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Abstract. In this paper, the applications of biologically inspired modeling and control
of (bio)mechanical (non)redundant mechanisms are presented, as well as newly obtained
results of author in mechanics which are based on using fractional calculus. First, it is
proposed to use biological analog—synergy due to existence of invariant features in the
execution of functional motion. Second, the model of (bio)mechanical system may be
obtained using another biological concept called distributed positioning (DP). which is
based on the inertial properties and actuation of joints of considered mechanical
system. In addition, it is proposed to use other biological principles such as: principle of
minimum interaction, which takes a main role in hierarchical structure of control and
self-adjusting principle (introduce local positive/negative feedback on control with great
amplifying), which allows efficiently realization of control based on iterative natural
learning. Also, new, recently obtained results of the author in the fields of stability,
electroviscoelasticity, and control theory are presented which are based on using
fractional calculus (FC).
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1. INTRODUCTION

The field of biomimetics and biologically inspired principles from the application of
methods and systems found in nature to engineering and technology, has spawned a
number of innovations far superior to what the human mind alone could have devised,
[1-3]. Also, the fast growing interest in flexible, versatile and mobile robotic
manipulators demands for robots with inherent high passive safety suited for direct
human-robot interaction. Traditional robotic systems and industrial manipulators
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demonstrate outstanding specifications regarding, for example, precision and speed
movement. Some complex industrial — and especially non-industrial tasks — recently
induced a new approach to robot design and control in order to achieve very stable, fast,
and accurate systems. Biologically inspired approaches have recently succeeded in
design and control in robotics [2-4]. Biological systems have been evolved to optimize
themselves under selective pressures for a long time. Biological organisms have evolved
to perform and survive in a world characterized by rapid changes, high uncertainty,
indefinite richness, and limited availability of information. General biomechanical
systems including the human body as well as the bodies of mammals and insects are also
redundantly actuated. For example, mobility of the human upper-extremity (arm) can be
considered as 7 DOF’s, while it has 29 human actuators (i.e, muscles) and accordingly, it
has 22 redundant actuators, [3]. A robotic manipulator is called kinetically redundant if it
has more degrees of freedom (DOF) then required for a realization of a prescribed task in
a task space. The kinematic redundancy in a manipulator structure yields increased
dexterity and versality and also allows avoiding collisions with obstacles by the choice of
appropriate configurations, [5]. Also, redundant actuation can be also found in many
robotic applications, [6].
First, it is proposed using biological analog-synergy due to existence of invariant
features in the execution of functional motion, Bernstein (1967)_(i.e. rule(s) that can be
developed by central nervous system (CNS) based on some principles), [1]. New,
synergy approach allows resolving redundancy control problem i.e. actuator redundancy,
in the framework of optimal control problem which it is solved by Pontryagin's
maximum principle. It is suggested joint actuator synergy approach which is established
by optimization law at coordination level, where it is introduced a central control, [7]. In
that way, one may obtain a specific constraint(s) on the control variables. Also, modeling
and resolving kinematic redundancy of (bio)mechanical/robotical system in synergy like
fashion, can be achieved using optimization law with suitable kinematic and dynamic
criteria which are the function of generalized coordinates, velocities, accelerations and
control vectors, respectively, [8, 9]. Second, model of (bio)mechanical system may be
obtained using another biological concept called distributed positioning (DP) which is
based on the inertial properties and actuation of joints of considered mechanical
system,[3], [8-10]. At last, using other biological principles is proposed, such as:
principle of minimum interaction which takes a main role in hierarchical structure of
control, [11] and self-adjusting principle (introduce local positive/negative feedback on
control with great amplifying), [8], which allows efficiently realization of control based
on iterative natural learning. In that way, control problem of coordinating segments of
(non)redundant (bio)mechanical system can be stated as an optimization problem which
is most likely to biological principle of minimum interaction. Also, the common
observation that human beings can learn perfect skills trough repeated trials motivations
the idea of iterative learning control for systems performing repetitive tasks where for
improving the properties of tracking is proposed applying principle of self-adaptability.
In the second part of this paper, new, recently obtained results of author in fields
of stability, electroviscoelasticity, and control theory which are based on using fractional
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calculus (FC) are presented, [12-20]. FC has attracted attention of researchers from
different fields in the recent years and the fractional integro-differential operators are a
generalization of integration and derivation to an arbitrary order operators and they
provide an excellent instrument for the description of memory and hereditary properties
of various materials and processes and, also obtaining more degrees of freedom in the in
the model,[3]. First of them, is an example within a new theory of electroviscoelasticity,
which describes the behavior of electrified liquid-liquid interfaces in fine dispersed
systems, and is based on a new constitutive model of liquids: fractional order model
(generalized the Van der Pol equation) with corresponding non-integer time derivative
and integral order, especially linear and nonlinear case,[4]. Also, new algorithms for
fractional iterative learning control (ILC), aD%,PD%,PI*D” types are proposed for
fractional time delay system and fractional process control PI“ D# type which include
ILC feedback control is also presented. At last,stability test procedure (finite time and
practical stability) is shown for (non)linear (non)homogeneous time-invariant fractional
order time delay systems where sufficient conditions of this kind of stability are derived.
Specially, previous results can be applied for robotic system where it appears a time
delay in PD“ fractional control system,[5].

