

calculus for non-integer order of derivation thus dealing with

derivatives and integrals of arbitrary and complex orders [3–

5,8,15]. The fractional derivatives are non-local operators because

they are defined using integrals. Consequently the fractional

derivative in time contains information about the function at

earlier points, thus it possesses a memory effect, and it includes

non-local spatial effects [3–5,8,15]. In other words fractional

derivatives are not a local property (point – quantity) and they

consider the history and non-local distributed effects which are

essential for better and more precise description and understand-

ing of the complex and dynamic system behavior.

Fractional calculus applications in life sciences provides

possibility to analytically focus on modeling of biological life

processes where fractional order model will span multiple scales

(nanoscale, microscale, mesoscale, and macroscale). Skin is the
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largest human organ with extremely high cellular and molecular

complexity functioning as the protecting, communication and

transfer interface between body and environment [16]. Therefore,

human skin as highly ordered multilayer organ is particularly

suitable model system for applying fractional calculus approach.

Commonly, structural and functional studies of human skin

employed measurements of bioelectrical and biochemical proper-

ties as well as simplified modeling. These approaches were

incapable to provide mathematically precise analytical information

and statistically significant predications on the electrical behavior

of skin. Here we are extending fractional calculus application in

biomedical field of natural sciences by modeling electrical

properties of human skin which are based on its structural

components and thus of its physiological state. Conductance and

dielectric features of material, including biological tissues, are

known to exhibit frequency dispersions [17], [18]. Impedance is

therefore a complex resistivity (real and imaginary part) displayed

under alternative current. We have used fractional calculus to

model electrical impedance and applied derived models to

describe bioimpedance properties of human skin as a test system.

Multifrequency measurements and modeling of electrical

impedance is an important spectroscopy method in study of

complex biological tissues and materials such as human skin.

Passive electric properties of human skin were studied by Cole

mathematical method employing bioimpedance measurements

below 100 kHz [17], [19]. Cole model deals with both conductive

and dielectric properties [20], whereas Cole-Cole approach

primarily describes dielectric features (determined as permittivity)

[21]. Since the human skin, as the complex organ, displays both

conductive and dielectric behavior, neither of the two models can

be applied to precisely describe and study bioimpedance properties

of this organ.

Biological membranes show a high capacitance and a low but

complicated pattern of conductivity [20]. Biological tissues as

complex multi-layer systems behave as an anisotropic material due

to the variable orientation of cells and their plasma membranes. As

mentioned above in 1940 Cole formulated a mathematical model

of electrical properties of cell membranes based on impedance

measurements at multi frequency alternative current. Kenneth

Cole and Robert Cole have conveyed another mathematical

model of dielectric properties for materials in 1941 [21]. In 2001

El-Lakkani [22] attempted to analyze electric and dielectric

properties of different types of human tissues either by Cole-Cole

model [20] or Dissado model [23] in the alternative current

frequency range from 20 Hz to100 kHz. This type of modeling

was reviewed by Grimnes & Martinsen [17]. Such Multi

Frequency Bioelectrical Impedance Analysis (MF-BIA) is a

noninvasive and relatively new technique for studying biological

systems. The complex impedance as a function of frequency of the

external alternating voltage source (v is frequency v[ 0,?ð Þ) is

one of the powerful linear passive characteristic of materials in the

frequency domain. One of the passive characteristics of materials

in alternating current circuits models is a Constant Phase Element

(CPE) which will be here further mathematically defined and

generalized by impedance equations using fractional calculus

approach.

We have used fractional calculus approach to construct simple

models with unified principles. Without fractional calculus

approach it would not be possible to make this generalized type

of superior and more precise class of models where Cole model is a

special case. Here we report modeling of bioimpedance using

fractional calculus approach and experimental data fitting for

human skin test system. We have derived new bioimpedance

equations introducing one new parameter and corrections for four

parameters by employing generalized Weyl fractional derivative

operator. Our model and results provide significant mathematical

advance for solving complex biosystems when compared to the

classical Cole model. Therefore, presented bioimpedance frac-

tional calculus modeling may be useful for further fundamental

research with applications in medicine which are related to

physiological and pathological analysis of human skin.

Results

Our modeling strategy of the bioimpedance with application to

human skin is based on generalization of Weyl fractional

derivative operator, generalization of Cole equation, and gener-

alization of CPE.

1. Generalized Weyl fractional calculus
Our primary idea was to generalize Weyl fractional calculus

because this method is necessary for mathematical analysis of

complex periodic functions describing characteristic values of

alternating current in electric circuits which are employed in

bioimpedance modeling.

1.1. Introduction to Weyl fractional calculus. In 1917

Weyl introduced his new approach of fractional calculus to

analysis of periodic functions. In summary the a -th fractional

integral and a -th fractional derivative of a 2p periodic adequate

complex function of real variable are defined respectively by

D{aQð Þ tð Þ :~
X?

l~{?

j:lð Þ{a:Qf lð Þ:ej:l:t,

DaQð Þ tð Þ :~
X?

l~{?

j:lð Þa:Qf lð Þ:ej:l:t,j2~{1

ð1Þ

where aw0 and

Qf lð Þ~ 1
2:p
:
Ð2:p
0

e{j:l:t:Q tð Þ:dt, l~+1,+2,+3,:::, Qf 0ð Þ~0 ð2Þ

This discrete Fourier transform can be viewed as the most usual

way of defining fractional integrals and derivatives of periodic

functions. The Equations (1) are correctly defined under the

condition that Qf 0ð Þ~0: Supplement to definition (1) is Da~0~Id

where Id is unit operator. In the case of considering formula for

Weyl fractional integral

Figure 1. Schema of circuit for modified Cole element [20]
according to Magin [7], [8].
doi:10.1371/journal.pone.0059483.g001

