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Abstract

We consider the well known Micchelli–Rivlin quadrature formula, of highest algebraic degree of preci-
sion, for the Fourier–Chebyshev coefficients. For analytic functions the remainder term of this quadrature
formula can be represented as a contour integral with a complex kernel. We study the kernel, on elliptic con-
tours with foci at the points ∓1 and a sum of semi-axes ρ > 1, for the quoted quadrature formula. Starting
from the explicit expression of the kernel, we determine the locations on the ellipses where maximum mod-
ulus of the kernel is attained. So we derive effective L∞-error bounds for this quadrature formula. Complex-
variable methods are used to obtain expansions of the error in the Micchelli–Rivlin quadrature formula over
the interval [−1, 1]. Finally, effective L1-error bounds are also derived for this quadrature formula.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Micchelli and Rivlin [11] introduced a quadrature formula of highest algebraic degree of pre-
cision for the Fourier–Chebyshev coefficients ak( f ), which is based on the divided differences of

✩ This work was supported in part by the Serbian Ministry of Education, Science and Technological Development
(Research Project: “Methods of numerical and nonlinear analysis with applications” (No. #174002)).

∗ Corresponding author.
E-mail addresses: apejcev@mas.bg.ac.rs (A.V. Pejčev), mspalevic@mas.bg.ac.rs (M.M. Spalević).
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f ′ at the zeros of the Chebyshev polynomial Tn . Our aim in this paper is to analyze the remainder
term and to obtain error bounds for this quadrature formula, when f is an analytic function.

Let {Pk}
∞

k=0 be a system of orthonormal polynomials on [a, b] with respect to a weight
function ω, integrable, non-negative function on [a, b] that vanishes only at isolated points. The
approximation of f by partial sums Sn( f ) of its series expansions

f (x) =

∞
k=0

ak( f )Pk(x)

with respect to a given system of orthonormal polynomials {Pk}
∞

k=0 is a classical way of recovery
of functions. The numerical calculation of the coefficients ak( f ), present in Sn( f ), is a main task
in such a procedure. The computation of ak( f ),

ak( f ) =

 b

a
Pk(t) f (t)ω(t) dt,

requires the use of a quadrature formula. An application of the Gauss quadrature formula based
on n values of the integrand Pk(t) f (t) (with k < 2n − 1) will give the exact result for all poly-
nomials of degree 2n − k − 1. Is it possible to construct a formula based on n evaluations of f or
its derivatives which gives the exact value of the coefficients ak( f ) for polynomials f of higher
degree? What is the highest degree of precision that can be attained by a formula based on
n evaluations? Studying this question for the coefficients ak( f ) of f with respect to the sys-
tem of Chebyshev polynomials of the first kind {Tk}

∞

k=0, orthogonal on [−1, 1] with weight
ω(t) = 1/

√
1 − t2,

Tk(t) = cos(k arccos t) =
1

2k−1 (t − ξ1) · · · (t − ξk), t ∈ (−1, 1).

Micchelli and Rivlin discovered in [11] the remarkable fact that the quadrature 1

−1

1
√

1 − t2
Tn(t) f (t) dt ≈

π

n2n f ′
[ξ1, . . . , ξn] (1.1)

is exact for all algebraic polynomials of degree ≤ 3n − 1. Here, g[x1, . . . , xm] denotes the di-
vided difference of g at the points x1, . . . , xm , and thus formula (1.1) uses n function values of
the derivative f ′, that is f ′(ξ1), . . . , f ′(ξn). It is clear that there is no formula of the form 1

−1

1
√

1 − t2
Tn(t) f (t) dt ≈

n
k=1

ak f (xk) +

n
k=1

bk f ′(xk) (1.2)

which is exact for all polynomials of degree 3n. The polynomial f (t) = Tn(t)(t − x1)
2
· · · (t −

xn)2 is a standard counterexample. Thus the Micchelli–Rivlin formula is of highest degree of
precision among all formulas of the type (1.2). The question of uniqueness of this quadrature
formula is reduced to the following problem which is also of independent interest: Prove that if
Q is a polynomial of degree n with n zeros in [−1, 1] and such that

Q(η j )
 = 1 at the extremal

points η j = cos( jπ/n), j = 0, 1, . . . , n, of the Chebyshev polynomial Tn , then Q ≡ ±Tn .
This property was proved by DeVore [3] and thus the uniqueness of Micchelli–Rivlin quadrature
formula was settled (see [12]). For more details on this subject see also [1,2,14].