2.FUNDAMENTALS OF BIOLOGICALLY INSPIRED MODELING AND CONTROL

As we know, control exists everywhere in complex biological systems. Recent rapid
development of biological science and technologies will further improve the active
applications of control engineering. Meanwhile, system control theory itself will also be
promoted by advanced biomimetic researches, [2], [4],_ [12]. Several theoretical concepts
have been evolved in control theory, typified by feedback control, optimal control,
sequence control, and so on,[11]. The main roles of feedback control are regulation and
adjustment, whereas optimal control involves planning and supervision with a higher
level of control state than feedback control. Meanwhile, it becomes more and more
important for the artificial systems to have high flexibility, diversity, reliability, and
affinity. System control theory, which forms the core foundation for understanding,
designing, and operating of systems, is still limited and insufficient to handle complex
large-scale systems and to process spatial temporal information in real time as biological
systems. Under this background, biomimetic and biologically inspired control research is
becoming a very important subject, [2]. In the first approach, technology approximates
the end result or function of an organ or organism. In the second approach, the principles
extracted from bio-systems may be applied in ways very much unlike those exhibited in
the originating organism. The analysis and clarification of functions of complex
biological systems mathematically at the system level, and imitation of them in
engineering, will lead to a deeper understanding of ourselves and will be significant for
constructing the next generation of advanced artificial systems such as human friendly
robots.
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2.1. Biologically inspired principle-synergy

The organization and development of brain nervous system’s motor control functions
largely depend on the physical interaction with the external environment. Self-
organization of the environmental adaptive motor function is one of the most interesting
characteristics that we should learn in biomimetic control research. From a mechanical
point of view, any human or animal represents a redundant mechanism, [2], [3]. The
nervous system takes advantage of kinematic and multi-muscle redundancies to control
actions in a flexible way so that, for example, the same motor goal can be reached
differently depending on our intentions, external environmental (e.g. obstacles) or
intrinsic (neural) constraints. Despite this flexibility, the central control of actions is
unambiguous: each time the body moves, a unique action is produced despite the
possibility of using other actions leading to the same goal. It is amazing how these
seemingly opposite aspects — flexibility and uniqueness- are combined in the control of
actions. Following Bernstein [1], we refer to these aspects of action production as the
“redundancy problem”. In other words, it was observed in the execution of functional
motions that certain trajectories are preferred from the infinite number of options [1],
[11]. Such behavior of organisms can be only explained by the existence of inherent
optimization laws in self-organized systems governing the acquisition of motor skills.
Existence of invariant features in the execution of functional motions points out that
central nervous system (CNS) uses synergy (i.e rule(s) that can be developed by the CNS
based on some principles). In fact, such behavior implies that it obeys the optimization at
the coordination level where the goal is to minimize efforts in terms of synergy patterns.
Speaking mathematically, the synergy imposes specific constraints on the control
variables of joints which are related to the task dependent functions pertaining to classes
of motor acts. For example, the control of arm movement in humans also relies very
much on distributed usage of different joints, and inherent optimization of muscles which
are active. Arm muscles are found grouped in pairs about simple hinge joints where even
in the simplest case of two antagonist muscles about a joint there are two distinct control
variables. Moreover, muscles should be regarded as functional units with more than one
control and activation parameter. Also, the biological muscle is the starting point for
many new approaches by the development of new actuators for robotics. Beside the
direct simulation of biological systems [2], there are different approaches to mimic
biological operational principles in technical systems, [11].

