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Further Results on Fractional Order Control of a  
Mechatronic System 

Mihailo Lazarević1) 

This paper presents a new algorithm of the fractional order PID (FOPID) control based on genetic algorithms (GA) in 
the position control of a 3 DOF`s robotic system driven by DC motors. The optimal settings for a FOPID controller as 
well as an integer order PID controller (IOPID) are done, applying the GA tuning approach and their extension for 
FOPID–IOPID controllers in a comparative manner. The effectiveness of the suggested optimal FOPID control is 
demonstrated with a given robotic system as an illustrative example. The rest of the paper presents the design of an 
advanced algorithm of the FOPID control tuned by GA and the application in the control of the production of technical 
gases, i.e. in the cryogenic air separation process.Then, the obtained model is linearized and decoupled and consequently 
IOPID and FOPID controllers are applied. In the same manner, a set of optimal parameters of these controllers is 
achieved through the GA optimization procedure through minimizing the proposed cost function. Finally, the use of the 
simulation results in the time domain has shown that the FOPID controller improves a transient response and provides 
more robustness than a conventional IOPID. 
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Introduction 
RACTIONAL Calculus (FC) is a generalization of 

classical calculus concerned with the operations of 
integration and differentiation of the non-integer 
(fractional) order. The concept of fractional operators has 
been introduced almost simultaneously with the 
development of the classical ones. This question 
consequently attracted the interest of many well-known 
mathematicians, including Euler, Liouville, Laplace, 
Riemann, Grünwald, Letnikov and many others. Since the 
19th century, the theory of fractional calculus has 
developed rapidly, mostly as a foundation for a number of 
applied disciplines, including fractional geometry, 
fractional differential equations (FDE) and fractional 
dynamics. The applications of FC are very wide 
nowadays,[1-3]. It is safe to say that almost no discipline of 
modern engineering and science in general remains 
untouched by the tools and techniques of fractional 
calculus. For example, wide and fruitful applications can be 
found in rheology, viscoelasticity, acoustics, optics, chemical 
and statistical physics, robotics, control theory, electrical and 
mechanical engineering, bioengineering, etc.. The main 
reason for the success of FC applications is that these new 
fractional-order models are often more accurate than integer-
order ones, i.e. there are more degrees of freedom in the 
fractional order model than in the corresponding classical 
one. All fractional operators consider the entire history of the 
process being considered, thus being able to model the non-
local and distributed effects often encountered in natural and 
technical phenomena. 

Fractional order dynamic systems and controllers have 
been arousing interest in many areas of science and 
engineering in the last few years. In most cases, our 

objective of using fractional calculus is to apply the 
fractional order controller to enhance the system control 
performance. As we know, in the classical control theory, 
state feedback and output feedback are two important 
techniques in system control. The PID controller in 
particular  is by far the most dominating form of feedback 
in use today, [4]. Due to its functional simplicity and 
performance robustness, PID controllers are still used for 
many industrial applications such as process controls, 
motor drivers, flight control, instrumentation, etc. Similarly, 
a fractional-order PID (FOPID) controller is a 
generalization of a standard (integer) PID controller. It 
affords more flexibility in PID controller design due to its 
five controller parameters (instead of the standard three): 
proportional gain, integral gain, derivative gain, noninteger 
integral and derivative order. However, the tuning rules of 
FOPID controllers are much more complex than those of 
standard (integer) PID controllers. 

Also, genetic algorithms (GA) have received much 
interest in recent years, [5,6] where the basic operating 
principles of GA are based on the principles of natural 
evolution. The GA technique is a stochastic global adaptive 
search optimization technique based on the mechanisms of 
natural selection. This paper proposed the FOPID control 
based on genetic algorithms (GA) in control of given 
mechatronic systems: robotic systems as well as cryogenic 
systems. GA can solve nonlinear multi-objective 
optimization problems and require little knowledge of the 
problem itself and need not require that the search space is 
differentiable or continuous. In this regard GA are used for 
tuning the FOPID controller i.e for finding out optimal 
settings for the FOPID controller in order to fulfill different 
design specifications for the closed-loop system, taking 
advantage of the fractional orders, α  and β . 

F 
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Fractional calculus fundamentals with  
history notes 

The idea of FC has been known since the development 
of the regular calculus, with the first reference probably 
being associated with Leibniz and Marquis de l’Hopital in 
1695. Both Leibniz and L`Hospital, aware of ordinary 
calculus, raised the question of a noninteger differentiation 
(order 1/ 2n = ) for simple functions. Following 
L’Hopital’s and Liebniz’s first inquisition, fractional 
calculus was primarily a study reserved for the best 
mathematical minds in Europe. Euler [7] wrote in 1730: 

“When n is a positive integer and p is a function of 
x, ( )p p x= , the ratio of nd p  to ndx  can always be 
expressed algebraically. But what kind of ratio can 
then be made if n  be a fraction?“ 

Subsequent references to fractional derivatives were 
made by Lagrange in 1772, Laplace in 1812, Lacroix in 
1819, Fourier in 1822, Riemann in 1847, Green in 1859, 
Holmgren in 1865, Grunwald in 1867, Letnikov in 1868, 
Sonini in 1869, Laurent in 1884, Nekrassov in 1888, Krug 
in 1890, Weyl in 1919, and others [7-10]. During the 19th 
century, the theory of fractional calculus was developed 
primarily in this way, trough insight and genius of great 
mathematicians. Namely, in 1819 Lacroix [10], gave the 
correct answer to the problem raised by Leibnitz and 
L’Hospital for the first time, claiming that 

1/2 1/2/ 2 /d x dx x π= . In his 700 pages long book on 
Calculus published in 1819, Lacroix developed the formula 
for n-th derivative of ,my x=  with m being a positive 
integer. 
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Replacing the factorial symbol by Gamma function (5), 
he developed the formula for the fractional derivative of a 
power function 
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where α  and β  are fractional numbers and where the 
gamma function ( )zΓ , see below. 

