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Modern and advanced control systems for internal combustion engines require ac-
curate feedback information from the combustion chamber. Whereas the in-cylin-
der pressure sensor provides this information through its close thermodynamic ties
with the combustion process, drawbacks in its implementation push research to-
wards other non-intrusive sensing methods. This paper suggests alternative meth-
ods of combustion phasing detection relying on measured angular crankshaft
speed. Method developed, achieves sensing of angular position of the 50% of mass
fraction burned (MFB50) through two steps: calculation of, so called, synthetic
torque and its non-linear transformation to a combustion feature estimator through
localmodel. In order to calibrate both parts of this virtual combustion sensor, pa-
rameters of a high-fidelity crankshaft dynamic model are identified, and the linear
neuro-fuzzy based model is trained with extensive experimentally collected data set.
Created virtual MFB50 sensor, demonstrated its performance, on a large test data
set comprised of 70% of gathered data.

Key words: neuro-fuzzy, combustion sensor, internal combustion engine
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Introduction

The internal combustion (IC) engine is the dominant propulsion technology of the

present and will be hardly possible to be completely replaced in the following decades. Relying

on fossil fuels, IC engines, in road transport, are responsible for 16.8% of the world’s CO2 emis-

sion [1]. In the scope of Earth’s climate change and increasing energy demands, more worrying

is the fact that this emission has increased almost 50% in the last 20 years [1]. Research in the

field of IC engines is, more than ever, focused on its efficiency improvement and emission re-

duction toward fulfilment of CO2 targets already defined in regulatory frameworks worldwide

[2].

Today’s IC engine efficiency is close to 80% of a thermodynamically ideal engine.

Missing difference is related to real process influences like heat losses, finite combustion dura-

tion, exhaust and blow down losses, crevice effects, leakage and incomplete combustion [3].

Comprehensive study on the factors influencing the extraction of maximum useful work from

the IC engine working cycle can be achieved through exergy (availability) analysis. A survey,

done by Rakopoulos and Giakoumis [4], on publications concerning the application of the sec-

ond-law of thermodynamics to IC engines, gives detailed insight on parameters and strategies,

which could lead to efficiency increase by minimising exergy destruction. Teh et al. [5] con-
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cluded that the internal energy state at the start and at the end of combustion have a very impor-

tant role in minimising exergy destruction, giving sound explanation of significance of angular

position of the combustion process within the engine working cycle.

It is well known that the spark advance is one of the key parameters of the spark igni-

tion (SI) engine performance. Phasing the start of combustion influences the combustion pro-

cess itself and largely influences the amount of work, which can be extracted from the working

cycle. Maximum brake torque (MBT) can be achieved by optimally phasing the combustion

process, i. e. by setting the optimal spark advance angle. Bargende [6] showed that the optimal

spark advance is closely related to the angular position of the 50% mass fraction burned

(MFB50) i. e. that optimal spark advance sets the MFB50 to be 8-10° CA aTDC. Mostly sup-

ported by experimental work and numerous testing, this conclusion has a logical theoretical

background. Relying on the minimal entropy change analysis, during combustion, Beccari et al.

[7] gave detailed explanation for the optimal position of MFB50. It is well known, that the ideal

SI engine cycle assumes an instantaneous heat release in TDC, which is far from the process in a

real engine. Even with neglecting the fact that the combustion duration is finite, by taking into

account the heat losses during combustion, the angular position of the instantaneous combustion

takes an important role in the indicated thermal efficiency (hi).

The thermodynamically based analysis shows that the hi can be improved by retarding

the combustion process on account of lower temperatures and heat losses. Furthermore, Beccari

et al. [7] demonstrated how to estimate this combustion angle delay in order to achieve the high-

est brake thermal efficiency (he) by taking into account the heat and friction losses during com-

bustion, and that this estimate is in a good accordance with the simulations and the conclusions

of Bargende [6].