Here, the redundancy control problem has been discussed in the framework of optimal
control problem which is solved by Pontryagin's maximum principle. Joint actuator
synergy approach is suggested which is established by optimization law at coordination
level, where is introduced a central control as suggested Bernstein in [1]. In that way, one
may obtain a specific constraint(s) on the control variables. The dynamic model of robot
can be described with application set of the 2n Hamiltonian equations with respect

to Hamiltonian phase variables g, p; [13] where conjugate (canonical) momenta p;
. _OH . JH

g, _5_pi D, =—0,7—qi+Qi(u), i=12,..,n (1)
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where is H (q, p) Hamiltonian and Q;, i=12,..,n be non-conservative control forces.
For a global optimization, the problem is set up as following

t
J = [ f,(q, p,u)dt - min )
fo
The goal is to find wu(t), t, <t<t  which drives system from given initial state
(9o, Po) to a final state (q,, p,) under the condition that the whole trajectory minimizes
the performance criterion. Performance criterion is introduced at coordination level as the
energy criterion which is, in our case, functional sum of weighted controls of the robot

f (u) :%UT Ru (3)

Alternatively, the control can be smoothed by minimizing an energy function, quadratic
in control, in addition to time. Here, t, t, are the initial and final time of an end-effector

movement, which are known and fixed. The control weighting matrix
R=diag{n,r,,...r,} is symmetric positive definite matrix; u(t) must be entry of a
given subset U of admissible controls of m-dimensional Euclidean space:
u(t) eU = R™. Itis also assumed that optimal control problem has a solution. Applying
biologically inspired concept of control, and introducing central control u_ as suggested
Bernstein [1], one may introduce control vector u :[ul,uz,us,uC]T. Also, generalized
forces can be presented as functions of components of control u as

Q=u+u,i=123 u=[u,u,,u,u] 4)

It means that we have four motors, a “central” motor which produces u,, and rest of

motors (corresponding controls u, u,,u,) are placed at each joint separatery. In that way,

one of possible control strategies is established. Taking in a account condition of optimal
control based on the Pontryagin’s maximum principle and applying the matrix theory it
implies that following condition must be fulfilled:

10 0 ur
01 0 u
det Ll g ©)
00 1 ur
1 1 1 ur,
After some algebraic operations it yields
UsTy = Ui T +UsT, +UgT, (6)

Equation (6) presents an invariant on control variables “control synergy”- which is
established by optimization law at coordination level. In order to obtain finite solutions
of the problem mentioned, it is necessary to solve two-point boundary value problem for
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a system of ordinary differential equations or, even in particular cases, to solved
complicate algebraic problems. The proposed biologically inspired optimal control is
illustrated by simulation results of a robot with 3 DOF's (Fig.1) and 4 control variables
(Fig.2-5),see [7].

Fig 1. Autolemec ACR with three DOFs
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Fig.4. Optimal control u3 Fig.5. Optimal control uc

2.2 Biologically inspired principle - distributed positioning (DP)

The relatively new approach in modeling redundant mechanism is based on biological
analog i.e, the modeling is based on the separation of the prescribed movement into two
motions: smooth global, and fast local motion, called distributed positioning (DP).
Distributed positioning is an inherent property of biological systems. It is based on the
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inertial properties and actuation capabilities of joints. Humans, when writing, as shown
in literature control their proximal joints, while the movement of distal joints follow
them. Writing is a good representative of task that is characteristic for humans, but at the
same time interesting for robots. It is fast and accordingly very demanding from the
viewpoint of dynamics (high accelerations produce high inertial loads). In humans highly
inertial arm joints (shoulder and elbow) provide smooth global motion, and low inertial
hand joints (fingers) perform fast and precise local motions, [3],[10]. Acceleration of
massive segments leaded to drive overload and required redundancy. Let, the position
of the arm be defined by the vector of joint (internal) coordinates of dimension

n=28:q =[q1 a, ...qS]T. The position of the terminal device (pencil) is defined by the

vector of external coordinates of dimension n,=5: X =[xy z (p]T, where x,y,z
define the tip position and angles @,¢ define the pencil axis. The kinematic model of the

arm-hand complex i.e. the transformation of coordinates (internal to external and vice
versa) is highly nonlinear

X =f(q) (7

where f is the function: R® — R®. The inverse kinematics (calculation of g for given X)
has an infinite number of solutions since (7) represents a set of 5 equations with 8
unknowns. this is due to presence of redundancy. The dimension of redundancy is
n, =n-n, =8-5=3. The kinematic model can be written in the Jacobian form of the

first or of the second order
X=3(a)4, X=3(q)d4+A@9) (8)
where J is n,xn (i.e. 5x8) Jacobian matrix and A is n,x1 (i. e. 5x1) adjoint vector

containing the derivative of the Jacobian. Let X7 be the subvector containing the
accelerated motions (dimension N,), and X, be the subvector containing the smooth