In particular, Lacroix calculated 
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The gamma function ( )zΓ , so-called Euler integral of 

the second kind is defined for ( )Re 0z >  as: 
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− −Γ = ∫  (4) 

In case z a ib= +  is a complex number, one can obtain 
an absolute Gamma function (see Fig.1)  

 
Figure 1. Gamma function of complex argument 

In case that z  is a real number, we can present the 
Gamma function as follows: 

 

Figure 2. The real Gamma function Γ  

The integral in the right side of (4) is convergent for all 
values of the complex argument z with a positive real part. 
However, by means of an analytic continuation it can be 
extended to the entire complex plane, excluding negative 
integers and zero. The Gamma function has several well 
established properties, the first of which is that it can be 
seen as a generalization of the factorial function. The so-
called reduction formula holds, for { }\ 0, 1, 2, 3,...z C∈ − − − , 

 0( 1) ( ), ( 1) ( 1)! !z z z n n n n nΓ + = Γ ⇒ Γ + = − = ∈ . (5) 

This reduction formula (5) can easily be proven starting 
from the integral (4). The analytic continuation of (4) is 
then conducted by the application of this formula to 
arguments with negative real parts. The points at which the 
Gamma function is not well defined, i.e. negative integers 
and zero, are its simple poles. Another important 
relationship for the Gamma function is the Legendre 
formula: 

 ( ) ( ) ( )2 11/ 2 2 2 , 2 0, 1, 2,...,zz z z zπ −Γ Γ + = Γ ≠ − −  (6) 

Taking 1/ 2z n= +  in the previous relation, and utilizing 
the fact that for integer arguments Gamma function can be 
evaluated by means of the factorial function, one can obtain 
a set of particular values of the Gamma function: 
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Also,the first attempts to carry out such studies were 
already made by J. Liouville [11-14], and N. Abel [15,16] 
in the solution of the tautochrone and other classical 
problems giving rise to the integral equations or relations 
representing integrals and fractional-order derivatives. 
However, a rigorous investigation was first carried out by 
Liouville in a series of papers from 1832-1837, [11-15], 
where he defined the first outcast of an operator of 
fractional integration. Liouville developed ideas on this 
theme and presented a generalization of the notion of 
incremental ratio to define a fractional derivative. This idea 
was discussed again by Grunwald (1867), [17] and 
Letnikov (1868), [18]. Later investigations and further 
developments by among others Riemann led to the 
construction of the integral-based Riemann-Liouville 
fractional integral operator, which has been a valuable 
cornerstone in fractional calculus ever since. An early 
attempt by Liouville was later purified by the Swedish 
mathematician Holmgren [19], who in 1865 made 
important contributions to the growing study of fractional 
calculus. Also, Hadamard [20], proposed a method of 
fractional differentiation based on the differentiation of the 
Taylor`s series associated with the function. The earliest 
work that ultimately led to what is now called the Riemann-
Liouville definition appears to be the paper by N. Ya. Sonin 
in 1869, [21] where he used Cauchy`s integral formula as a 
starting point to reach differentiation with an arbitrary 
index. Weyl [22] and Hardy,[23,24], also examined some 
rather special, but natural, properties of differintegrals of 
functions belonging to Lebesgue and Lipschitz classes in 
1917, where Weyl defined a fractional integration suitable 
to periodic functions, and later Marchaud (1927), [25] 
developed an integral version of the Grunwald-Letnikov 
definition of fractional derivatives. More recently, the 
unified formulation of integration and differentiation based 
on Cauchy`s integral has gained great popularity.  

Among the most significant modern contributions to 
fractional calculus are those made by the results of M. 
Caputo in 1967, [26]. Caputo [26,27] reformulated the more 
“classic” definition of the Riemann-Liouville fractional 
derivative in order to use classical initial conditions, the 
same ones needed by integer order differential equations. It 
is interesting to note that Rabotnov [28] introduced the 
same differential operator into the Russian viscoelastic 
literature a year before Caputo’s paper was published. 

Also, applications to physics and engineering are not 
recent: application to viscosity dates back to the 1930s, 
namely, in the 1930s–1940s, [29] there were extensive 
studies of the properties of the viscoelastic materials which 
demonstrated that stress in fibrous polymers is 
representable as a convolution of the fractional power 
function and the deformation or its derivative. Applications 
of FC are very wide nowadays, in rheology, viscoelasticity, 
acoustics, optics, chemical physics, robotics, control theory 
of dynamical systems, electrical engineering, bioengi-
neering and so on, [1-6,29]. In fact, real world processes 
generally or most likely are fractional order systems. Many 
real-world physical systems display fractional order 
dynamics, i.e. their behavior is governed by fractional order 
differential equations. The main reason for the success of 
FC applications is that these new fractional-order models 
are more accurate than integer-order models, i.e. there are 
more degrees of freedom in the fractional order model. 
Furthermore, fractional derivatives provide an excellent 
instrument for the description of memory and hereditary 
properties of various materials and processes due to the 

existence of a ”memory” term in a model. One of the 
intriguing beauties of the subject is that fractional 
derivatives (and integrals) are not local (or point) quantities. 
For example, it has been illustrated that materials with 
memory and hereditary effects, and dynamical processes, 
including gas diffusion and heat conduction, in fractal 
porous media can be more adequately modeled by 
fractional order models than by integer order models [1-4]. 