A real combustion process is finite (not instantaneous), and this fact has the same ef-

fects on hi as a lowering of the compression ratio. An asymmetry of the rate of heat release

(ROHR) curve additional influences the efficiency. In order to place the ROHR curve centroid

as close to the TDC, needed spark advance correction, with respect to TDC, equals the phase lag

between the combustion duration symmetry line and centroid position [7]. Summed influences

of heat transfer process, friction losses, combustion duration, and ROHR curve shape deter-

mines the optimal spark advance angle which leads to higher achievable brake thermal effi-

ciency.

The concept of a combustion indicator based spark advance control is explained in fig. 1.

The figure shows an example of measured in-cylinder pressure, ROHR and MFB curves (one of

cycles from the regime No. 17, marked at the lower part off fig. 7). The presented example shows a

cycle where the combustion process needs a delay, since the MFB50 indicator is out of the wanted,

optimal angular span (8-10° CA aTDC). The ROHR is calculated as a differential of MFB and

therefore is dimensionless, i. e. the rate represents the relative angular heat release increments.

The relation between the MFB50 position and spark advance angle is not straightfor-

ward. By changing the start of combustion angle, thermodynamic circumstances within the

combustion chamber are changing also, thus affecting the whole combustion process. That

means that the phasing of the spark advance causes not only the change in ROHR curve angular

position but its shape too. Therefore, an advanced spark advance control system requires the

feedback from the combustion process in order to maintain the highest achievable efficiency in

real-time.

Today’s SI engine control ignition system is map based and driven without a feedback

in an so called open loop. Spark advance maps are defined during the process of engine calibra-

tion. Although the optimisation of the engine control parameters, during its calibration is very
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sophisticated and advanced, this open-loop type of control is unable to deliver the full efficiency

potential through the engine lifetime. This is mainly caused by influences, which cannot be

counted for during map calibration phase, like fuel characteristics variations or engine compo-

nents aging factors. A modern concept of the spark advance control needs highly accurate infor-

mation feedback, from the combustion process, in order to achieve optimal combustion effi-

ciency. Therefore, they urge for some kind of sensor, which will provide the information on

some crucial combustion features through its indicators, like MFB50, location of the peak

in-cylinder pressure, location of the maximum pressure rise, etc. [8].

Combustion indicator, like MFB50, can be easily estimated by Rassweiler & Whitrow

method from measured in-cylinder pressure [9, 10]. Whereas straightforward in extracting com-

bustion features, this method has a major drawback in pressure sensor implementation costs and

its durability. Alternative approaches are vastly investigated by researchers focusing on already

available, common signals on SI engine, like ionisation current, engine block vibrations, and

crankshaft angular speed. The angular speed and acceleration of the crankshaft, as a potential

source of combustion indicators, has drawn far more attention among researchers because its

availability and accessibility through a common engine speed measurement system. An angular

speed of a crankshaft, which varies through a single engine cycle, is mainly formed by summing

action of the gas torque Tg, originating from the in-cylinder gas pressure forces, and the mass

torque Tm, caused by the oscillating parts of the engine. The information about the combustion

process is contained in the gas torque and, consequently in the crankshaft angular speed. Al-

though informative, the main obstacle, in using the angular speed as an effective combustion in-

dicator source, is the high non-linear influence of the mass torque. Depending on the gas and the

mass torque ratio, this influence can largely mask the information about the combustion process,

contained in the angular speed signal. Furthermore, friction torques, originating from engine

friction and external engine load torque also influence the angular crankshaft speed, but they are

omitted from the focus of this work as less influencing factors.

The crankshaft is a complex and not an absolutely stiff object, subjected to highly

variable load. This lead to torsional oscillations of the crankshaft segments and, depending on
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Figure 1. An example of the bad positioned combustion process which needs to be retarded in order to
improve the cycle brake thermal efficiency



the angular speed sensor placement, measured signal can be heavily influenced by this phenom-

enon, also. There are numerous approaches in solving these problems, but regardless of methods

used, most of them are focused on the reconstruction of the in-cylinder pressure from the angular

speed signal, as a first step in the signal analysis. Further analysis, as a second step, treats the re-

constructed in-cylinder pressure as a measured one, and by using the common thermodynami-

cally based methods, extract the combustion indicators.