X = Xy 9
) g

The redundant robot (n=8DOFs) is now separated into two subsystems,Fig.6. The
subsystem with n, =5 DOFs with greatest inertia is called the basic configuration. The

other subsystem is the redundancy having n. =3 DOFs. It holds that n=n, +n, .
Analysing the plane writing task one finds that there are n,=2 accelerated external
motions : x(t) and y(t). The others (z,8,¢) are constant or smooth. According to DP

motions ( n, —n, ). Now

concept we introduce X, =[x y]T and X, =[z 0 go]T. It can be defined the basic

T
configuration as a mechanism g, :[q1 a, ....q5] .The resting joints, one wrist joint

ge and “fingers " (g, dy), form the redundancy and ¢, =[q, g, qSJT defines the

position of the redundancy. The DP concept solves the inverse kinematics of a redundant
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robot in two steps. At the first step the motion of basic configuration is calculated (qp)
using kinematic model and properties DP concept, and at the second step the motion of

redundancy ((, ) is determined, [3].
hand

support

shoulder

~

Fig. 6. Eight-DOF arm-hand complex

2.2. Principle of minimum interaction in hierarchical control

Also,motor control is organized as a multilevel structure, is generally accepted. In
assistive system involves man as the decision maker, a hierarchical control structure can
be proposed with three levels from the left to right: voluntary level, coordination level,
actuator level. This imposes the robotic system is decomposed into several subsystems
with strong coupling between subsystems. For an instance, the system dynamics of
redundant robot are described by:

F,={U,Y,Z):R =0,F, =0}, (10)
where U € R™ is the control input vector, Y € R" the output vector, and Z e R" the

vector representing interactions between the two subsystems(segments),Fig.7. The cost
function of a multiple-system is the sum of the cost functions of all subsystems:

J(U,Z,Y):iJi, (11)
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Fig.7. Coordination of two subsystems

The problem of coordinating multiple systems can be stated as an optimization problem:
minimize the cost function J subject to the constraint F . In monograph [8], it is stated
and solved the Bernstein problem which is related to kinematic redundancy of ARA. It
is treated control of a anthropomorphic robot arm (ARA) with three degrees of
freedom. The optimal control problem of continuous nonlinear dynamic systems -
(redundant robotic manipulators), with quadratic performance index can be stated as
follows. Determine U € L, (t,,t, ) such that under system constraints is minimized.

t
1
1= j["x(t)— X, (t)": o + 2ol }n > min, (12)
tO
X(t)=%= F(x(t),u(t))=g(x(t))+h(x(t)u(t), x(t,)=X,, (13)
z(t) = x(t) dimx=n,dimu=m,dimz=n, (14)

where X,U state and control vectors and Z is interaction vector; weighting matrices
Q,R,S are all block diagonal. So, problem of coordinating multiple systems can be state

as an optimization problem which is most likely to biological “principle of minimum
interaction” which is formulated by Gelfand and Tsetlin, [11]: “For complex controlling
systems, the typical structure permits the separation of individual, relatively automatic
subsystems. For each subsystem of that type all the remaining subsystems belong to the
outside environment and the expediency of the subsystems appears in the minimization of
interaction among them so that in stable conditions these subsystems function as if
independently, autonomously.” A major consequence of this principle is that the
complexity of each subsystem does not depend on the complexity of the whole system.
The application of the minimum interaction principle also leads to a structural form for
the “self-organizing” controller. The solution of stated problem of control is generated in
a sequence of steps involving a heuristic techniques of genetic algorithm that provides
reliable initial guesses. Genetic algorithms are stochastic adaptive algorithms whose
search method is based on simulation of natural genetic inheritance and striving for
survival. To solve local problems, the minimum principle is used where the multi-level
univariate hierarchical strategies is proposed. The problem is divided into two-level
optimization problem which is solved iteratively until the desired performance is
achieved, [8].
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2.3. Iterative learning control, self — adaptability

Recently, there have been extensive research activities in the topic of learning control
for controlling dynamics non-linear systems in a iterative manner. The learning control
concept differs from conventional control methodologies in that the control input can be
appropriately adjusted to improve its future performance by learning from the past
experimental information as the operation is repeated. The common observation that
human beings can learn perfect skills trough repeated trials motivations the idea of
iterative learning control for systems performing repetitive tasks. Therefore, iterative
learning control requires less a priori  knowledge about the controlled system in the
controller design phase and also less computational effort than many other kinds of
control. Learning control for controlling dynamics systems, a class of tracking systems is
applied where it is required to repeat a given task to desired precision.