The modern epoch started in 1974 when a consistent 
formalism of the fractional calculus was developed by 
Oldham and Spanier, [1], Samko et al. [30] and later 
Podlubny, [3]. There exist today many different forms of 
fractional integral operators, ranging from divided-
difference types to infinite-sum types, Riemann-Liouville 
fractional derivative, Grunwald–Letnikov fractional 
derivative, Caputo’s, Weyl’s and Erdely-Kober left and 
right fractional derivatives, etc. Kilbas et al. [30]. The three 
most frequently used definitions for the general fractional 
differintegral  are: the Grunwald-Letnikov (GL) definition, 
the Riemann-Liouville (RL) and the Caputo definitions,  
[1-3]. For the expression of the Riemann-Liouville 
definition, we will consider the Riemann-Liouville n-fold 
integral for , 0n N n∈ >  defined as 
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The distinctions of various formal definitions of 
fractional integrals are due to different methods of defining 
the limits of integration and the integrand or, more 
precisely, the integral kernel. The fractional Riemann-
Liouville integral of order α  for the function ( )f t  for 

0,a Rα > ∈  i.e the left Riemann-Liouville fractional 
integral and the right Riemann-Liouville fractional integral 
are defined respectively as 
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Furthermore, the left Riemann-Liouville fractional 
derivative is defined as  
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and the right Riemann-Liouville fractional derivative is 
defined as  
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where 1n nα− ≤ < , a, b are the terminal points of the 
interval [ ],a b , which can also be ,−∞ ∞ . Also, for the RL 
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derivative, we have 
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The Caputo fractional derivatives are defined as follows. 
The left Caputo fractional derivative is  
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and the right Caputo fractional derivative is  
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where ( ) ( ) ( ) /n n nf d f dτ τ τ=  and 1n n Zα +− ≤ < ∈ . The 
previous expressions show that the fractional-order 
operators are global operators having a memory of all past 
events, making them adequate for modeling hereditary and 
memory effects in most materials and systems. Moreover, 
for the Caputo derivative, we have  
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where obviously, ( ), ,RL aD nα ∈ −∞ +∞  varies continuously 
with n , but the Caputo derivative cannot do this. 
Obviously, the Caputo derivative is more strict than 
Riemann-Liouville derivative; one reason is that the n-th 
order derivative is required to exist. On the other hand, the 
initial conditions of fractional differential equations with 
the Caputo derivative have a clear physical meaning and the 
Caputo derivative is extensively used in real applications. 
The Riemann-Liouville fractional derivatives and the 
Caputo fractional derivatives are connected with each other 
by the following relations: 
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The Caputo and Riemann-Liouville formulations 
coincide when the initial conditions are zero,[1-3]. 

For convenience, the Laplace domain is usually used to 
describe the fractional integro-differential operation for 
solving engineering problems. The formula for the Laplace 
transform of the RL fractional derivative has the form: 
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where for 0α <  (i.e., for the case of a fractional integral) 
the sum in the right-hand side must be omitted). Also, the 
Laplace transform of the Caputo fractional derivative is:  
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which implies that all the initial values of the considered 
equation are presented by a set of only classical integer-
order derivatives. Also, Grunwald and Letnikov developed 
an approach to fractional differentiation based on the 
definition 
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which is the left Grunwald-Letnilov (GL) derivative as a 
limit of a fractional order backward difference. Similarly, 
we have the right one as 
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As indicated above, the previous definition of GL is 
valid for α > 0 (fractional derivative) and for α < 0 
(fractional integral) and, commonly, these two notions are 
grouped into one single operator called differintegral. The 
GL derivative and the RL derivative are equivalent if the 
functions they act on are sufficiently smooth.  

Brief introduction to fractional order controls 
PID (proportional integral derivative) controllers are the 

most popular controllers used in industry because of their 
simplicity, performance robustness, and the availability of 
many effective and simple tuning methods based on 
minimum plant model knowledge [4,31]. A survey has 
shown that 90% of control loops are of PI or PID structures 
[4,31]. In control engineering, a dynamic field of research 
and practice, better performance is constantly demanded. 
On the other hand, there is a remarkable increase in a 
number of studies related to the application of fractional 
controllers in many areas of science and engineering, where 
specially fractional-order systems are of interest for both 
modeling and controller design purposes. The fractional-
order systems are controlled only by the fractional 
controllers because in this case they are much superior to 
the integer-order controllers, [3,32]. Thanks to the 
widespread industrial use of PID controllers, even a small 
improvement in PID features, achieved by using fractional 
order PID controllers (FOPID), could have a relevant 
impact. Clearly, for closed-loop control systems, there are 
four situations: (a) integer order (IO) plant with IO 
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controller; (b) IO plant with fractional-order (FO) 
controller; (c) FO plant with IO controller, and (d) FO plant 
with FO controller. Here, our objective is to apply the 
fractional-order control (FOC) to enhance the (integer 
order) dynamic system control performance.  