This paper deals with the different two-step approach for obtaining the combustion in-

dicator from the angular speed measurements. Relaying on relations between torques acting on

the crankshaft, through the torque balance equation, first step transforms the angular accelera-

tion to synthetic signal by freeing the original signal from mass torque influence. The second

step is based on local linear neuro-fuzzy model (LLNFM) which uses this created synthetic sig-

nal as an input and estimates MFB50 combustion indicator directly, avoiding the in-cylinder

pressure reconstruction step. Thus, this method has a potential for direct providing the closed

loop spark advance control system with the MFB50 combustion indicator solely by measuring

the angular speed of the crankshaft.

Synthetic torque variable

Crankshaft angular acceleration is built up by summing action of several torques: the

aforementioned gas and mass torques (Tg and Tm), friction torque Tf and load torque Tl. The fric-

tion torque Tf originates from the friction forces within the engine and the load torque Tl acts as

an external load, acting on the crankshaft and opposing the effective torque generated by the en-

gine. These torques are related through the torque balance equation, which in general, for single

cylinder takes the form:

J T T T Tl�� � � � �� � �q q q q q q qg m f( ) ( , , ) ( ) ( ) (1)

where q is the crank angle and J denotes the crankshaft’s moment of inertia. Information on the

combustion process is nested in in-cylinder pressure which is a part of the gas torque Tg:

T p A
s

g g p

d

d
( ) ( )q q

q
� (2)

where pg(q) is the in-cylinder absolute pressure, and Ap – the piston area and s denotes the piston

displacement.

The mass torque evaluation is often based on the analysis of the kinetic energy of

crankshaft mechanism modelled as two point mass system:

T J m r
J
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Ad

d
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q� �� � � � �� � �2 2

1

2
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where the JA(q) is varying inertia of oscillating mass mA with respect to the crankshaft axis, and

mB denotes the rotating mass on a crankshaft side (fig. 2). The exact expressions for the varying

inertia and the derivatives of the piston displacement can be found in [11]. Non-linearity intro-

duced by Tm in the eq. (1) is one of the main obstacles in establishing the straightforward linear

relationship between angular speed �q and in-cylinder pressure pg(q).

Since the mass torque Tm(q) depends on design parameters of crankshaft mechanism

(masses, moments of inertia,...) it is quite predictive and can be calculated in advance. Relaying

on this idea, Moskwa et al. [12] suggested the method in which the whole mass torque is re-

placed by the product of the constant moment of inertia, and a new synthetic variable called syn-

thetic angular acceleration. He used this method as a linearization technique for accessing the
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combustion information through measured angular accel-

eration. Therefore, the term “synthetic”, used in this pa-

per, is an association on a paradigm for eliminating the in-

ertia effects from the measured angular speed signal.

Schagerberg and Mckelvey [13] analysed the

crankshaft model complexity influence on the estimation

of combustion features using torque balance equation.

Sometimes, model simplification can be justified but, in

general, high-fidelity multi-body models lead to more ac-

curate results. Since the crankshaft is a deformable, tor-

sionally flexible object, its flexing and torsional vibra-

tions affecting the angular speed signal. There are

different approaches in the modelling of the crankshaft:

from the simplest models, based on a single inertia mass

to the complex multi-body models with included effects

of variable inertia. Decision on how complex the crank-

shaft model should be, in order to give a satisfactory esti-

mation of combustion features is related to the crankshaft

modal shapes analysis [14]. When the harmonics of the

first modal shape are very close to the engine operating

speed regimes, self-amplified torsional vibrations cannot

be neglected.

The model used in this paper, is a multi-body

(lumped mass) based and takes the following matrix

form:

[J][ ] C][ ] K][ ] g m�� � � � � � � �� �q q q q q q q[ [ [ ( )] [ ( , , )] [T T Tl ( )] [ ( )]q q� T f (4)

where [J], [C], and [K] are the inertia, torsional damping and stiffness NL ´ NL symmetrical ma-

trices, respectively. The values of crankshaft angular position, it's time derivatives and torques,

in eq. (4), are vectors whose elements respond to NL individual lumped masses of the model (fig.