ui(t) vd(®)
© T ym
€i(t) d + + i+ {t robotic =
" KE ‘ 2 _ wi () manipulator T
—
- ui(t)
é ei-1(t)
S
g

Fig.8. Block diagram of iterative learning control

In these equations t denotes time, t € [0,T], t € R, x; the state vector, x; € R", u; the
control vector, v; the vector uncertainties, u; € R™, y; the output vector of the system,

y; € R" and i denotes the i-the repetitive operation of the system. The learning controller
for generating the present control input is based on the previous control history and a
learning mechanism. Motivated by human learning, the basic idea of iterative learning
control is to use information from previous executions of the task in order to improve
performance from trial to trial in the sense that the tracking error e; (t) is sequentially
reduced. It is proposed applying biological analog - principle of self-adaptability which
introduce, here, local negative feedback on control with great amplifying. In the simplest
| case learning control law can be shown such as (see Fig.8):

Ui,y (8) = —Au,, (1) +U; (1) + K ()eK) , (15)
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where uj4(t7) =Ujq(t—7), 7— the small time delay, denotes a vector of the delayed

control signal. If the feedback delay can be neglected, (for example using very fast
processors) then: uj,q(t) =uj,q(t).

3. SOME APPLICATIONS OF FRACTIONAL CALCULUS IN MECHANICS

In the second part of this presentation are presented, new, recently obtained results of
author in fields of stability, electroviscoelasticity, and control theory which are based on
using fractional calculus (FC). FC has attracted attention of researchers from different
fields in the recent years and the fractional integro-differential operators is a
generalization of integration and derivation to an arbitrary order operators and they
provide an excellent instrument for the description of memory and hereditary properties
of various materials and processes and, also obtaining more degrees of freedom in the in
the model,[14-18].

3.1. Brief historical introduction

When in the 17th century the integer calculus had been developed, Leibniz and
L’Hospital probed into the problems on the fractional calculus (FC) and the simplest
fractional differential equations (FOEs) through letters. Leibniz asked in a letter
addressed to L"Hospital:

Can the meaning of derivatives of integral orderd" f (x)/dxn be extended to have

meaning when n is not an integer but any number (irrational, fractional or even
complex-valued)? L’Hospital responded: What if n be 1/2? d“zf(x)/dx”2 =2 for

f(x)=x. Leibniz, in a letter dated from Sept. 30, 1695, replied: It will lead to a

paradox, from which one day useful consequences will be drawn.In these words
fractional calculus was born.

Following L’Hopital’s and Liebniz’s first inquisition, fractional calculus was
primarily a study reserved for the best minds in mathematics. Futher, the theory of
fractional-order derivative was developed mainly in the 19" century. In his 700 pages
long book on Calculus, 1819 Lacroix [19] developed the formula for the n-th derivative

of y=x", m-is a positive integer,

m! m-n

Dn m=—
X (m—n)!X '

(16)

where n (s m) is an integer. Replacing the factorial symbol by the Gamma function, he
further obtained the formula for the fractional derivative
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F(ﬂ+l) .
— 7 X
F(,B—a+1)

D“x” = (17)

where o and S are fractional numbers and Gamma function T'(z) is defined for
z>0 as:

F(z):Te’xdex, I(z+1) =12I'(z), (18)

In particular, he calculated

v2,, I'(2) 12 _
D X—L_(slz)}x =2Jx/lr, (19)

On the other hand, Liouville (1809-1882) formally extended the formula for the
derivative of integral order n

D"e® =a"e® = D% =a%e®, «—arbitraryorder , (20)

Using the series expansion of a function, he derived the formula known as Liouville's
first formula for fractional derivative, where o may be rational, irrational or complex.

D“ f (x) = zcnaﬁ!eanx , 21)
n=0
where
f(x):icn exp(a,x), Rea, >0, 22)
n=0

However, it can be only used for functions of the previous form. Also, Liouville
formulated another definition of a fractional derivative based on the Gamma function
(see below) such as:

a F(a+ﬂ) X—[)’—a
r(p)
which is known as Liouville's second definition of fractional derivative.Also his second

definition is useful only for rational functions.Neither of his definitions was found to be
suitable for a wide class of definitions.The derivative of constant function g =0 is zero

because I'(0) = . On the other hand, the Lacroix definition gives:

D*x " =(-1) >0, (23)