The paper is organized as follows. In Section 2 the remainder term of the Micchelli–Rivlin
quadrature formula (1.1) for analytic functions is obtained. In Section 3, we shall derive effec-
tive L∞-error bounds, i.e. (2.5) below, for the quadrature (1.1). In Section 4, complex-variable
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methods are used to obtain expansions of the error in the Micchelli–Rivlin quadrature formula
over the interval [−1, 1]. Finally, effective L1-error bounds, i.e. (2.8) below, for the quadrature
(1.1) are also derived in Section 4. The results obtained here are an analogue of some results of
Gautschi et al. [6] (see also [15,10]) and Hunter [9] concerning standard Gaussian quadratures.

2. The remainder term of Micchelli–Rivlin quadrature formulas for analytic functions

Let Γ be a simple closed curve in the complex plane surrounding the interval [−1, 1] and D
its interior. Suppose that f is an analytic function in D and continuous on D. If we know values
of the function f and of the first derivative f ′ of f in the nodes x1, x2, . . . , xn of the interval
[−1, 1], then the residue of Hermite interpolation of the function f can be written in the form
(see Gončarov [7])

rn( f ; t) = f (t) −

n
ν=1

1
i=0

ℓi,ν(t) f (i)(xν) =
1

2π i


Γ

f (z)Ωn(t)

(z − t)Ωn(z)
dz, (2.1)

where ℓi,ν are the fundamental functions of Hermite interpolation and Ωn(z) =
n

ν=1(z − xν)
2.

If we choose xν to be the zeros of the Chebyshev polynomial of the first kind, i.e., xν = ξν ,
by multiplying (2.1) with ω(t)Tn(t), where ω(t) = 1/

√
1 − t2, and integrating in t over (−1, 1),

we get a contour integral representation of the remainder term in (1.1), i.e., (1.2),

Rn( f Tn) =

 1

−1
rn( f ; t)Tn(t)ω(t) dt =

 1

−1
f (t)Tn(t)ω(t) dt

−

n
ν=1

1
i=0

Ai,ν(t) f (i)(ξν),

where Ai,ν =
 1
−1 ℓi,ν(t)Tn(t)ω(t)dt .

Finally, we get the representation

Rn( f Tn) =
1

2π i


Γ

Kn(z) f (z)dz, (2.2)

where the kernel is given by

Kn(z) =
ρn(z)

T 2
n (z)

, (2.3)

and

ρn(z) =

 1

−1

ω(t)

z − t
T 3

n (t)dt. (2.4)

Now we can obtain different kinds of estimates. The integral representation (2.2) leads to the
error estimate

|Rn( f Tn)| ≤
ℓ(Γ )

2π


max
z∈Γ

|Kn(z)|


max
z∈Γ

| f (z)|


, (2.5)

where ℓ(Γ ) is the length of the contour Γ .



26 A.V. Pejčev, M.M. Spalević / Journal of Approximation Theory 169 (2013) 23–34

Following [13, p. 119] (for s = 0) we get the Lr -error bound

∥Rn( f Tn)∥ ≤
1

2π
∥Kn∥r∥ f ∥r ′ , 1 ≤ r ≤ +∞,

1
r

+
1
r ′

= 1, (2.6)

where

∥ f ∥r =




Γ
| f (z)|r |dz|

1/r

, 1 ≤ r < +∞,

max
z∈Γ

| f (z)|, r = +∞.

In particular, we are interested in the L∞- and L1-error bounds, i.e.,

|R( f Tn)| ≤
1

2π


max
z∈Γ

|Kn(z)|


Γ

| f (z)| |dz|


, (2.7)

and

|Rn( f Tn)| ≤
1

2π


Γ

|Kn(z)| |dz|


max
z∈Γ

| f (z)|


, (2.8)

respectively.
In this paper we take Γ = Eρ , where the ellipse Eρ is given by

Eρ =


z ∈ C |z =

1
2
(u + u−1), 0 ≤ θ ≤ 2π


, u = ρ eiθ . (2.9)

3. L∞-error bounds based on the analysis of maximum of the modulus of the kernel of
Micchelli–Rivlin quadrature formula

We have from (2.4), by substitution t = cos θ ,

ρn(z) =

 π

0

[cos nθ ]
3

z − cos θ
dθ =

1
4

 π

0

1
z − cos θ

(cos 3nθ + 3 cos nθ) dθ,

where we used the standard transformation for trigonometric function of triple argument. Now
the kernel has the form

Kn(z) =

1
4

 π

0
1

z−cos θ
(cos 3nθ + 3 cos nθ) dθ

[Tn(z)]2 ,

i.e.