3)
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Figure 2. A crank-slider mechanism
[10]

Figure 3. Torsional crankshaft lumped mass model for four cylinder engine



By assuming that the friction can be incorporated in damping loses, following variable

can be defined:

T T
N

synth m m m mJ][ C][ K][*( ) ([ ] [ ] [ ] [ ( ,* *q q q q q� �� � � �� � �q q, )])�� (5)

This variable represents the estimate of the gas and the load torque sum and, knowing

the parameters of the crankshaft model defined by eq. (4), can be calculated solely by means of

measured crankshaft speed/acceleration where m* subscript in eq. (5)). The variable Tsynth con-

tains complete information on combustion process. Since the variations of this variable are more

influenced by the combustion process than load variation, this variable is a good candidate for

combustion features estimation. The drawback of this approach and its prerequisite is the neces-

sity for crankshaft model parameter identification. The next step, needed for estimating combus-

tion feature from this variable, is the establishment of a model which is able to accurately corre-

late Tsynth and MFB50. This model, as announced in the introduction, is neuro-fuzzy based and

thus needs experimental data in order to be trained and tested. Therefore, gathering the experi-

mental data is a very important step in accomplishing suggested combustion feature estimator.

LLNFM based virtual MFB50 sensor

Synthetic torque Tsynth, calculated over the angular range at which combustion occurs,

contains all relevant information about the combustion process. Relation between Tsynth values

and combustion feature like MFB50 is highly non-linear and depends on several complex pro-

cesses, mainly the heat release and heat transfer process. Non-linearities are introduced by vari-

ous, engine specific, parameters and circumstances derived from combustion chamber design,

cylinder gas exchange processes, engine’s working point, air-fuel ratio and so on.

The neural network models are featured by capabilities to establish functional approx-

imation of the highly non-linear correlated data. Furthermore, their ability to learn from the ex-

isting data sets and to transform the contained knowledge into functional rules, distinguish them

among other modelling techniques. The artificial neural networks, as universal function

approximators, represent a computational paradigm based on the brain-like parallel processing

[15-19].

By drawing the fuzzy models in a neural network based structure, hybrid neuro-fuzzy

models can be created [20]. A neuro-fuzzy model combines the advantages of both modelling

techniques: (1) The fuzzy models are not necessary designed by an expert knowledge but can be

learned by data-driven process and (2) the identified rules are more interpretable than in neural

networks models.

The advantage of LLNFM, in an approximation of a non-linear function, is their capa-

bility to model complex non-linearities by superposition of several very simple models – linear

functions. Similar to fuzzification step in fuzzy models, the first step in defining LLNFM is par-

titioning of the input vector [u] and placing, locally valid, linear models. Validity of each linear

model Li([u]) is further defined by validation function Fi([u]).

The output of the LLNFM is defined as:

y L

L w w u w u

i i
i

M

i i i i
i

� �
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�

�

([ ]) ([ ])

([ ]) ...

u u

u p p

F
1

0 1 1
1

p

�
(6)

where M is the number of the local linear models and wij – the parameters of the i-th linear

submodel, and u1 … up – the elements of the input vector [u].
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The validity function, often used, is a normalised Gaussian function in the form:
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where cij is the Gaussian function centre co-ordinate and sij individual standard deviation for the

j-th input and i-th model partition (submodel).

Structure of LLNF model, described by the eqs. (6) and (7), is shown in the fig. 4 (left).

This model shares great similarity with the Tagaki-Sugeno fuzzy models and also can be inter-

preted as an extended normalised radial basis function (RBF) network, differing in the activa-

tion function weighting [20]. Whereas the RBF network neuron is weighted by single scalar,

LLNFM neuron is weighted by a linear function. Input space partitioning and determination of

local model parameters are driven by algorithms, which are data-driven – exactly the same as

with neural networks.