1
Dl=———x“%0,, 24
F(l—a)x ” 24)
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But,Lacroix's method could not be applied to many functions, so was not useful in a
broad context. The modern epoch started in 1974 when a consistent formalism of the
fractional calculus had grown to such extent, that in 1974 the first conference was held in
New Haven. In the same year the first book on fractional calculus by Oldham and
Spanier [15] was published after a joint collaboration starting in 1968. Applications of
FC are very wide nowadays, in rheology, viscoelasticity, acoustics, optics, chemical
physics, robotics, control theory of dynamical systems, electrical engineering,
bioengineering and so on, [14-18].The main reason for the success of applications FC is
that these new fractional-order models are more accurate than integer-order models, i.e.
there are more degrees of freedom in the fractional order model. Furthermore, fractional
derivatives provide an excellent instrument for the description of memory and hereditary
properties of various materials and processes due to the existence of a “memory” term in
a model. This memory term insure the history and its impact to the present and future.

3.2. Fundamentals of fractional calculus

Fracional calculus is a name for the theory of integrals and derivatives of arbitrary
order, which unify and generalize the notions of integer-order differentiation and n-fold
integration. At present, based on the different background and purpose there are some
other definitions of FC. There exist today many different forms of fractional integral
operators, ranging from divided-difference types to infinite-sum types, Riemann-
Liouville fractional derivative, Grunwald-Letnikov fractional derivative, Caputo’s,
Weyl’s and Erdely-Kober left and right fractional derivatives and so on, Kilbas et
al.[16]. At first, one can generalize the differential and integral operators into one

fundamental D, operator t which is known as fractional calculus:

dP
r (
Df =11 R(p)=0, (25)

i(df)” R(p) <0,

The two definitions generally used for the fractional differintegral are the Grunwald-
Letnikov (GL) definition and the Riemann-Liouville (RL) definition [14-16]. The
original Grunwald-Letnikov definition of fractional derivative is given by a limit, i.e
1 [(t-a)/h] (o
» aDj’f(t)=|higgh—p > (—1)1(1_] f(t-jh), (26)
=0

where a, t are the limits of operator and [x] means the integer part of x. Integral version
of GL is defined by

D F(M) =3 (27)

7,
o l(=p+k+1) T(n-p)3 (t —r)pfn*l

n-1 f(k)(o)rmk . 1 j. f(n)(r)

The Riemann-Liouville definition of fractional derivative is given by
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e 1o d" ¢ f(2)
DI = I( mETL (28)

for (N—1< p <n) and for the case of (0 < p <1), the fractional integral is defined as

@ g, (29)

D)= F(p)It o

where T'(.) is the well known Euler's gamma function. Also, the chain rule has the form

—dﬂf(g(t))=i[ﬂj [dﬁk jdk f(9(t) (30)

dt” colk ). Ldt" ™ ) dt

Where k e[] and [fj are the coefficients of the generalized binomial

B r'(1+ )
(k jr T T(L+k)T(1-k+B) (31)

For convenience, Laplace domain is usually used to describe the fractional integro-
differential operation for solving engineering problems. The formula for the Laplace
transform of the RL fractional derivative has the form:

© n-1
j ey DP F (Ddt =s"F(s) - "D (1), (32)
k=0

0

In practical applications, the initial conditions ODl"""lf(t)‘t:O are frequently not
available. Also, Caputo,[20] has proposed that one should incorporate the integer order
(classical) derivative of function X, as they are commonly used in initial value problems
with integer-order equations. In that way, one can use the derivatives of the Caputo type
such as:

sDP[f®)]= f(l)(f) dr 0<p<l, fO@)=df /dr (33)

dpf 1 j-
o

From definition of Riemann-Liouville and Caputo derivatives one may observe that the
relation between the two fractional derivatives is as follows:

eDP[f®]=, P [(f-T,,[D®)] , (34)

where T, [f] is the Taylor polynomial of order (n—1) for f , centered at 0. So, one
can specify the initial conditions in the classical form
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f¥0) =¥, k=01,..,n-1, (35)

The two Riemann-Liouville and Caputo formulation coincide when the initial conditions
are zero. For numerical calculation of FC one can use relation which has the following
form:

+p ?pN(l) (+p) ; (+p) (+p) 1+p ) ep
((t_L)D; f(t)=h Z[:)bj f(t—jh), by™" =1 bj = 1—T bjjl (36)
=

where L is the "memory length", h is the step size of the calculation,

N(t) = mm{[%}{%}} [x] is the integer part of X and bgi“) is the binomial coefficient.