Kn(z) =

1
4

π√
z2−1


(z −

√
z2 − 1)3n

+ 3(z −
√

z2 − 1)n


[Tn(z)]2 ,

where we used (see [6], for example) π

0

cos mθ

z − cos θ
dθ =

π
√

z2 − 1
(z −


z2 − 1)m, m ∈ N0.

Substituting z = (u + u−1)/2, u = z +
√

z2 − 1, using

Tn(z) =

un

+ u−n /2, (3.1)



A.V. Pejčev, M.M. Spalević / Journal of Approximation Theory 169 (2013) 23–34 27

we get

Kn(z) =
2π

(u − u−1)un[un + u−n]2


1

u2n
+ 3


.

If we use the usual notation (see [6]) a j = a j (ρ) =
1
2 (ρ j

+ ρ− j ), j ∈ N (ρ > 1), when u =

ρeiθ , we have

|u−2n
+ 3|

2
= ρ−4n

+ 9 + 6ρ−2n cos 2nθ,

|u − u−1
|
2

= 2(a2 − cos 2θ),

|un
+ u−n

|
2

= 2(a2n + cos 2nθ),

and

|Kn(z)|2 =
π2

2ρ2n
·

ρ−4n
+ 9 + 6ρ−2n cos 2nθ

(a2 − cos 2θ)(a2n + cos 2nθ)2 . (3.2)

Now we can formulate the main statement.

Theorem 3.1. For each fixed ρ > 1 there exists n0 = n0(ρ) such that

max
z∈Eρ

|Kn(z)| =

Kn


1
2
(ρ + ρ−1)

 ,
for each n > n0.

Proof. The inequality

ρ−4n
+ 9 + 6ρ−2n cos 2nθ ≤ ρ−4n

+ 9 + 6ρ−2n

is obvious, so it is enough to prove that

1

(a2 − cos 2θ)(a2n + cos 2nθ)2 ≤
1

(a2 − 1)(a2n + 1)2 ,

i.e., (a2 − cos 2θ)(a2n + cos 2nθ)2
≥ (a2 − 1)(a2n + 1)2, for each n ∈ N0 greater than some

n0 = n0(ρ). First, let us transform the difference of the squares on the left and the right side:

(a2n + 1)2
− (a2n + cos 2nθ)2

= (1 − cos 2nθ)(2a2n + 1 + cos 2nθ)

= 2 sin2 nθ · (2(a2n + 1) − 2 sin2 nθ) = 2 sin2 nθ · ∆,

where ∆ = 2(a2n + 1) − 2 sin2 nθ .
The inequality we need now can be written in the following way

(a2 − 1 + 2 sin2 θ)((a2n + 1)2
− 2 sin2 nθ · ∆) ≥ (a2 − 1)(a2n + 1)2,

which reduces to 2 sin2 θ(a2n + 1)2
− 2 sin2 nθ(a2 − 1 + 2 sin2 θ)∆ ≥ 0, i.e.

(a2n + 1)2
−

sin2 nθ

sin2 θ
(a2 − 1 + 2 sin2 θ)∆ ≥ 0.

Since

∆ ≥ 2(a2n + 1) − 2 sin2 nθ ≥ 2(a2n + 1) − 2 = 2a2n > 0,
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Table 3.1
The smallest possible value of n0 for which both roots of g(y) become greater than or equal to 1.