Fractional Calculus Model of Bioimpedance
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{?La
t Q tð Þ : ~ 1

C að Þ
Ðt

{?
t{t0ð Þa{1Q t0ð Þ:dt0, tw{?, 0vav1ð3Þ

for

yl tð Þ~ej:l:t ð4Þ

then it follows (Butzer and Nessel, [9])

{?La
t yl tð Þ~ j:lð Þ{a:yl tð Þ, Vl[Z : l=0 ð5Þ

hence, if we define

{?La
t Q 0ð Þ~0 ð6Þ

then it follows

{?La
t Q

� �
tð Þ~

P?
l~{?

j:lð Þ{a:Qf lð Þ:yl tð Þ ð7Þ

This operator {?La
t is identical to the operator D{a for 0vav1:

Then the Equation (7) can be written in the following form

{?La
t Q

� �
tð Þ*

P
l=0

j:lð Þ{a:Qf lð Þ:yl tð Þ ð8Þ

Previously defined operator is linear

{?La
t Q

� �
tð Þ*

P?
l~{?

Qf lð Þ:{?La
t yl tð Þ ð9Þ

1.2. Rigorous treatment of the Weyl approach to

fractional calculus. The Weyl approach to fractional calculus,

can be rigorously treated in the Banach spaces 2p periodic

complex function of real variable Q~Q tð Þ : R?C, defined by the

interval 0,2:p½ �

L
p
2:p : ~ QD Qk k

L
p
2:p

v?
� �

ð10Þ

with norms of this function defined by

Qk k
L

p
2:p

: ~
1

2:p
:
ð2:p
0

DQ tð ÞDpdt

8<
:

9=
;

1=p

, 1ƒpv? ð11Þ

The factor 1=2p is characteristic for the usual Fouirer analysis. In

the case p~2 describes Hilbert space L2
2:p: Dot product and norm

are defined in the standard way (over line means complex

conjugation).

Q,yð Þ
L2

2:p
: ~ 1

2:p
:
Ð2:p
0

Q tð Þ:y tð Þ:dt, Qk k
L2

2:p
: ~ 1

2:p
:
Ð2:p
0

DQ tð ÞD2dt

" #1=2

ð12Þ

If Q,y[L2
2:p and Q,y are real functions the following relation

holds

Q,yð Þ
L2

2:p
~ y,Qð Þ

L2
2:p

~ y,Qð Þ
L2

2:p
ð13Þ

As described by Butzer and Westphal [24], Equation (8) can be

considered as a motive for the definition of fractional integral IaQ,

in the form of the convolution integral for aw0 and Q[L
p
2:p: In

order to more accurately describe the fractional integral of Weyl

Ia for aw0 and Q~Q tð Þ[L
p
2:p the right side of Equation (8) will be

rewritten as

P?
l~{?

gf a lð Þ:Qf lð Þ:yl tð Þ ð14Þ

with

gf a lð Þ : ~
j:lð Þ{a

, l=0

0, l~0

�
ð15Þ

The corresponding Fourier transformed function is

ga tð Þ : ~
P
l=0

j:lð Þ{a:yl tð Þ~
P?

l~{?
gf a lð Þ:yl tð Þ ð16Þ

We now move to more precise definition of Weyl fractional

integral. This function will be used as a kernel of the associated

convolution integral, so-called Weyl fractional integral Ia, defined

as follows

IaQð Þ tð Þ : ~ ga � Qð Þ tð Þ~ 1

2:p
:
ð2:p
0

ga t{t0ð Þ:Q t0ð Þ:dt0 ð17Þ

Figure 2. Cole Plot of Generalized Cole Model (GC1). Cole plot of
GC1 model with five selected values of b parameter and suitable fixed
parametersR�0~1MV, R�?~1kV, ta� ;b~1s, a�~0:7 in the frequency
interval v[ 0:1Hz,105Hz

� �
:

doi:10.1371/journal.pone.0059483.g002
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Then according to Butzer and Nessel, [9], Ia bounded linear

operator, is actually a continuous operator over the space L
p
2:p for

all p[ 1,?½ Þ

IaQk k
L

p
2:p

ƒ gak kL1
2:p

: Qk k
L

p
2:p

VQ[L
p
2:p ð18Þ

Moreover, the convolutional theorems for periodic functions

(Butzer and Westphal, [24], Theorem 4.1.3), will be

ga � Qð Þf lð Þ~gf a lð Þ:Qf lð ÞVl[Z

~
j:lð Þ{a:Qf lð Þl=0

~0

(
ð19Þ

Comparing Equations (1) and (8) for the linear operatorIa, it

can be reasonably concluded that Ia is a fractional integral

operator. According to the Equation (17)Ia is defined

IaQð Þ tð Þ : ~
P
l=0

j:lð Þ{a:Qf lð Þ:yl tð Þ ð20Þ

Since IaQ defines for all Q tð Þ[L
p
2:p then IaQ[L

p
2:p: Same relation

does not hold for Weyl fractional derivative

DaQð Þ tð Þ : ~
P
l=0

j:lð Þa:Qf lð Þ:yl tð Þ,aw0 ð21Þ

If the index l~0 then the corresponding member in Equation

(21) is equal zero. For aw0 the function ga tð Þ[L2
2:p

becauseL2
2:p5L1

2:p: In the particular case when p~2, for the

Hilbert space L2
2:p Parseval Equation gives the maximum

definitional domain for fractional derivativeDa: This domain is

defined by

Dom Dað Þ : ~ Q[L2
2:pjDaQ[L2

2:p

� 	
~ Q[L2

2:pj
X?

l~{?

l2a: Q lð Þj j2v?