3.3 Electroviscoelasticity of Liquid/Liquid Interfaces: Fractional-Order Model

Also, number of theories that describe the behavior of liquid-liquid interfaces have
been developed and applied to various dispersed systems e.g., Stokes, Reiner-Rivelin,
Ericksen, Einstein, Smoluchowski, Kinch, etc. According to this model liquid-liquid
droplet or droplet-film structure (collective of particles) is considered as a macroscopic
system with internal structure determined by the way the molecules (ions) are tuned
(structured) into the primary componentns of a cluster configuration. How the
tuning/structuring occurs depends on the physical fields involved, both potential (elastic
forces) and nonpotential (resistance forces). All these microelements of the primary
structure can be considered as electromechanical oscillators assembled into groups, so
that excitation by an external physical field may cause oscillations at the
resonant/characteristic frequency of the system itself (coupling at the characteristic
frequency),[21-24]. Up to now, there are three possible mathematical formalisms
discussed related to the theory of electroviscoelasticity,where the first is tension tensor
model, the second is VVan der Pol derivative model,and the third model presents an effort
to generalize the previous Van der Pol equation, i.e. the ordinary time derivative and
integral are now replaced with corresponding fractional-order time derivative and
integral of order p < 1. Hence, the study of the electro-mechanical oscillators is based on

electromechanical and electrodynamic principles. At first, during the droplet formation it
is possible that the serial analog circuits are more probable, but later, as a consequence of
tuning and coupling processes the parallel circuitry become dominant. Also, since the
transfer of entities by tunneling (although with low energy dissipation) is much less
probable it is sensible to consider the transfer of entities by induction (medium or high
energy dissipation). A nonlinear differential equation of the Van der Pol type represents
the initial electromagnetic oscillation
du (U s 1
Cdt +(R an+7/U +LIUdt 0, (37)

where U is the overall potential difference at the junction point of the spherical capacitor
C and the plate, L is the inductance caused by potential difference, and R is the ohmic
resistance. The « and y are constants determining the linear and nonlinear parts of the
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characteristic current and potential curves. The noise in this system, due to linear
amplification of the source noise, causes the oscillations of the “continuum” particle
(molecule surrounding the droplet or droplet-film structure), which can be represented by
the particular integral

du (1 1
C—+|=—a |U+U%+=[Udt+=-2A cosamt, 38
L (R a] WL A, cosw (39)

where o is the frequency of the incident oscillations, [21]. The noise output appears as an
induced anisotropic effect. In an effort to generalize the previous equation the ordinary
time derivative and integral are now replaced with corresponding fractional-order time
derivative and integral of order p.[22]. Here, the capacitive and inductive €lements,

using Riemann-Liouville definition of differintegral forms, fractional-order p e[O,l)

enable formation of the fractional differintegral equation, i.e. more flexible or general
model of liquid-liquid interfaces behaviour, as follows (linear case):

c,DF U (t)]+(%—aju +% D [UM]=i), (39)

Using Laplace transform of (39) leads to
U(s) sP o 1
= =sPG,(s), Gy(S)=————,
i(s) Cs®+(1/R-a)s”+1/L :(8). G(s) as?? +bs” +c ' (40)
a=C,b=(1/R-a),c=1/L

G(s)=

The term-by-term inversion, based on the general expansion theorem for the Laplace
transform, [2] produces

1$ (—1)k c) 2p (k1)1 = (k) b

G,(t) =5§T(gj t°P E o 2pspk (—gtp) , (41)
where E, , (z) is the Mittag-Leffler function in two parameters.Laplace transform of
the Mittag-Leffler function in two parameters is:

Tefttﬂ—lEa ﬂ(zt")dt :i, (|Z| <1, (42)
5 ' 1-z

Using inverse Laplace transform of G(s) one can obtain an explicit representation of
the solution (39) such as:

u(t) = je(t—r)i(r)dr , 43)

So,the initial electromagnetic oscillation is represented by the equation (43) i.e, a
(non)homogeneous solution (Fig.9) may be obtained in following manner using
numerical procedure (Grunwald definition). Also, one can obtain equivalent nonlinear
problem applying differentiation of (37) such as:



Biologically Inspired Control And Modeling Of (Bio)Robotic Systems And ...... 179

2]
cd—g+(i—a+3yu2jd—u+iu =0, (44)
dt R dt L
0.016 . - - . . - 0016 ——
0014 0014}
02 . 0.012¢
o 0.0
go.ooa %om
) 0.006 — —_— i 0.006
0.004 o 0.004
0.002 0.002
o w I?;c; B 100 120 R 0 ‘t[icnl 0 w0 120
homogenous case Fig.9 nonhomogenous case
a=099%5 Wo=15nV, a=0% W=15mV, p=0%r=0%
p=095, T=000ls T=001s An=006m