ρ 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.15 1.2 1.25 1.3 1.4

n0 160 81 54 41 33 28 24 21 19 17 12 9 8 7 5

using the well-known inequality |sin nθ/ sin θ | ≤ n, we get

(a2n + 1)2
−

sin2 nθ

sin2 θ
(a2 − 1 + 2 sin2 θ)∆

= (a2n + 1)2
−

sin2 nθ

sin2 θ
(a2 − 1)∆ − 2 sin2 nθ · ∆

≥ (a2n + 1)2
− n2(a2 − 1)∆ − 2 sin2 nθ · ∆

= (a2n + 1)2
− (2(a2n + 1) − 2 sin2 nθ)(n2(a2 − 1) + 2 sin2 nθ)

= (a2n + 1)2
− 2((a2n + 1) − y)(n2(a2 − 1) + 2y),

where y = sin2 nθ(∈ [0, 1]). Hence all we need to show is positivity of the quadratic function

g(y) = (a2n + 1)2
− 2((a2n + 1) − y)(n2(a2 − 1) + 2y) = 4y2

+ By + C

on the interval [0, 1], where B = 2n2(a2 − 1) − 4(a2n + 1) and C = (a2n + 1)2
− 2n2(a2n +

1)(a2 − 1).
The discriminant is

D = B2
− 4AC = 16n2(a2n + 1)(a2 − 1) + 4n4(a2 − 1)2 > 0,

so the roots of g,

y1 =
−B −

√
D

8
, y2 =

−B +
√

D

8
,

are real.
Since the leading coefficient of g(y) is positive, g will be non-negative on [0, 1] if and only if

y1 > 1 or y2 < 0. As we can see, the first condition will be satisfied when n is enough large (ρ
is fixed). Namely, it obtains the form −B − 8 >

√
D, i.e.,

2(a2n + 1) − n2(a2 − 1) − 4 >


4n2(a2n + 1)(a2 − 1) + n4(a2 − 1)2. (3.3)

Let us note that the left-hand side of the last inequality will be positive for enough large n, be-
cause exponential function of n increases much faster than quadratic function of n. So we can
square the both sides of the last inequality. Then the member which increases the fastest in the
left-hand side is ρ4n , and in the right-hand side it is n2ρ2n+2, so the left-hand side will indeed
become larger for n (n > 1) enough large (ρ is fixed). The proof follows. �

From the practical point of view, we are interested in the value n0 = n0(ρ), so that for each
n > n0 the function, obtained from (3.3),

F(n) ≡ Fρ(n) = 2(a2n + 1) − n2(a2 − 1) − 4 −


4n2(a2n + 1)(a2 − 1) + n4(a2 − 1)2

is positive. Some of the obtained values n0 are displayed in Table 3.1.
From the previous proof it is clear that it would be correct if we would fix n(≥2) and let ρ

change. That means that the following statement holds.
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Table 3.2
The smallest possible value of ρ0 for which both roots of g(y) become greater than or equal to 1.

n 2 5 10 20 30 50 100 200

ρ0 2.5154 1.3841 1.1739 1.083 1.055 1.033 1.017 1.008

Theorem 3.2. For each fixed n > 1 there exists ρ0 = ρ0(n) such that

max
z∈Eρ

|Kn(z)| =

Kn


1
2
(ρ + ρ−1)

 ,
for each ρ > ρ0.

Some of the obtained values ρ0 are displayed in Table 3.2.
For n = 1 a little-bit different statement holds.

Theorem 3.3. For each ρ > 1, there holds

max
z∈Eρ

|K1(z)| =

K1


i

2
(ρ + ρ−1)

 .
Proof. We have to prove

ρ−4
+ 9 + 6ρ−2 cos 2θ

(a2 − cos 2θ)(a2n + cos 2θ)2 ≤
ρ−4

+ 9 − 6ρ−2

(a2 + 1)(a2 − 1)2 ,

which after substitution x = cos 2θ , since all expressions are evidently positive, becomes

(a2 − x)(a2 + x)2(ρ−4
+ 9 − 6ρ−2) − (a2 + 1)(a2 − 1)2(ρ−4

+ 9 + 6ρ−2x) ≥ 0,

for x ∈ [−1, 1]. The last expression can be transformed to (x + 1)hρ(x)/(2ρ8), where

hρ(x) = −2ρ4(1 − 3ρ2)2x2
− ρ2(3ρ4

− 4ρ2
+ 1)2x + 3ρ12

+ 9ρ10

− 13ρ8
+ 10ρ6

− ρ4
+ ρ2

− 1.