Several design methodologies of FOPID controllers have 
been introduced to facilitate their use. Maybe the first sign 
of the potential of FOC, though without using the term 
“fractional,” emerged with Bode [33], i.e non-integer 
integral and its application to control, where Bode 
suggested an ideal shape of the loop transfer function in his 
work on design of feedback amplifiers. A key problem in 
the design of a feedback amplifier was to devise a feedback 
loop so that the performance of the closed-loop is invariant 
to changes in the amplifier gain. Bode presented an elegant 
solution to this robust design problem, which he called the 
ideal cutoff characteristic, nowadays known as Bode’s 
ideal loop transfer function, with the transfer function 

( )( ) /CGG s s αω=  where CGω  is the gain crossover 
frequency and the constant phase margin is 

/ 2mφ π απ= − , whose Nyquist plot is a straight line 
through the origin giving a phase margin invariant to gain 
changes. This frequency characteristic allows robustness of 
the system to parameter changes or uncertainties, and several 
design methods have made use of it. We can say that the 
pioneering applications of fractions calculus in the control 
theory date back to the sixties. The frequency response and the 
transient response of the non-integer-order integral (Bode’s 
loop ideal transfer function) and its application to control 
systems was introduced by Manabe [34]. 

In the nineties, Oustaloup and his group [33] proposed a 
non-integer robust control strategy named CRONE 
(Commande Robuste d'Ordre Non-Entier) based on non-
integer derivatives and demonstrated significant 
improvement of CRONE controllers over integer PID 
controllers. There are three generations of CRONE 
controllers [35-38], where CRONE controllers are obtained 
using a rational form and the major differences between the 
three generations lie in the design of the open-loop, the 
slope of which depends on consideration of plant 
uncertainty. In the same time, the TID scheme proposed by 
[39], the proportional compensating unit of a classical PID 
device is replaced by an element referred to as a “tilt” 
compensator with the transfer function equal to (1/ )ns−  
where n is a positive integer. The introduction of the (1/ )ns−  
into the PID structure helps realize a better approximation 
of a theoretically optimal loop transfer function and hence 
improves the performance of the feedback control system 
as a whole. Another well-known fractional control 
algorithm is the fractional-order PID (FOPID, or PI Dλ μ ) 
controller introduced by Podlubny in time domain, [40] 
where the FPID controller involves an integrator of the 
fractional order λ  and a differentiator of fractional order 
μ . Also, the PI Dλ μ  controller is studied by [41] in the 
frequency domain. Recently, the subclass of the fractional-
order controllers is still analyzed in the frequency domain 
to take advantage of the fractional order λ  in process 
compensation, [42]. 

Further research activities run in order to define new 
effective tuning techniques for non-integer order controllers 
by an extension of the classical control theory, [43]. In this 
respect, in [44], the extension of derivative and integration 
orders from integer to non-integer numbers provides a more 
flexible tuning strategy. An optimal fractional-order PID 

controller based on specified gain and phase margins with a 
minimum integral squared error (ISE) criterion is suggested 
and discussed in [45].The tuning of integer-order PID 
controllers is addressed in [46-48] by minimizing an 
objective function that reflects how far the behavior of the 
PID is from that of some desired fractional-order transfer 
function (FOTF). Generally, tuning methods for fractional 
PIDs can be divided into types: analytical, numerical and 
rule-based. Numerical tuning of fractional PIDs relies on 
the numerical evaluation of an objective function which 
measures the extent to which several design specifications 
are fulfilled, weighting them as the control designer finds it 
appropriate. 

GA-based optimal FOPID control  

Tuning of the FOPID controller-problem statement 
The fractional order PID controller (FOPID) is the 

generalization of a standard (integer-order) PID (IOPID) 
controller, whereas its output is a linear combination of the 
input and the fractional integer/derivative of the input. 
Thanks to the widespread industrial use of PID controllers, 
even a small improvement in PID features, achieved by 
using PI Dβ α , could have a relevant impact. One of the 
most important advantages of the PI Dβ α controller is the 
better control of dynamical systems which are described by 
fractional order mathematical models. Recently published 
results, [50,51] indicate that the use of a fractional-order 
PID controller can improve both the stability and 
performance robustness of feedback control systems. 
Another advantage lies in the fact that the PI Dβ α  
controllers are less sensitive to changes of the parameters of 
a controlled system [51,52]. In fact, it affords more 
flexibility in PID controller design due to the selection of 
five controller parameters that involve the proportional 
gain, the integral gain, the derivative gain, the integral 
order, and the derivative order. 