( )
ð22Þ

To eliminate the obvious deficiency, one of the ways is to define

the operator Da in the theory of distribution. Although we will not

consider such general problem, we will use the most appropriate

fractional operators and his domains. Later we will derive

generalizations of fractional operators and their domains.

Furthermore, we will consider the existence of a nontrivial,

nonempty, common domain for all fractional integrals Ia and

derivatives Da for aw0, which will be also codomain.

In this regard, we will review the maximal set Wall5L2
2:p of

complex functions of a real variableQ~Q tð Þ, so that following is

valid.

Vb,cw0ð Þ Q[Wall[DbQ,I cQ[Wall

� �
ð23Þ

It follows that the set of Wall will define Weyl fractional

derivatives and fractional integrals, so that the Wall is domain and

codomain. Previously mentioned nonempty set Wall (e.g., function

ej:t belongs to such a set) is by construction closed under the

operation of Weyl fractional integrals. The idea for the basic

theorem of generalized Weyl fractionation derivatives and

integrals is contained in the following theorem.

Theorem 1. For all a,bw0

(i) IaIbw~Iazbw, w[Wall :

(ii) DaIaw~IaDaw~w{wf 0ð Þ, w[Wall :

Proof: We should bear in mind the sum member wf 0ð Þ must be

excluded. The proof is analogous to that given in (Butzer and

Westphal, [24], Proposition 4.1).

1.3. Generalization of Weyl fractional integral and

derivative. Previous mathematical description is the basis for

generalization of Weyl fractional integralIa;b, for aw0 and b§0:
Motivation for introducing generalization of Weyl fractional

integral Ia;b is to use useful modification of Riemann –Liouville

fractional integral Kn,c described by Nigmatullin [15]. Our basic

idea for a new type of generalization is to use fractional integral

operator acting on a periodic function so that the result of the

operator action is a periodic function. For that purpose the set of

Equations (14), (15) and (16) will be written in more general form

in account memberexp {n: log sð Þ{c: log sð Þð Þ2

 �

from Nigma-

tulliǹs Equation [15].

P?
l~{?

gf a;b lð Þ:Qf lð Þ:yl tð Þ,aw0, b§0 ð24Þ

and

gf a;b lð Þ : ~
j:lð Þ{ azb: log j:lð Þð Þ

, l=0

0, l~0

(
ð25Þ

respectively,

ga;b tð Þ : ~
P
l=0

j:lð Þ{ azb: log j:lð Þð Þ:yl tð Þ~
P?

l~{?
gf a;b lð Þ:yl tð Þ ð26Þ

Lemma 1. ga;b tð Þ[L1
2:p for all aw0,b§0:

Proof For b~0

ga;b~0 tð Þ~2:
P
lw0

cos l:t{a:p=2ð Þ
la ð27Þ

which is a convergent series in L1
2:p, if bw0 then

ga;b tð Þ~2:eb:p
2

4
P
lw0

cos l:t{a:p=2{b:p: log lð Þð Þ
lazb: log lð Þ ð28Þ

This series is also convergent with respect to the previous, because

there is a functional dependence of the exponent denominator

fraction by the member of the sum.

Theorem 2. Generalization of Weyl fractional integral Ia;b

Ia;bQ
� �

tð Þ : ~ ga;b � Q
� �

tð Þ~ 1
2:p
:
Ð2:p
0

ga;b t{t0ð Þ:Q t0ð Þ:dt0 ð29Þ

Fractional Calculus Model of Bioimpedance
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represents a linear and bounded, actually continuous operator in

L
p
2:p for all p[ 1,?½ Þ:
Proof: The operator Ia;b is bounded because the following is

valid.

Ia;bQ
�� ��

L
p
2:p

ƒ ga;b

�� ��
L1

2:p

: Qk k
L

p
2:p

VQ[L
p
2:p ð30Þ

Norm of the first element to the right is finite because of the

previous lemma.

Therefore, if Q tð Þ[L
p
2:p then Ia;bQ[L

p
2:p: As with the Weyl

fractional derivatives, there is a problem of completeness of the

domain operator if other real value for a (non zero) and b are used.

In general case instead of Ia;b we use Ka;b: Therefore, we define

the operator Ka;b acting on the functions Q~Q tð Þ[L2
2:p which are

written

Q tð Þ : ~
X?

l~{?

Qf lð Þ:yl tð Þ,yl tð Þ~ej:l:t,

Qf lð Þ~ 1

2:p
:
ð2:p
0

Q tð Þ:yl tð Þ:dt,l~+1,+2,+3,:::,Qf 0ð Þ~0,

ð31Þ

In the case that the operator Ka;bQ
� �

tð Þ makes sense, analogous

to (1) we define:

Ka;bQ
� �

tð Þ : ~
P?

l~{?
j:lð Þ azb: log j:lð Þð ÞQf lð Þ:yl tð Þ; a=0,b[R ð32Þ

Supplement to the previous definition is K0;0~Id:
The idea presented in the previous section on non-trivial and

non-empty common domain and codomain for all operators that

are defined by formula (32) will be used here. By analogy we define

domain of the operator Ka;b:

Dom Ka;b
� �

: ~ Q[L2
2:pDK

a;bQ[L2
2:p,a=0 ^ b[R

� 	
~

Q[L2
2:pD

X?
l~{?

D j:lð Þ2 azb: log j:lð Þð ÞD:DQ lð ÞD2v?

( )
ð33Þ

This domain is neither equal to L
p
2:p nor to L2

2:p: As indicated

previously here we will define maximal set W 0
all5L2

2:p of complex

functions of a real variable Q~Q tð Þ, with set properties.

Va=0ð Þ Vb[Rð Þ w[W ’all[Ka;bw[W ’all

� �
ð34Þ

Described non-empty set W 0
all , which is domain and codomain

for all described operators Ka;b, is by construction closed in

relation to the generalization of Weyl fractional derivative or

integral.