Since hρ(−1) = (ρ2
−1)2(3ρ8

+24ρ6
−10ρ4

−1) > 0 and hρ(1) = (ρ4
−1)2(3ρ4

−1) > 0
for ρ > 1, we conclude that the quadratic function hρ(x) is concave and positive on [−1, 1].
Therefore, (x + 1)hρ(x)/(2ρ8) ≥ 0 for each x ∈ [−1, 1], and the proof is completed. �

4. Error bounds based on an expansion of the remainder term and L1-error bounds

If f is an analytic function in the interior of Eρ , it has the expansion

f (z) =

∞
k=0

′αk Tk(z), (4.1)

where αk are given by

αk =
1
π

 1

−1
(1 − t2)−1/2 f (t)Tk(t)dt.

The series (4.1) converges for each z in the interior of Eρ . The prim in the corresponding sum
denotes that the first term is taken with the factor 1/2.
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Lemma 4.1. If z ∉ [−1, 1], then holds the following expansion

1

[Tn(z)]2 =

+∞
k=0

βn,ku−2n−k, (4.2)

where

βn,k =


4(−1) j ( j + 1), k = 2 jn,

0, otherwise.
(4.3)

Proof. We know that if x ∈ C, |x | < 1, then

1

(1 − x)ν+1 =

+∞
k=ν


k

ν


xk−ν (ν = 0, 1, 2, . . .). (4.4)

Using this fact and (3.1), with u = ρeiθ , ρ > 1, z = (u + u−1)/2, we get

1

[Tn(z)]2 =


1
2
(un

+ u−n)

−2

= 4u−2n


1

1 + u−2n

2

= 4
+∞
j=0

(−1) j ( j + 1)u−2n−2nj ,

which completes the proof. �

Lemma 4.2. If z ∉ [−1, 1], ρn can be expanded as

ρn(z) =

+∞
k=0

γn,ku−n−k−1, (4.5)

where

γn,k =


3π

2
, k = 0, 2, . . . , 2n − 2,

2π, k = 2n, 2n + 2, . . . ,

0, otherwise.

(4.6)

Proof. It is well-known that when ω is a weight function, then Dn(t) = [Tn(t)]2ω(t) is also a
weight function (see Engels [5, pp. 214–226]). We have

ρn(z) =

 1

−1
Dn(t)

Tn(t)

z − t
dt =

+∞
k=0

γn,ku−n−k−1,

where

γn,k = 2
 1

−1
ω(t)[Tn(t)]3Un+k(t) dt (k = 0, 1, . . .). (4.7)

The last expression is equal to

γn,k = 2
 π

0
[cos(nθ)]3 sin(n + k + 1)θ

sin θ
dθ,

which can be calculated using the formulas 1.320.5 and 1.320.7 in [8] and combining them with

sin(m + 1)x

sin x
= 2

[m/2]
k=0

′′ cos(m − 2k)x,
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where the “the double prim” denotes that the last summand has to be halved if m is even. In that
way we obtain exactly we need. �

Now, substituting (4.2) and (4.5) in (2.3), we obtain

Kn(z) =

+∞
k=0

ωn,ku−3n−k−1, (4.8)

where

ωn,k =

k
j=0

βn, jγn,k− j . (4.9)

Theorem 4.3. The remainder term Rn( f Tn) can be represented in the form

Rn( f Tn) =

+∞
k=0

α3n+kϵn,k, (4.10)

where the coefficients ϵn,k are independent on f . Furthermore, if f is an even function then
ϵn,2 j+1 = 0 ( j = 0, 1, . . .).

Proof. By substitution (4.1) and (4.8) in (2.2), we obtain

Rn( f Tn) =
1

2π i


Eρ


∞

k=0

′αk Tk(z)
+∞
k=0

ωn,ku−3n−k−1


dz

=

+∞
k=0


1

2π i

+∞
j=0

′α j


Eρ

T j (z)u
−3n−k−1dz


ωn,k .