In order to pose the same ease of use of standard PID 
controllers, many different methodologies for the design of 
FOPID controllers have been introduced in the literature. 
Some of these techniques are based on an extension of the 
classical PID control theory. The time equation of the 
FOPID controller ( PI Dβ α ), is given by: 

 0 0( ) ( ) ( ) ( )p d t i tu t K e t K D e t K D e tα β−= + +  (24) 

The continuous transfer function of the controller is 
obtained through the Laplace transform as PI Dβ α : 

 ( )( ) , ,p i d
FOPID

K s K K s
G s R

s

β β α

β α β
+

++ +
= ∈  (25) 

However, in theory, PI Dβ α  itself is an infinite 
dimensional linear filter due to the fractional order in the 
differentiator or the integrator. Furthermore, the fractional 
effect has to be band-limited when it is implemented. 
Therefore, the fractional integrator must be implemented as 

( ) 11/ 1/s s sβ β−= , ensuring this way the effect of an 
integer integrator 1/ s  at a very low frequency. Similarly to 
the fractional integrator, the fractional differentiator sα has 
also to be band-limited when implemented, ensuring this 
way a finite control effort and noise rejection at high 
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frequencies. For practical digital realization, the derivative 
part has to be complemented by the first order filter 

 1( ) 1 ,
1

d
FOPID p

di

T sG s K Ts T sN

α

β

⎛ ⎞
⎜ ⎟= + +⎜ ⎟
⎜ ⎟+
⎝ ⎠

 (26) 

The controller parameters are the proportional gain pK , 
the derivative gain dK , the integral gain iK , the noninteger 
order of the derivative α  and the integrator β , as well as 
the integral time constant, /i p iT K K= , and the derivative 
time constant /d d pT K K= .   

The tuning rules of fractional-order PID (FOPID) 
controllers are much more complex compared with standard 
PID (IOPID) controllers having only three parameters. 
Unlike conventional PID controllers, there is no systematic 
and rigor design or a tuning method existing for PI Dβ α  
controllers. Many of the tuning methods proposed so far for 
the design of FOPID controllers have been based on 
mathematical optimization, where the design of fractional 
PID controllers could be treated as a multi-objective 
optimization problem, which is to compromise the rapidity, 
stability and accuracy of system control.  

For the most applications, load disturbances are typically 
low frequency signals and their attenuation is a very 
important characteristic of a controller. It is shown [4] that 
by maximizing the integral gain iK , the effect of load 
disturbance at output will be minimum. Some works use 
performance indices as the  objective functions as follows: 
integral of the absolute value of the error (IAE), mean of 
the squared error (MSE), integral of time multiplied by the 
absolute error (ITAE), integral of the absolute magnitude of 
the error (IAE), and integral of the squared error (ISE) 

 
( )( )2

2

2

1( ) , ,

( ) , ( ) ,

( )

IAE e t dt MSE e t dtT
ITAE t e t dt ISE e t dt

ITSE te t dt

= =

= =

=

∫ ∫
∫ ∫
∫
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The authors [49] use a set of frequency-domain 
specifications to formulate the PI λ  and PI Dλ μ  tunings as 
a nonlinear optimization problem, in which the best 
solution to a constrained nonlinear equation has to be 
found. Particularly, there is a need for an effective and 
efficient global approach to optimize these parameters 
automatically. In that way, several other authors exploit 
well-known intelligent and evolutionary search algorithms 
to find the optimal set of parameters for their fractional 
controllers [53–56]. 

Optimal tuning FOPID using genetic algorithms (GA) 
Using genetic algorithms for determining the optimal 

parameters of fractional order PID controllers, [57,58] is 
proposed here. Recently, GA have been recognized as an 
effective and efficient technique to solve optimization 
problems, [4,5,57,58]. As a mathematical means for 
optimization, genetic algorithms (GA) can naturally be 
applied to the optimal-tuning of fractional order PID 
controllers. GA is one of the optimization methods based 
on the natural selection such as inheritance and mutation. 
GAs are simulated in a computing system, and consist in a 
population of representations of candidate solutions for an 

optimization problem, that evolve towards better solutions. 
GA is a search technique that manipulates the coding 
representation of a parameter set to search a near optimal 
global solution through cooperation and competition among 
potential solutions. This algorithm is highly relevant for the 
industrial application, because it is capable of handling a 
problem with constraints, objectives and dynamic 
components. This paper thus describes the application of 
GA to the fine-tuning of the parameters for fractional PID 
controllers. In real coding implementation, each 
chromosome is encoded as a vector of real numbers, of the 
same lengths as the solution vector. According to control 
objectives, five parameters , , , ,p d iK K K α β  of a fractional 
PID controller are required to be designed in these settings. 
This study introduces a next optimality criterion which 
involves besides the steady state error e, i.e IAE, the 
overshoot 0P , as well as the settling time sT .  

 0 sJ P T edt min= + + →∫  (28) 

The fitness function is designed as: 

 max ming gf J J J= + −  (29) 

where are max min,J J  the largest value and the smallest  
value of J , respectively, observed thus far, as well as gJ  
value of the criterion for the current population. All the GA 
parameters are arranged as follows: 
- population size: 100N = ; 
- crossover probability: 0.75cp = ; 
- mutation probability: ( )0 min 1, l gm mp p=  
- 0 0.1mp =  - initial mutation probability,  
- 25l = - generation threshold,  
- g  - current number of the generation 
- generation gap 0.35gr =  

Here, remainder stochastic sampling with replacement is 
used as a selection method. In our case, the stopping 
conditions for GA are: the GA stops when the maximum 
number of generations (2.5N) has been reached or the first 
50% of individuals reaches approximately the same value 
of the fitness function.  