The training algorithm used, named Lolimot (local linear model tree), is introduced by

Nelles [20]. It divides the input space in so called (hyper-) rectangles. Upon each division, local

linear models are placed in each of the parted spaces. Depending on the modelling error, the al-

gorithm makes the decision how to perform the input space division in further iterations (fig. 4,

right). It works as an incremental tree-construction, input space partitioning algorithm. The way

the input space is partitioned, and location of linear models gives this LLNFM a great
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Figure 4. Network structure of a LLNFM with M submodels (neurons) for p inputs (left); Input space
partitioning using Lolimot algorithm in the first four iteration for 2-D input space
(p = 2)



interpretability, especially when the number of inputs is low [21]. In order to adapt the width of

each Gaussian function to the width of partitioned space Dij, each Gaussian width is calculated

as sij = sLDij, where sL is globally set parameter for entire LLNFM.

The simplest way to implement the LLNFM is to use this model as a MISO model,

which is perfectly suited for deriving single scalar as an output from the multiple inputs. In order

to take into account the parameters, which significantly influence the combustion process, cycle

averaged pressure in the intake manifold pim and the cycle averaged crankshaft speed neng are

added to the input vector which takes the form:

[ ] [ , , ]( ) ( ) ( ) ( )u
synth, map eng, map im, map

i i i iT n p� (8)

where (i) designates each engine cycle.

All three signals, comprising the input

vector, are mapped into the range [–1, 1].

The output of the LLNFM is the

MFB50 combustion indicator:

y i i( ) � MFB50 (9)

One of advantages of LLNFM is

their capability to model non- linearities

with a relatively small number of neu-

rons and therefore, they have a potential

to be implemented in fast real-time

spark advance control algorithms. Com-

plete closed-loop control, with synthetic

torque evaluation step, is presented in

the fig. 5.

Measurement set-up and data acquired

The engine used, as an experimental object, is described in the tab. 1. The measure-

ment is set up so to provide data for two separate analysis tasks (fig. 6). The identification of pa-

rameters of the crankshaft model requires measurement of the crankshaft angular speed. It was

accomplished by means of an optical in-

cremental encoder mounted at the free

end of the crankshaft. A higher encoder

resolution is more appropriate to this type

of measurements (e. g. 0.1º CA), but lack

of one forced usage of an available 1º CA

resolution encoder. Simultaneously,

in-cylinder pressure was measured by

means of piezoelectric, water cooled

pressure sensor. Both signals, measured

in the angular domain, were crucial for

preparing input (Tsynth) and output

(MFB50) training and test data sets for

Neuro-fuzzy virtual sensor model.

Anticipated accuracy of LLNFM is

related to the amount and the quality of
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control implementing virtual LLNFM based MFB50
sensor

Table 1. The engine data

Manufacturer DMB

Type
4 cylinder inline 4 stroke
SI; 2 valves per cylinder

Firing sequence 1-3-4-2

Bore [mm] 80.5

Stroke [mm] 67.4

Conrod length [mm] 128.5

Piston pin offset [mm] 3.6

Compression ratio [–] 9.03



the data acquired for its training and testing. The engine was equipped with the laboratory proto-

type of a variable induction system (VIS). This system [22] had an ability to influence the intake

port airflow, when turned on, which consequently, affected the combustion process. For that

reason, this system was used in order to almost double the number of engine’s working points by

simply turning that system on (VIS-on) or off (VIS-off).

Totally, 141 engine’s working points were recorded with 50 cycles each, which gave

more than 7000 input-output pairs of data for LLNFM training and testing (fig. 7). Ought to

mention that this number is not impressive in the world of IC engine neural models data gather-

ing, but it was limited because of specific restrictions found on the engine used on a test bench

(particularly limitation of maximum engine speed).

Data analysis and preparation

Since the accuracy of measured signals has the key influence on usability of created

models, full attention is paid to the correction of the measured angular speed due to mechanical

imperfections of the measurement system [23, 24].