Theorem 3. The basic properties of operators in a given

domain (w[W 0
all)

1: Ka;b~0~Da, K{a;b~0~Ia, aw0,

2: Ka1;b1Ka2 ;b2~Ka1za2;b1zb2 , a1,a2[R\ 0f g, a1
:a2ð Þw0,

3: K{a;0Ka;bw~K0;b w{wf 0ð Þ
� �

, a=0, b=0

4: K{a;{bKa;bw~Ka;bK{a;{bw~w{wf 0ð Þ, a[R\ 0f g,b[R

ð35Þ

Proof: For 1–3 is obvious and for 4 it can be considered if

w[W 0
all5L2

2:p then this function can be written in a unique way

w~
P

l[Z w,ylð ÞL2
2
:
p

:yl tð Þ:
Because x~x tð Þ~Ka;bK{a;{bw tð Þ[W 0

all for a=0 it follows

x~
P

l[Z w,ylð Þ
L2

2:p

:yl tð Þ

then for all l[Z

Ka;bK{a;{bQ,yl

� �
L2

2:p
~ Q, {K{a;{b

� �
{Ka;b
� �

yl

� �
L2

2:p

~
Q,ylð Þ

L2
2:p

l=0

0l~0

(

therefore

Ka;bK{a;{bw~
X

l[Z
w,ylð Þ

L2
2:p

:yl tð Þ{ w,y0ð Þ
L2

2:p

:y0 tð Þ

~w{wf 0ð Þ

In a similar way proofs are provided for the other three

equations.

Also, instead 0,2:p½ � it is possible to use a symmetrical segment

{p,p½ �: In the case the periodic function

Q~Q tð ÞT~2:p=v,vw0, appropriate formulas will be done by

the transformation 2:p?2:p=v: Then instead yl tð Þ~ exp j:l:tð Þ
we write ylv tð Þ~ exp j:l:v:tð Þ, etc. In this case, if operator Ka;b

acts on y1v tð Þ~ exp j:v:tð Þ, then following holds

Ka;b exp j:v:tð Þð Þ~ j:vð Þ azb: log j:vð Þð Þ: exp j:v:tð Þ ð36ÞFigure 3. Schema of Circuit for Generalized Cole (GC1) Element
with GCPE.
doi:10.1371/journal.pone.0059483.g003
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The previous operator is analogous to the following one

D azb: log Dð Þð Þ ð37Þ

in the case when the Weyl operator derivatives is true

Da ~j:vð Þj:vð Þaa[R\ 0f g:
If one introduces a non-negative relaxation time parameter

ta�;b, the modified operator ta�;b
:K

� �a�;b
a�w0 for operator of

fractional type derivative) acts as follows

ta�;b:K
� �a�;b

exp j:v:tzhð Þð Þ~ j:v:ta�;b
� � a�zb: log j:v:ta�;b


 �
 �
:

exp j:v:tzhð Þ,h[R

ð38Þ

If a~a� and b~0 then operator ta�;b
:K

� �a� ;b
is fractional

derivative of Weyl type

ta
:Dð Þa exp j:v:tzhð Þð Þ~ j:v:tað Þa: exp j:v:tzhð Þ,ta§0 ð39Þ

Using appropriate mathematical operations and weakened

conditions described in Theorem 3 the Equation (38) can be

reduced to form (36) due to specific functional dependence.

Subsequently we will use operators ta
:Dð Þa and

ta�;b
:K

� �a�;b
, a,a�w0:

2. Generalized Cole element and Constant Phase Element
(CPE)

Multi Frequency Bioelectrical Impedance Analysis (MF-BIA) is

a noninvasive technique for studying biological systems. The

complex impedance as a function of frequency of the external

alternating voltage source (v is frequency, v[ 0,?ð Þ) is one of the

linear passive characteristic of materials in the frequency domain.

In alternating current circuits the Constant Phase Element of

capacitance type such as CPEa ([7], [8], [25]) is defined by the

impedance equation

ZCPEa vð Þ~ 1
Ca

: j:vð Þa ,Caw0,a[ 0,1ð � ð40Þ

ZCPEa l:vð Þ~ l{a

Ca
: j:vð Þa ~l{a:ZCPEa vð Þ

Ca is capacitance of order a: For fractional index

a~0, ZCPEa
vð Þ~R (resistance).

Mathematical model of electrical properties of cell membranes

based on impedance measurements at multi frequency alternative

current was firstly formulated by Cole in 1940 [20]. Magin [7], [8]

derived and generalized Cole equation using fractional calculus.

His model comprises of three hypothetical circuit elements: a low-

frequency resistorR0, a high-frequency resistorR? and CPEa,
arranged as shown in Figure 1. This circuit can be also visualized

as two serial connected elements, where the first one is R? and

second one is ( R0{R?ð ÞDDCPEa): Here we name the second

element as reduced Cole type element.

The complex impedance described by Cole model is given by

the following equation [20].

Za vð Þ~R?z
R0{R?

1z j:v:tað Þa ð41Þ

Here is the characteristic relaxation time according to Magin

[7],[8], positive constant.

ta~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca
: R0{R?ð Þa

p
ð42Þ

All of the four following parameters R0,R?,Ca,a are material

constants independent of frequency.