Simulations and discussion 

FOPID control for a robotic system  
Simulation studies have been carried out to verify the 

effectiveness of the proposed fractional PID controller 
tuned by genetic algorithms for robot control. Both the 
FOPID and the integer order IOPID controllers are 
designed based on the proposed GA. For the calculation of 
fractional derivatives and integrals, the Crone 
approximation of the second order was used, [59,60]. 

A robotic system with 3 DOF’s is used here, Fig.3a, 
driven by 3 DC motors, where Rodriguez` method 
[58,61,62], is proposed for modeling the kinematics and 
dynamics of the robotic system. Equations of motion of the 
robotic system can be expressed in the identical covariant 
form as follows  



28 LAZAREVIĆ,M.: FURTHER RESULTS ON FRACTIONAL ORDER CONTROL OF A MECHATRONIC SYSTEM  

 ,
1 1 1

( ) ( )

1,2,..., .

n n n

i i ia q q q q q Q

i n

βα α
α αβ

α α β= = =

+ Γ =

=

∑ ∑∑ , (30) 

where the coefficients aαβ  are the covariant coordinates of 

the basic metric tensor [ ] n na Rαβ
×∈  and ,αβ γΓ  

, , 1, 2,...,nα β γ =  presents Christoffel symbols of the first 
kind as well as iQ  are generalized forces. The equivalent 
circuit of a DC motor is represented in Fig.3.b. 

 

Figure 3.a) Robot with 3 DOF’s 

 
Figure 3.b) The equivalent circuit of a DC motor 

The next equation describes the given circuit of a DC 
motor  

 ( )( ) ( ) ( ), 1, 2,3i
i i i i vi

di tR i t L ems t u t idt+ + = =  (31)  

where iR , iL , ii  and viu  are, respectively, resistance, 
inductivity, electrical current and voltage. Electromotive 
force is ( ) /i e mems t k dq dt=  where ek const=  and ( )mq t  
is a generalized coordinate of a DC motor. If there is a 
reductor with a degree of reduction iN  than is 

( ) ( ), 1, 2,3mi i iq t N q t i= = . It can be assumed that  

 ( ) ( )u
i i m iQ t N k i t=  (32) 

where mk const=  is the torque constant as well as that 
0L ≈ . If the equation of a robotic system (30) is combined 

with (32), and (31) becomes 

 [ ] ( )1 ( )m e vR NK A(q)q+C(q,q + K Nq = u t−  (33) 

or in state space, [ ]1 2 3
T

px q q q= , [ ]1 2 3
T

vx q q q= , as 
follows 

  ( )
3 3

1
0

( )vp
v•-1

p vv m

xxx u tA (x )C x Fxx NK R
×

−
⎡ ⎤ ⎡ ⎤⎡ ⎤= = +⎢ ⎥ ⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎣ ⎦⎣ ⎦

 (34) 

 ( ) py h x x= =  (35) 

where ( ) [ ] ( )1*
p m pA x R NK A x−= , 1

m eF NK R K N−= . In 
order to obtain a step response, a simulation model has been 
developed using the Simulink Library of MATLAB by 
using a special toolbox for non-integer control. In this case, 
each individual vector has the FOPID parameters (five 
parameters) where for reducing the time of optimization, 
the ranges of FOPID parameters are selected as, [58]: 

 
[ ] [ ]
[ ] ( ]

[ ]

10, 200 , 0,100 ,
10, 200 , 0.2,1 ,

0,1 ,

p i

d

K K
K α
β

∈ ∈
∈ ∈

∈
 (36) 

Table 1. The optimal parameters of the FOPID controller and the IOPID 
controller based on GA 

controller pK  iK  dK  β  α  optJ  

1. 199 2 24 1 1 0.98651 

2. 212 2 26 1 1 0.84875 PID  

3. 246 1 28 1 1 0.68718 

1. 199 2 24 0.020 0.965 0.69887 

2. 212 2 26 0.145 0.933 0.72954 FOPID
3. 246 1 28 0.135 0.932 0.56187 

In Table 1, the optimal parameters of the FOPID and 
IOPID controllers are presented using GA. The step 
responses of these two optimal FOPID/IOPID controllers, 
presented in Figs.4-6, are compared in simulations. 
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Figure 4. The step responses of the ( )[ ]1 1 radq q t  - using the optimized 
FOPID and IOPID controller 
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Figure 5. The step responses of the ( )[ ]2 mq t  - using the optimized 
FOPID and IOPID controller 
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Figure 6. The step responses of the ( )[ ]3 radq t  - using the optimized 
FOPID and IOPID controller 

As it can be seen from Figs.4-6 and Table1, a better 
performance for robot control can be achieved using 
FOPID. We can conclude from this comparison that the 
optimal FOPID controller gives a better performance for 
robot control as compared to the optimal IOPID controller 
method.  