By conducting in-depth analysis of burn rate evaluation routines, Brunt and Emtage

[25] concluded that the evaluation of MFB50 is very sensitive to in-cylinder pressure referenc-

ing errors and errors in TDC determination. In order to minimise these errors measured raw

in-cylinder data are treated very carefully. In-cylinder pressure data are referenced using the

technique described by Hohenberg [26], on a limited angular interval (100º-65º CA bTDC).
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Figure 6. IC Engine test bed with instrumentation and control systems (FME ICED Lab)
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Figure 7. Map of recorded stationary engine’s regimes with VIS on (above) and VIS off (below). Regimes,
marked with rectangles, are separated for LLNFM training (cm

3
30%). The rest of the data are used for

model testing (~70%)



Since the measured intake plenum pressure was also available, as suggested by Brunt and Pond

in [27], these values were used for an initial in-cylinder pressure offset.

The TDC position and the compression ratio, as well, are the factors which largely af-

fect the accuracy of all in-cylinder pressure derived conclusions. Correct TDC position and

compression ratio are determined by the method described by Tazerout et al. [28], which is

based on the T-s (entropy – temperature) diagram peak shape and symmetry analysis. Because

of its importance, determined TDC position is checked also by the thermodynamically based

method, proposed by Tunestal [29] which confirmed a good agreement with the T-s shape and

loop method (within 0.1º CA).

Correctly positioned in-cylinder pressure further provided the base for calculation of

MFB curve and determination of MFB50 position for each of the measured engine cycles which

will be used as targets in training and validation process of LLNFM. Calculation of the burn rate

is closely related to heat release and heat transfer process during combustion. The method pro-

posed in [30] is simple and straightforward despite its incorporated heat transfer model. How-

ever, most of publications discussing the spark advance, MBT and MFB50 relations, as well as

their conclusions, are based on Rassweiler & Whitrow (R&W) method for the burn rate calcula-

tion [9]. Therefore, the method used in this paper will be also based on R&W method, but

slightly improved by Shayler [10].

R&W method is based on extracting the pressure rise due to combustion, Dpc from the

start of combustion to the estimated end of combustion. Whereas the original R&W method as-

sumes the values of compression and expansion process polytropic coefficients, improved

method checks their values by evaluating the calculated Dpc near the start and the end of com-

bustion. The process is iterative, and when the values of polytropic coefficients lead to almost

zero pressure rise near these points, the polytropic coefficient identification process stops. The

identified polytropic coefficient for the compression process is used in the MFB calculation till

the TDC, and the expansion process coefficient afterwards (fig. 8).
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Figure 8. Typical results of MFB curve calculation (left) and its derivative (right); 50 consecutive cycles



Model parameter identification

Re-arrangement of eq. (4) and separation of terms in eq. (3) leads to second-order dif-

ferential equation of motion of the crankshaft:

[J C][ ] K][ ] g m l2
( )][ ] [ [ [ ( ) [ ( , ) [q q q q q q q�� � � � � � � � �

�

T T T ( )] [ ( )]q q� T f (10)

where the varying inertia is the term multiplying ��q in eq. (3):

[J J J]A B( )] [ ( )] [q q� � � �m r 2 (11)

and the mass moment Tm2
is the part of eq. (3) which depends on the angular speed:

[ ( , )]
( )

T
J

m
A

2

d

d
q q

q

q
q� � � �

1

2
2 (12)

Equation (10) can be further transformed to the system of two first-order equations.

This system is stiff, by its nature, and require the stiff system solver which is able to handle sepa-

rate calculation of mass function J(q). A good example of such a solver is Matlab® ode23tb

function. The in-line four cylinder crankshafts can be modelled as a system of six lumped

masses interconnected with torsional damper and spring elements, which is shown in fig. 3. That

in start gives 16 unknown parameters which should be identified (five stiffness and five damp-

ing coefficients; six moments of inertia).

By comparing the simulated ([ ])��qsim and measured ([ ])��qmeas angular acceleration error

function F can be formulated:

F p p T([ ]) [[ ] [ ([ ])] [ ] [S meas sim S meas si� �� � �� �� � ��q q q q m S([ ])])] [ ] [ ]p T� e e (13)

with [pS] as a vector containing not yet identified parameters. This function can be successfully

minimised by means of Levenberg-Marquardt algorithm. When the parameters of the crankshaft

model are identified it is possible to apply eq. (5) and calculate the synthetic torque variable.