Here we derive Cole equation (41) for the circuit shown in

Figure 1. Applied alternating voltage to the system is

V tð Þ~V0
:�e�x�p j:v:tzhð Þ (V0 is the voltage amplitude, h is the

phase angle between the voltage and the current), current passing

through the system is i tð Þ~i0:exp j:v:tð Þ, and strength of current

amplitude is i0. Impedance of the system is given by the equation

V tð Þ~Za vð Þ:i tð Þ ð43Þ

Where the relations describing the system Da (the Weyl fractional

derivative,Da ~j:vð Þj:vð Þa) is

1z tað Þa:Dað ÞV tð Þ~ R?
: tað Þa:DazR0ð Þi tð Þ ð44Þ

In terms of fractional derivatives usage, our Eq. (2.44) has some

analogy to the modified Zener model of a viscoelastic body [26]

and Bohannan equation [27]. However, Bohannan applied

fractional derivative according to Riemann-Liouville, whereas

we have done according to Weyl. The second difference is that

Bohannan [27] is deriving Cole-Cole equation [21], which is

describing frequency dispersion of complex dielectric constant,

and we have derived Cole equation [17,20], which is describing

frequency dispersion of impedance. If one takes into account

geometrical properties of the physical system, such as surface of

electrode and distance between them, complex dielectric constant

becomes complex capacitance (C). Note that in the theory of

alternative current the admittance Y is described by for-

Figure 4. Schema of Circuit for Serially Linked Reduced Generalized Cole Elements.
doi:10.1371/journal.pone.0059483.g004
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mulaY~j:v:C: The Eq. (2.44) describes frequency dispersion of

complex resistivity in the case when geometry is not taken into

account.

In order to generalize our previous Eq. (2.44) we have used

similar principal of mathematical approach as reported by

Nigmatullin [15]. They described that for a strongly correlated

fractal medium a generalization of the Riemann–Liouville

fractional integral is obtained. In this paper we have modified

generalization of Riemann-Liouville fractional integral and

derivative for the case of periodic functions and obtained a new

type of generalization of Weyl fractional integral and derivative.

Formally in Equation (44) replacement is done by

tað Þa: Dað Þ? ta�;b:K
� �a�;b ð45Þ

By introducing new parameters for resistance R�0 and R�? in

Equation (44) we derive next equation

1z ta�;b:K
� �a�;b


 �
V tð Þ~ R�?

: ta�;b:K
� �a� ;b

zR�0


 �
i tð Þ ð46Þ

Then in (43) we perform following change Za vð Þ?Za�;b vð Þ to

obtain

Za�;b vð Þ~R�?z
R�

0
{R�?

1z j:v:ta�;b


 �a�zb: log j:v:ta�;b


 � ð47Þ

The Equation (47) describes our new generalized Cole model

based on fractional calculus (our primary model). Five new

physical and phenomenological parametersa�,b,ta�;b,R�0,R�? were

introduced. In our work we have introduced new b parameter for

modeling electrical impedance of complex systems. This param-

eter has formal mathematical analogy to c parameter presented by

Nigmatullin [15]. Parameter c describes relaxation properties of

dielectric phenomena of the medium and is derived as the

generalized equation of the well-known Kohlrausch Williams

Watts relaxation law. Constants R�0 and R�? are the corresponding

resistances, therefore, we can write.

lim
b?0

R�0~R0, lim
b?0

R�?~R? ð48Þ

It should be mentioned that for small b, a�&a, R�0&R0 and

R�?&R?: The R�0 and R�? constants have different meaning to

those described by the Cole model (Equation (41)), because the

leading members of Equation (47) b: log j:v:ta�;b

� �
and Za�;b vð Þ

have different asymptotic behavior when v?0 and v??:
Using our model we have tested the effects of b on Za�;b while

keeping other parameters constant. The example of Cole plot

based on equation (47) showed that for values of b=0 is not

circular arc as in Cole model, Figure 2.

If we assume that the change of conducting properties of

electrical circuits is only in the CPE, then CPE can be replaced and

we can write.

ZCPEa vð Þ~ 1

Ca
: j:vð Þa ?ZGCPEa�;b vð Þ

~
1

Ca�;b vð Þ: j:vð Þ
a�zb: log j:v:ta�;b


 � ð49Þ

Cole model uses linear scaling as seen from the above equation.

For generalized CPE (GCPE) we are scaling frequency for

dispersion of impedance in non-linear manner. This can be seen

from equation (49) i.e. scaling with function not only with one

constant a value. Therefore, we have non linearized and non-

constant scaling with two parameters a � and b: This is important

advantages for modeling and describing natural complex systems.

It should be noted that in Cole model linear scaling is valid and

this is only one special case of our generalized model where b~0
and non-generalized CPE.

The function Ca�;b vð Þ is such a function of frequency where the

non-negative constant ta�;b can be described by the following self-

consistent equation.

ta�;b~ R�0{R�?
� �

:Ca�;b vð Þ
� � 1

a�zb: log j:v:ta� ;b


 �
ð50Þ

Ca�;b vð Þ~
t

a�zb: log j:v:ta�;b


 �
a�;b

R0{R?

The Equation (49) introduces the elementZGCPEa�;b vð Þ, and

provides generalization of CPE (GCPE). The electrical circuit

comprising of the element R�? in serial connection with the

elements R�0{R�? and ZGCPEa�;b vð Þ, which are themselves in a

special parallel connection, is described by the Equation (47) and

schematically presented in Figure 3. This means that

ZGCPEa� ;b vð Þ is a function depending on the elementR�0{R�?:

Part of the electric circuit shown in Fig. 3, which includes parallel

connection of GCPE element with R�0{R�? element, we name a

Figure 5. Schema of Circuit for all Permutation of Serially Linked Reduced Generalized Cole Elements and Reduced Cole elements.
doi:10.1371/journal.pone.0059483.g005
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reduced generalized Cole element. It should be noted that the

following functional dependence of impedance

Z vð Þ~K : j:vð Þa1zj:a2 ,a1,a2[R,a2=0,Kw0, described by Nigma-

tulin and Mehaute [28], is only the special case of the element

ZGCPEa� ;b vð Þ, whereas our equation describes the generalized

case. Nigmatuliǹs equation [15] naturally explains temporal

irreversibility phenomena which can appear in linear systems

with remnant memory, while our model defines more complex

behavior compared to the mentioned power law scenario. For the

operator ta�;b
:K

� �a�;b
, described in the Equation (46), limitation

values for a� and b do not have to be strict as in the case for

a(a[ 0,1ð �) . Mathematically formulated our model is introducing a

new parameter (b) and four corrected parameters (R0,R?,a,ta):
Using fractional calculus approach we have derived a new class

of models for electrical impedance by generalizing Weyl fractional

derivative operator, Cole model and constant phase element.