FOPID control for the expansion turbine in the cryogenic 
air separation process 

Another application of FOPID is also presented here, 
[63]. Namely, tuning FOPID based on GA as well as 
classical PID controllers is proposed. It is applied to the 
control of a cryogenic process of mixing of two gaseous 
airs flows at different temperatures before the entrance of 
the expansion turbine. The cryogenic air separation process 
is operated at extremely low temperatures (-170 to -190oC) 
to separate air components according to their different 
boiling temperatures and it takes place in  air separation 
units (ASUs) which present cryogenic distillation systems. 
Due to high demand for these commodity materials, the 
ASU has become a crucial technology in many processes 
including the next generation of power plants. The 
cryogenic air separation process is an energy- intensive 
process that consumes a tremendous amount of electrical 
energy. Therefore, an ASU must automatically and rapidly 
respond to the changing product demand from customers. 
As expected, there is a significant economic interest in 
reducing the operating costs of ASUs through advanced 

process control technology. So far, the dominating control 
practice in ASU processes has been to adapt traditional 
regulatory controllers to maintain good performance. A 
number of studies on the process control and optimization 
of the cryogenic air separation process have been published, 
[64-66]. Also, numerous uncertainties make effective 
operation of these complex processes difficult. The 
cryogenic distillation process can be very complex in 
practice, but here a simplified model that approximates the 
actual process is used for the analysis. 

Improving the implementation of traditional PID 
controllers by applying FOPID controllers tuned by GA is 
proposed here.  

Fig.7 presents the diagram of the process and a 
symbolic-functional scheme with relevant variables ( 56G  
gas air flow at the entrance to the expansion turbine, the 
position control valve 946TV A - [ ]mmAY  as well as 

946TV B - [ ]mmBY , [ ]5 5T Kθ =  temperature gas air 

environment with exchangers, [ ]3 3T Kθ = , temperature air 

with the end of the cold heat exchangers, [ ]1 1T Kθ =  - heat) 

 
Figure 7. Diagram of the cryogenic process (а) symbolic-functional 
scheme (b) 

After the linearization of the model that describes the 
cryogenic process of mixing two gaseous air flows at 
different temperatures before the entrance of the expansion 
turbine, one can obtain a simplified model as an MIMO 
system  

 
( ) ( ) ( )0, 2 0 45,736 28,07

0 0,2 0,174 0,085
0 0 ( )0,088 0,112

x t x t u t

z t

−⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
⎡ ⎤+ ⎢ ⎥⎣ ⎦

  

 ( ) ( )1 0
0 1y t x t⎡ ⎤= ⎢ ⎥⎣ ⎦

 (37) 

where the corresponding vectors are, 
( ) ( )[ ]( ) T

A Bu t y t y t= , ( ) ( )[ ]1 2( ) Tz t z t z t= . To decouple 
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the system, applying a new input ( )u t  by means of 
feedback, ( ) ( )( )c cu t K x t F v t= − + , it yields  

 ( ) ( ) ( )1 0 0 0
0 1 0.088 0.112x t v t z t⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (38) 

The proposed approach based on the fractional PID 
control tuned by GA is also used for the control of a 
cryogenic process of mixing two gaseous airs flows at 
different temperatures before the entrance of the expansion 
turbine. In this case, each individual vector has the FOPID 
parameters (five parameters) where, for reducing the time 
of optimization, the ranges of FOPID parameters are 
selected as 

 [ ] [ ]
[ ] ( ] [ ]
0,20 , 0,20 ,
0,20 , 0,1 , 0,1 ,

p i

d

K K
K α β

∈ ∈
∈ ∈ ∈

 (39) 

Table 2. presents the optimal parameters of FOPID and classical PID 
controllers using GA. 

controller pK  
iK  A  β  α  J  

1. 15 1 0 1 1 0.81 PID  2. 15 7 0 1 1 19.15 
1. 13 3 11 0.034 0.073 0.24 FOPID  
2. 14 8 11 0.98 0.069 13.22 

Table 2. The optimal parameters of the FOPID controller and the conventional 
IOPID controller based on the proposed GA-cryogenic process 

 

Figure 8. The step responses of the ( ) ( ) 3
1 1 Nm /hi iy t x t ⎡ ⎤= ⎣ ⎦ - gas air flow at 

the entrance to the expansion turbine using the optimized FOPID and 
conventional PID controller. 

 

Figure 9. The step responses of the ( ) ( ) [ ]2 2 Ki iy t x t=  - gas air tempe-
rature at the entrance to the expansion turbine using the optimized FOPID 
and conventional PID controller. 

As it can be seen in Fig.8, the step response of the 
( ) 3

1 /Ny t m h⎡ ⎤⎣ ⎦  - gas air flow at the entrance to the expansion 

turbine (disturbances are [ ] [ ]1 210 , 10z K z K= = ) using the 
optimized FOPID controller and the conventional PID 
controller has a better transient response in the case of the 
FOPID controller. Also, we have obtained that the 
overshoot in the FOPID controller is 0.006% and the rising 
time is 0.184. On the other hand, in the classical PID, the 
overshoot is 0.43% and the rising time is 0.248. Also, Fig.9 
represents the step response of the the [ ]2 ( )y t K  - gas air 
temperature at the entrance to the expansion turbine, 
applying the optimized FOPID and the conventional PID 
controller. In a similar way, we obtained in the robust 
FOPID controller that the overshoot is 8.19% and the rising 
time is 4.520; while in the robust classical PID the 
overshoot is 14.25% and the rising time is 4.609. 