Examples of calculated signals Tsynth, are shown in fig. 9. The disturbances, which are

noticeable on higher engine speed, especially on descending side of the signal, indicate that

mass torque influence is not completely vanished. This is mainly a consequence of a fairly sim-

ple approach in the modelling of the friction torque. However, within the angular window in

which combustion occurs, these anomalies are hardly visible. The focus of the analysing win-

dow is in 40° before and after TDC where the complete combustion mainly occurs.

The calculated Tsynth values are further prepared for the placement in the LLNFM input

vector by mapping its input range to the interval [–1, 1]. The examples of the mapped versions of

the synthetic torque variable are shown in fig. 10, with corresponding mapped versions of the

MFB curves. The signals are presented in the angular window [–40º…+40º] CA aTDC, same as

in fig. 9.

The key parameters, determining the performance of the LLNFM are the number of lo-

cal linear models (neurons) M, and the Gaussian function width, given via parameter sL. In or-

der to find the optimal values of these parameters several numerical tests were conducted by

varying number M in range [2…7] and sL in range [0.2…0.5]. The performance indicator used,

was the standard deviation of MFB50 estimating error:

sDMFB50
�

�
��

1

1
50 50

N
MFB MFB

N

( )D D (14)
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where N is the number of input vectors available for training/validation (number of engine cy-

cles). Estimating error is defined as:

DMFB50 = MFB50sim – MFB50measured (15)

Testing with the full-length input vector containing Tsynth with 81 elements (1°CA res-

olution on [–40…+40]°CA span around TDC), showed that the vector length can be reduced

without significantly affecting the LLNF model performance. Taking into account Tsynth with

6° CA resolution, size of the LLNFM input vector (eq. (8)), can be significantly reduced by em-

ploying 15 instead of 83 elements ( )13 � � �T n psynth map eng. map im. map .
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Figure 9. Examples of calculated Tsynth on 1800 and 2300 rpm on full (1) and
partial load (2)

Figure 10. Mapped Tsynth and corresponding MFB curves for several picked regimes and cycles; regimes
can be tracked, through its designation in fig. 7



The results of numerical tests

are shown in tab. 2, with bolded

values of parameters leading to

lowest value sDMFB50
. Each of the

LLNFM configurations is learned

on the learning data set and then

tested on the, more than twice

larger, test data set. A relatively

low values of sDMFB50
, on test data

set, indicates the very good per-

formance and generalization ca-

pabilities of the created LLNFM.

Cycle-by-cycle variations are

common in SI engines. Pipitone

[8] concluded, that combustion

features, extracted in cycle-by-

-cycle manner and used as an in-

put in a spark advance control system, can cause very large fluctuations of this control variable

(±10° CA). In order to avoid this, and provide the spark advance control system with the more

stable combustion indicator, its value should be averaged.

Pipitone also showed that for the MFB50 indicator, the minimum number of engine

cycles for stable indicator evaluation is strongly dependent on IMEP COV, with the conclusion

that the mean value of the minimum number of cycles is around 14. Having this in mind, resulted

output vector of the LLNFM is averaged by moving average filter (fourteen cycle width), and

performance indicators are calculated over this smoothed MFB50 output.

A variation of the error DMFB50 , in estimating the MFB50 combustion indicator on the

test data set, is shown in fig. 11. It is clear that the performance of the LLNFM used, suffers on
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Figure 11. DMFB50 variation on the test set [°CA], LLNFM sL = 0.24, M = 5