These generalizations were described by the novel equation which

presented parameter b which can adopt positive and negative

values. Therefore, for value of parameter b~0 Cole model is a

special case of our generalized model. Our generalized equation

(47), containing non-integer integrals and derivatives either with

real or complex power-law exponents, naturally explains temporal

irreversibility phenomena. According to Nigmatullin and Trujillo

these partial irreversibility phenomena can be declared as

‘‘remnant’’ memory of the complex system [15]. It would mean

that in complex systems containing many entities only one part of

their microscopic states will be conserved on the following level of

intermediate scales and expressed in the form of the fractional

integral.

We have derived a new primary model (equation 47) using

fractional calculus approach for generalization of CPE and Cole

equation together with introduction of a new parameter b which

according to fractional calculus and Nigmatullin and Trujillo [15]

we relate and interpret as remnant memory of the system. For

values of parameter b=0 our model defines the system with

remnant memory and is represented in an impedance plot not as a

circle arc but as a ellipsoid like arc type. For values of b~0 the

Figure 6. Cole Plot for Experimental Data and LM data Fitting. Top Left: Crosses represent experimental data of measurements using
electrode d = 2 cm for V0 = 1.0 V. Solid line represents LM fit for GGC1 model. Top Right: Crosses represent experimental data of measurements using
electrode d = 2.0 cm for V0 = 1.0 V. Solid line represents LM fit for GGC1 model. Bottom Left: Crosses represent experimental data of measurements
using electrode d = 0.25 cm for V0 = 1.0 V. Solid line represents LM fit for GC2 model. Bottom Right: Crosses represent experimental data of
measurements using electrode d = 2.0 cm for V0 = 1.0 V. Solid line represents LM fit for C1GC1 model.
doi:10.1371/journal.pone.0059483.g006
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model does not take in account eventually existing remnant

memory. According to the equation (47) our model is then

deduced to the special case of Cole model, represented as a circle

arc in an impedance plot, describing the system without taking in

account remnant memory.

Our new parameter b adopting non restricted positive and

negative values is introducing remnant memory. This is a new

parameter different to a which can adopt only values between 0

and 1and is usually interpreted as a distribution of relaxation times

[17,19,29].

Different mathematical approaches for studying electrical

properties of human skin were attempted using impedance models

based on serially connected reduced (R? excluded) Cole elements

(C1) (Yamamoto & Yamamoto [29]). They can be summarized in

the following equation (Barsoukov and Macdonald [30]) for nw0

ZSC vð Þ~R?z R0{R?ð Þ
Xn

i~1

p aið Þ
1z j:v:tai

� �ai
,

Xn

i~1

p aið Þ~1,p aið Þ§0,ai[ 0,1ð �
ð51Þ

Here we develop a second model based on serial connection of

reduced generalized Cole elements (Equation (52) and electric

circuit, Figure 4). This new type of a serial model is based on the

generalized bioimpedance Equation (47).

Table 1. LM Fitted Parameters for Impedance Models C2, GC2, C1GC1.

1.0 V, d = 0.25 cm 1.0 V, d = 2.0 cm

Parameters C2 Parameters GC2 Parameters C2 Parameters C1GC1

R0 (MV) 1.120 R*
0 (MV) 1.119 R0 (MV) 1.353 R’0 (MV) 1.354

R‘ (kV) 1.911 R*
‘ (kV) 0.680 R‘ (kV) 1.718 R’‘ (kV) 2.963

a1 0.743 a*
1 0.819 a1 0.784 a**

1 0.532

t1 (s) 0.266 t*1 (s) 0.240 t1 (s) 0.110 t**1 (s) 1.900

p(a1) 0.267 p(a*
1, b1) 0.422 p(a1) 0.200 p(a**

1, b’1) 1.596

a2 0.851 a*2 0.805 a2 0.831 a2 0.961

t2 (s) 1.414 t*2 (s) 2.883 t2 (s) 0.687 t2 (s) 2.704

p(a2) 0.733 p(a*2, b2) 0.655 p(a2) 0.800 p(a2) 0.356

b1 0.0 b1 20.015 b1 0.0 b’1 0.024

b2 0.0 b2 0.074 b2 0.0 b’2 0.0

Mean square errors (N107)

4.19 3.90 3.64 2.76

doi:10.1371/journal.pone.0059483.t001

Table 2. LM Fitted Parameters for Impedance Models GC2, C1GC1, GGC1.

1.0 V, d = 0.25 cm 1.0 V, d = 2.0 cm

Parameters GC2 Parameters GGC1 Parameters C1GC1 Parameters GGC1

R*
0 (MV) 1.119 R**

0 (MV) 0.642 R’0 (MV) 1.354 R**
0 (MV) 1.461

R*
‘ (kV) 0.680 R**

‘ (kV) 1.060 R’‘ (kV) 2.963 R**
‘ (kV) 2.530

a*
1 0.819 a** 0.940 a**

1 0.532 a** 0.707

t*1 (s) 0.240 t* (s) 0.281 t**1 (s) 1.900 t* (s) 0.604

p(a*
1, b1) 0.422 b* 20.043233 p(a**

1, b’1) 1.596 b* 0.010132

a*2 0.805 c 20.131216 a2 0.961 c 20.004308

t*2 (s) 2.883 d 20.054793 t2 (s) 2.704 d 20.007025

p(a*2, b2) 0.655 e 20.009557 p(a2) 0.356 e 20.002536

b1 20.015 f 20.000652 b’1 0.024 f 20.000206

b2 0.074

Mean square errors (N107)

3.90 3.90 2.76 0.94

doi:10.1371/journal.pone.0059483.t002
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ZSGC vð Þ~R�?z R�0{R�?
� �

:

Xn

i~1

p a�i ; bi

� �
1z j:v:ta�

i
;bi


 �a�
i
zbi

: log j:v:ta�
i

;bi


 �,

p a�i ; bi

� �
§0, lim

bi?0
p a�i ; bi

� �
~p aið Þ

ð52Þ

The Equation (52) is direct generalization of Equation (51).