Applying Lemma 5 from [9], this reduces to (4.10) with

ϵn,0 =
1
4
ωn,0, ϵn,1 =

1
4
ωn,1, ϵn,k =

1
4
(ωn,k − ωn,k−2), k = 2, 3, . . . . (4.11)

When k is odd, since ω(t) = ω(−t) it follows from (4.9) and Lemmas 4.1 and 4.2 that ωn,k = 0,
and hence ϵn,k = 0. �

4.1. Error bounds based on the expansion

In general, the Chebyshev–Fourier coefficients αk in (4.1) are unknown. However, Elliot [4]
described a number of ways of estimating or bounding them. in particular, under our assumptions

|αk | ≤
2
ρk


max
z∈Eρ

| f (z)|


. (4.12)

By using (4.3), (4.6), (4.9), if and only if k = 2 jn, j ∈ N0, we have

ωn,2 jn = β0γ2 jn + β2nγ(2 j−2)n + · · · + β(2 j−2)nγ2n + β2 jnγ0,

ωn,2 jn−2 = β0γ2 jn−2 + β2nγ(2 j−4)n + · · · + β(2 j−2)nγ2n−2,
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which implies

ωn,2 jn − ωn,2 jn−2 = β(2 j−2)n(γ2n − γ2n−2) + β2 jnγ0

= 4(−1) j−1 j
π

2
+ 4(−1) j ( j + 1)

3π

2
,

i.e.

ϵn,2 jn = (−1) j π

2
(− j + 3( j + 1)) = (−1) j π

2
(2 j + 3).

Otherwise, ϵn,k = 0 for k ≠ 2 jn. Using the obtained results, we get

|Rn( f Tn)| =

+∞
k=0

α3n+kϵn,k

 =

+∞
j=0

α3n+2 jnϵn,2 jn

 ≤
π

ρ3n


max
z∈Eρ

| f (z)|

 +∞
j=0

2 j + 3

ρ2 jn
.

Since for |x | < 1

+∞
j=0

(2 j + 3)x j
=

2x

(1 − x)2 +
3

1 − x
=

3 − x

(1 − x)2 ,

with x = ρ−2n , the previous inequality reduces to

|Rn( f Tn)| ≤
π

ρ3n


max
z∈Eρ

| f (z)|


3 − ρ−2n

(1 − ρ−2n)2 = π


max
z∈Eρ

| f (z)|


3ρ2n

− 1

ρn(ρ2n − 1)2 . (4.13)

4.2. L1-error bounds

According to (2.8) we study now the quantity Ln(Eρ) =
1

2π


Eρ

|Kn(z)| |dz|, where |Kn(z)|

may be obtained from (3.2). Since z = (u+u−1)/2, u = ρeiθ , and |dz| = (1/
√

2)·
√

a2 − cos 2θ

dθ (see [9]), the quantity Ln(Eρ) reduces to

Ln(Eρ) =
1

2π
√

2

 2π

0
|Kn(z)|


a2 − cos 2θ dθ

=
1
2

 π

0


ρ−4n + 9 + 6ρ−2n cos 2nθ

ρn(a2n + cos 2nθ)
dθ

=
1
2

 π

0


ρ−2n + 9ρ2n + 6 cos 2nθ

ρ2n(a2n + cos 2nθ)
dθ.

Applying Cauchy inequality to the last expression, we obtain

Ln(Eρ) ≤

√
π

2ρ2n

 π

0

ρ−2n + 9ρ2n + 6 cos 2nθ

(a2n + cos 2nθ)2 dθ.

Introducing x = ρ4n , and using [8, Eq.3.616.7], we obtain

(ρ−2n
+ 9ρ2n)

 π

0

dθ

(a2n + cos 2nθ)2 + 6
 π

0

cos 2nθdθ

(a2n + cos 2nθ)2

= (ρ−2n
+ 9ρ2n)

4πx(x + 1)

(x − 1)3 −
48πx3/2

(x − 1)3 .
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Fig. 4.1. log10 of the values Ln(Eρ ) (solid line) and its bounds given by (4.13) (dashed line) and (4.14) (dot-dashed line)
for n = 10 (left), and n = 30 (right).

Therefore,

Ln(Eρ) ≤

√
π

2ρ2n


(ρ2n + 9ρ6n)

4π(ρ4n + 1)

(ρ4n − 1)3 −
48πρ6n

(ρ4n − 1)3

=
π

ρn


9ρ8n − 2ρ4n + 1

(ρ4n − 1)3 . (4.14)

We drew graphs of the original Ln(Eρ) and its bounds, namely their logarithms over the base 10,
as functions of ρ, for different values n. As we can see, when n increases, corresponding graphs
become more and more close each other (see Fig. 4.1).
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