Table 2. Results of numerical tests of different LLNFM
configurations – values of sD MFB50

on test data set
(5000 cycles) in °CA

sL®

M¯
0.2 0.24 0.3 0.4 0.5

2 0.400 0.405 0.414 0.445 0.447

3 0.392 0.382 0.391 0.385 0.496

4 0.369 0.357 0.419 0.353 0.576

5 0.353 0.332 0.389 0.351 0.610

6 0.581 0.340 0.452 0.379 0.590

7 0.597 0.341 0.486 0.385 0.585



some cycles with MFB50 estimation error exceeding more than 1° CA. Most of these cycles be-

long to the partial load regimes, driven with the leaner air-fuel mixture, where partial combus-

tions and misfires are not uncommon. This implies that the air to fuel ratio (AFR), as an addi-

tional element in the LLNFM input vector u, could improve the model performance. This AFR

feedback can be taken from wideband l exhaust gas oxygen sensor. Since the l sensor response

is delayed, its implementation in the model would require the use of a more complex dynamic

LLNFM. On the other hand, designed static LLNFM performance can be improved by filtering

and eliminating the misfired cycles from processing. This can be achieved, e. g., by the imple-

mentation of the effective CASMA filter [31].

Pipitone also concluded that acceptable variation of an estimated MFB50 indicator

can be as high as ±1.63°CA in order to maintain the spark advance within the ±1.8°CA, which

consequently influences the efficiency loss with an acceptable mean of 0.2%. In order to evalu-

ate the performance of LLNFM, variation of the estimated MFB50 values should be compared

with that limits. By assuming that the almost whole span of estimated values is in the range of

(2…3)sDMFB50
, an acceptable variation of the LLNFM MFB50 estimation should be:

sDMFB50
CA� �054. (16)

which means that the constructed LLNFM has enough accuracy (see tab. 2), and can be poten-

tially used in a closed loop spark advance control systems, even without discussing the

above-mentioned misfire or partial combustion problems.

Created LLNFM is a compact five neuron model with stored 5×16 coefficients.

Non-optimised code (MFB50 estimation) execution speed, in Matlab® environment takes

approx. 10 ms of CPU time on a desktop PC with Intel I7-920 processor. In order to ensure its

performance on slower automotive microcontroller or DSP platforms some effort should be

made in the implementation of the input vector reduction techniques which can lead to more

than halved execution times. Some of them, like principal component analysis (PCA), are

widely used, but other approaches, like one based on the mutual information concept, seems

particularly promising and applicable [32].

Conclusions

The spark advance is one of the key parameters affecting the combustion efficiency in

an SI engine. In order to accomplish the optimal combustion efficiency, closed loop spark ad-

vance control system is needed, which requires accurate information on a combustion process.

The combustion process feedback, based on the in-cylinder pressure analysis is straightforward,

but it has its drawback, which delays the production line implementation. As an alternative to

the direct in-cylinder pressure measurement, an alternative approach is suggested, and method

developed, employing software based virtual combustion indicator sensor. The proposed sens-

ing system estimates MFB50 combustion feature by calculating so called synthetic torque, and

transforming it to MFB50 value through a nonlinear estimator based on local LLNFM.

Calculation of the synthetic torque is based on the identified parameters of a high fidel-

ity calibrated dynamic model of the crankshaft. The synthetic torque signal contains high-qual-

ity information on the combustion process with negligible mass torque influence easing the

combustion process information access. LLNFM, trained on the 30% and tested on 70 % of ac-

quired experimental data, demonstrated very good performance in estimating the MFB50 with

excellent generalization capabilities. The LLNFM input vector, based on the synthetic torque

signal, averaged cycle engine speed and intake manifold pressure, provides enough information

for the highest quality training of the LLNFM. The model testing showed that the model is prone
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to generate increased errors in the MFB50 estimation on low load or idle engine regimes, mainly

because of a misfire and partial combustion caused by a leaner air-fuel mixture used. Despite

this fact, designed LLNFM outperforms the minimum allowable error variation and provides

acceptable input for the closed-loop spark advance control system.

The reduction of the input vector size, by reducing the angular resolution of the syn-

thetic torque variable, enabled the compact design of the LLNF model with only five neurons.

Further reduction of the LLNFM input vector, based on the information content extraction,

could lead to the additional model size reduction and processing requirements, which can be ac-

ceptable to the modern real time engine control units.
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