The Equation (53) denotes our combinatorial bioimpedance

model using all permutations of serial connections between

reduced Cole elements (Equation (51)) and our reduced general-

ized Cole elements described in Equations (52).

ZSGCC vð Þ~R0?z R00{R0?
� �

:

Xn2

i~1

p a0i
� �

1z j:v:t0
a0
i

� �a0
i

z
Xn1

l~1

p a��l ; b0l
� �

1z j:v:t0
a��
l

;b0
l

� �a��
l

zb0
l
: log j:v:t

a��
l

;b0
l

� �
0
BBBBBB@

1
CCCCCCA

,

p a0i
� �

,p a��l ; b0l
� �

§0,a0i ,a
��
l w0

ð53Þ

A particular permutation case for our third model is using serial

connection of reduced Cole elements and reduced generalized

Cole element and is based on Equation (53) and electric circuit

shown in Figure 5.

For the purpose to set Equation (47) in more general form we

have extended previously introduced members

exp {n: log sð Þ{c: log sð Þð Þ2

 �

from Nigmatullin’s Equation [15]

with three more members exp {q: log sð Þð Þ3{:::

 �

exp {n: log sð Þ{c: log sð Þð Þ2

 �

?

exp {n: log sð Þ{c: log sð Þð Þ2{q: log sð Þð Þ3{:::

 � ð54Þ

Formally from the equation (47) it follows

Z vð Þ~R��?z
R��

0
{R��?

1z jvtð Þa��zb�: log jvtð Þzc: log2 jvtð Þz:::
ð55Þ

The equation (55) represents further generalization of our

generalized Cole (GGC1) including additional parameters. We

have introduced partial sum of Maclaurin series determined by

parameters (b1,c,d . . . ): Cole equation is a special case of our

generalized class of models forb1~c~d~ . . . ~0:
The purpose of this further generalization was to cover the

broader frequency dispersion range using one element instead of

using serially connected elements with larger number of param-

eters and inferior fitting.

Materials and Methods

1. Bioimpedance measurements
Bioimpedance skin measurements were performed at University

of Belgrade on upper arm of human volunteers with Solartron

1255 Frequency Response Analyzer in combination with Solar-

tron 1286 Pstat/Gstat. Experiments were done in shielded

Faraday caged room. The linearity of all measurements with both

electrode sizes was confirmed by testing the system with Solartron

Schlumberger 12861 test module. The electrodes were made of

stainless steel. We have used electrodes with diameter of 0.25 cm

and 2.0 cm. The distance between outer edges of two electrodes

was 5 cm. The electrode was completely covered with minimal

amount of highly conductive cream (3.3 S/m) Grass EC33

obtained from Grass technologies. This cream is specifically

designed for skin resistive and conductive measurements. Cream

covered electrodes were gently placed on skin in order to avoid

putting excess pressure to skin. Total required time for the

frequency sweep measurement was about 10 minutes at 22uC and

50% relative humidity, thus, minimalizing artifacts production

during measurements due to long cream exposure or cream

penetration to skin, as well as sweeting. Error of measurements

was ,0.1%. Twenty series of measurements were taken at each of

the 61 different frequencies ranging between 0.1 Hz and

100.0 KHz. The applied voltage of alternating current was of

1.0 V amplitude. Total required time for the frequency sweep

measurement was about 10 minutes.

1) Bioimpedance skin measurements were performed at Uni-

versity of Belgrade,

2) University of Belgrade Review Board (IRB) approved

specifically use of oral consent for bioimpedance skin

measurements on healthy human volunteers for this study.

Figure 7. Comparison of model quality evaluated by mean
square error. Bioimpedance data fitting with all of our models, either
single elements or their serial combination, by Levenberg-Marquardt
(LM) nonlinear least squares algorithm for electrode size d = 0.25 and
d = 2 cm.
doi:10.1371/journal.pone.0059483.g007
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Please note that bioimpendance skin measurements are

noninvasive and have been commonly used in public fitness

centers for measurements of body fat content without medical

or ethic commission authorizations and are thus generally

deemed unnecessary for further ethics commission approval.

3) Each volunteers provided oral consent for bioimpendance

skin measurements analyzed and reported in our study.

2. Experimental data fitting
Levenberg-Marquardt (LM) nonlinear least squares algorithm

L2 (L2-norm) [31], [32], with Levmar in Octave programming

environment was used for fitting experimental data with different

models [33]. Without complications this fitting calculation could

use maximally ten parameters. This restriction encourages the

implementation of LAPACK libraries in C/C++.

Discussion

1. Experimental measurements of bioimpedance on
human skin

Bioimpedance measurements on human skin were performed

under the conditions described in the experimental methods

section. Obtained data are presented in Fig. 6 as Cole-Cole plot.