Conclusion 
This paper proposes and studies an advanced algorithm 

of the FOPID control based on genetic algorithms in the 
position control of a 3 DOF`s robotic system driven by DC 
motors. The present work tries to focus on those 
characteristics of GA tuning approach taking into account 
the optimality criterion and their extension for FOPID –
IOPID controllers in a comparative manner. From this 
comparison, we can conclude that the optimal FOPID 
controller gives better performance in the position control 
of the robotic system as compared to the optimal IOPID 
controller method. We also proposed a robust FOPID 
controller as well as an IOPID controller tuned by GA in 
the control of the cryogenic process of mixing two gaseous 
air flows at different temperatures before the entrance of the 
expansion turbine. This method allows the optimal design 
of all major parameters of  FOPID and IOPIOD controllers 
where the step responses of the two proposed optimal 
controllers are compared. A time-domain simulation 
confirms  better the performance of the FOPID controller 
with respect to a traditional optimized IOPID controller. 
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Novi rezultati upravljanja necelobrojnog reda datim  
mehatroničkim sistemom  

Ovaj rad predstavlja jedan novi algoritam PID upravljanja necelobrojnog reda zasnovani na genetskim algoritmima 
(GA) u zadatku pozicioniranja robotskog sistema sa tri stepena slobode pogonjen jednosmernim motorima. Urađena su 
optimalna podešavanja parametara FOPID kontrolera kao i IOPID kontrolera, primenom  GA pristupa za date 
FOPID/IOPID kontrolere na uporedni način. Efektivnost predloženog optimalnog FOPID upravljanja je demonstrirano 
na datom robotskom sistemu kao jednim ilustrativnim primerom. Takođe, u preostalom delu  rada prezentovano je 
projektovanje naprednog algoritma FOPID upravljanja podešavanog primenom GA i primena u upravljanju 
proizvodnjom tehničkih gasova, tj. kriogenog procesa separacije vazduha. Zatim je izvedeni model linearizovan i 
raspregnut i gde su zatim primenjeni IOPID i FOPID kontroleri. Na sličan način, skup optimalnih parametara datih 
kontrolera su dobijeni primenom GA optimizacione procedure minimizujući predloženi kriterijum optimalnosti. 
Konačno, koristeći rezultate simulacije u vremenskom domenu pokazano je da FOPID kontroler poboljšava odgovor 
sistema u prelaznom režimu i obezbeđuje više robusnosti u poređenju sa klasičnim IOPID kontrolerom.  

Ključne reči: algoritam upravljanja, PID kontroler, genetski algoritmi, robotika, kriogeni proces, mehatronika. 

Новые результаты управления дробными порядками данной 
мехатронной системой 

Эта статья представляет собой новый алгоритм ПИД управления дробных порядок, основанный на 
генетических алгоритмах (ГА) в задаче позиционирования роботизированной системы с тремя степенями 
свободы с приводом от электродвигателя постоянного тока. Исполнены оптимальные настройки параметров 
ФОПИД контроллера и ИОПИД контроллера с помощью ГА подходa на сегодняшний день ФОПИД/ИОПИД 
контроллеров на сопоставимой основе. Эффективность предложенного оптимального ФОПИД управления 
показано на данной роботизированной системe в качестве иллюстративного примера. Кроме того, на 
оставшуюся часть работы представленнa разработка усовершенствованных алгоритмов управления ФОПИД 
приспособлeнного использованием ГА, a в том числe и применение в управлении производством технических 
газов, то есть криогенного процесса разделения воздуха. Затем получeннaя модель сделaнa линейной и 
развязaной, где затем применены ИОПИД и ФОПИД контроллеров. Аналогично, сoвокупность множествa 
данных оптимальных параметров контроллера получаются применением ГА оптимизации процедуры при 
минимизации предложенного критерия оптимальности. Наконец, используя результаты моделирования во 
временной области, как было показано ФОПИД контроллер улучшает реакцию системы в переходном режиме и 
обеспечивает более надежности по сравнению с обычным класическим ИОПИД контроллерoм. 

Ключевые слова: алгоритм управления, ПИД-регулятор, генетические алгоритмы, робототехника, криогенные 
процессы, мехатроника. 

Nouveaux résultats dans le contrôle de l’ordre fractionnel par le 
système mécatronique donné  

Ce papier présente un nouveau algorithme du contrôle PID de l’ordre fractionnel basé sur les algorithmes génétiques (AG) 
dans la position du système robotique à trois degrés de liberté actionné par les moteurs à courant continu. On a effectué les 
ajustages optimales pour les paramètres des contrôleurs FOPID ainsi que pour les contrôleurs IOPID par l’approche AG 
pour les contrôleurs FOPID/IOPID donnés de façon comparative. L’efficacité du contrôle optimale du FOPID proposé a été 
démontrée sur le système robotique donné en exemple illustratif. Ensuite on a présenté la conception de l’algorithme avancé 
du contrôle FOPID ajusté pour l’utilisation du AG et par l’application dans la production des gaz techniques c’est-à-dire le 
processus cryogène de la séparation de l’air. Le modèle dérivé a été ensuite linéarisé et découplé et on y a utilisé les 
contrôleurs FOPID et IOPID. De même façon on a obtenu l’ensemble des paramètres optimales des contrôleurs donnés par 
l’emploi de la procédure d’optimisation AG et en minimisant le critère proposé d’optimisation. Enfin en utilisant les résultats 
de la simulation dans le domaine temporel on a démontré que le contrôleur FOPID améliore la réponse du système dans le 
régime transitoire et assure plus de robustesse que le contrôleur IOPID conventionnel.  

Mots clés: algorithme de contrôle, contrôleur PID, algorithme génétique, robotique, processus cryogène, mécatronique. 
 