In the left part of the Figure 6. we show electrical measurements

results acquired using electrodes with 0.25 cm diameter and in the

right part of Figure 6. results acquired using electrodes with 2.0 cm

diameter. For both electrode sizes we have obtained arc type

behavior when Z imaginary (Im (Z)) was plotted versus Z real (Re

(Z)). There is a difference in the arc shape for two different

electrode sizes. The maximal measured value of Re (Z) is greater

for larger electrode surface then the maximal value of Re (Z)

obtained for the smaller electrode surface (Fig. 6). The minimal

measured value of Im (Z) is smaller for the larger electrode surface

then the minimal value of Im (Z) obtained for the smaller electrode

surface (Fig. 6). Therefore, one can observe that bioimpedance

depends from the electrode surface area.

2. Experimental data fitting with derived mathematical
models

We have used Levenberg-Marquardt (LM) nonlinear least

squares algorithm for experimental data fitting with following

models: (1) comprised of one Cole element (Equation (41)); (2)

based on two serially linked reduced Cole elements (C2) (Equation

(51) for n = 2); (3) based on three serially linked reduced Cole

elements (C3) (Equation (51) for n = 3); (4) comprised of one

generalized Cole element (GC1) (Equation (47)); (5) based on two

serially linked reduced generalized Cole elements (GC2) (Equation

(52) for n = 2); (6) based on one reduced Cole element serially

linked to one reduced generalized Cole element (GC1C1)

(Equation (53), n1 = 1 and n2 = 1, first permutation); (7) based on

one reduced generalized Cole element serially linked to one

reduced Cole element (C1GC1) (Equation (53), n1 = 1 and n2 = 1,

second permutation). Although all models were analyzed using

LM data fitting, we present in Table 1 and 2 only results obtained

by three best performing models for human skin as the test system.

These models are designated according to the abbreviations of

corresponding of electric circuit elements. They are: C2, GC2

(schema shown in Fig. 4 for n = 2), and C1GC1 (schema shown in

Fig. 5 for n1 = 1 and n2 = 1). Future experimental electrical

biompedance measurements will demonstrate whether the pre-

sented seven model types could provide specific description for

different organs, tissues and materials.

We have started with LM fitting of experimental data using

Cole model, GC1, C2 and C3 models in order to obtain initial

values for parameter: R0,R?,a1,t1,p(a1),a2,t2 and p(a2), Table 1

and 2. The initial value of b for GC1 was 0.01. Among GC1, C2

and C3 models the C2 model provided the best fitting results

(Table 1 and 2). In the second step, we have used the initial values

of parameters obtained with C2 model in order to proceed with

LM fitting of experimental data using GC2 and C1GC1 and

GC1C1 models. The initial values for the parameters b1 and b2

were 0.01. The best fitting results were obtained for GGC1

followed by GC2 and C1GC1 models using the parameter values

given in Table 1 and 2 and Figure 7. Bioimpedance data

measurements, obtained with two different electrode sizes

(0.25 cm and 2 cm in diameter), and fitting data, using GC2

and C1GC1 models, are shown in Fig. 6 and 7. The GC2 model

provided the best fitting results for measurements with large

electrodes, whereas GC2 and C1GC1 model provided the best fit

for measurements with small electrodes, Figure 6. and 7. We have

calculated mean squared errors for Cole model and our

generalized models derived by fractional calculus. The results

showed that our GGC1 model have 85% better experimental

impedance data fitting obtained with electrodes of 2 cm diameter

and 40% for 0.25 cm electrode diameter Figure 6 and 7. Model

types are sorted in the qualitatively same ascending way according

to increasing mean square error for both electrode size (d = 0.25

and d = 2 cm) (Fig. 7). These results showed that quality of model

is invariant of electrode diameter.

Additional parameters introduced in GGC1 are correction of

parameter b improving modeling of remnant memory. Using this

particular model type we have further improved bioimpedance

data fitting by Levenberg-Marquardt (LM) nonlinear least squares

algorithm because this model gave best mean square error values

as shown in Figure 7 and Table 1 and 2. In summary our

fractional calculus approach adds to better understanding and

description of the complex system and their electrical behavior.

Therefore, we have presented quantitative evidence about

improved precision of our models for description of human skin

bioimpedance.

Three serially linked reduced Cole elements had two order of

magnitudes higher mean square error and thus is the most inferior

quality model.

Taking also in account the Equation (50), it can be concluded

that t is a function ofb: Therefore, it seems that the parameter b
in our impedance model is related to relaxation phenomena of

electrical behavior of complex system such as human skin. Since

fractional calculus is a mathematical approach dealing with

derivatives and integrals of arbitrary and complex orders it adds

a new dimension to understand and describe basic nature and

behavior of complex processes, such as electrical properties of

biological tissues, in an improved way. More precisely it contains

in time information about the function at earlier points, thus it

possesses a memory effect, and includes non-local spatial effects.

Without the use of fractional calculus approach it would not be

possible to make our new generalized type of superior and more

precise class of models where Cole is a special case.

We have introduced fraction calculus generalization approach

in order to be able to cope with complex multi-layered systems

with unknown structures which also include simpler structures

such as necessary gels and electrodes as additional element

influencing and complicating interpretation and analyses of the

experimental data.

Our GGC1 (one element) and GC2 (two elements) models

provide significantly better fitting of the experimental data then

Cole model which is actually, as previously explained, a special

Fractional Calculus Model of Bioimpedance
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case for b �~0 and b~0 respectively. We have used human skin

as one of the examples for complex system and our model is not

limited only to such biological material, rather it is a generalized

for any complex system including even mixture of biological and

not biological systems such as gels and electrodes.

Our generalized CPE, generalized Cole model and serially

connected reduced generalized Cole elements represent a valuable

basis for further development of mathematical models for bio-

systems and/or any kind of material using the fractional calculus

approaches. We propose that this type of powerful modeling tools

shall be further applied for noninvasive analysis of complexity of

bio-systems and/or any kind of material.
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