Taking into account of Caputo definition [4] and introducing vector

X (0 =U(0), %) = DU, pea x(t)=(x.%)", (45)

one can get:

s [0 1 x ()] |0 0 %, (t)
oD X(t)_[—llLC —(1/R—a)/cHx2(t)}{o —Syxf(t)/Csz(t)}' (46)

It is easily observed that previous case is a one of the general case for this nonlinear
problem which can be obtained in the form:

sDPx() = f(t,x(t) x“©0)=x¥, k=01,..[p], (47)

Fig. 10. Homogeneous solution of (Eq. 37)
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The initial electromagnetic oscillation is represented by the non linear fractional
differential equation (39), homogeneous solution may be obtained using numerical
calculation of Caputo derivative and predictor-corrector algorithm as it is shown in
Fig.10. The calculation has been done for the following parameters:

¢=8-10"7 Uo=8mv p=12T =0.004s,7=3-10_3

3.4 lterative learning feedback control algorithms of P1“D” type in process

control systems

In classical control theory, state feedback and output feedback are two important
techniques in system control. Also, in recent years, there has been a great deal of study to
overcome limitations of conventional controllers against uncertainty due to inaccurate
modelling and/or parameter variations. As one of alternatives, the iterative learning
control (ILC) method has been developed [25], where the concept of ILC was originally
proposed by Arimoto [26] for accurate tracking of robot trajectories. Motivated by
human learning, the basic idea of iterative learning control is to use information from
previous executions of the task in order to improve performance from trial to trial in the
sense that the tracking error is sequentially reduced. Therefore, iterative learning control
requires less a priori knowledge about the controlled system in the controller design
phase and also less computational effort than many other kinds of control. The basic
strategy is to use an iteration of the form:

Uing (1) = F (Ui (0),6 (1), i O =yg ) -V;), (48)

where f(.,.) defines the learning algorithm and remains to be specified, y;(t) is the
output at the ith operation resulting from the input u;(t) and y4(t) represents the
desired output. The new control input u;,4(t) should make the system closer to the
desired result in the next execution cycle. Here, it is suggested the learning control
scheme comprises two types of control laws: a P1“D” feedback law and a feed-forward

control law,[27]. In the feedback loop, the P1“D” controller provides stability of the
system and keeps its state errors within uniform bounds. In the feed-forward path, a
learning control rule/strategy is exploited to track the entire span of a reference input
over a sequence of iterations i.e:

U (1) = F (i (0).8 (1), 6 (1), 0 < <1 (49)

where ui(t) is the control vector at the i -the iteration, while e (t)=y4(t)-y;(t), is
the tracking error signal between the desired signal y,(t) and the actual output
trajectory one y;(t) at the i-the iteration. Here, te [O,T], where T presents terminal

time which is known and finite. Here, it is considered the non-integer (fractional) linear
system described in the form of state space and output equations.



Biologically Inspired Control And Modeling Of (Bio)Robotic Systems And ...... 181

X (t) = A (1) +Bu,(t), %(0)=x,(0)=0, O<a<1l

50
Yi (t) = CXi (t), ( )

where is f(.) fractional order derivative, A,B, and C are matrices with appropriate
dimensions. Here, it is suggested the learning control scheme which comprises two types

of control laws: a PD” feedback law and a feed-forward control law (Fig.11). In the

feedback loop, the P1“D” controller provides stability of the system and keeps its state
errors within uniform bounds.

Figurell. Block diagram of PI1“D” iterative learning feedback control for a LTI
system

Here, it is introduced feedback control as follows:

Uit (1) = Q(De 1 (D) + 784 (1) (51)
and in feed-forward it is proposed a new PI1#D* -type ILC updating law for given
system such as:

U (t) =U; () + e (t) + T D% () + H, Dtiﬁei (1), (52)

and Uy (1) = U (1) +Ug s (1)) (53)

where Q,I',ITI,H are gain matrices appropriate dimensions, where y >0 is real
constant; u g, (t) the feedback control input, u,(t) the feed-forward input; u(t) the
value of the function at time t . A sufficient condition for convergence of a proposed
feedback ILC is given by the main theorem and proved as follows.

Main theorem: Suppose that the update law Eqgs.(51-53), is applied to the system (50)
and the initial state at each iteration satisfies (50). If matrices IT1,Q , exist such that

[[¥-micB][1-D]| < p <1, (54)
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then, when i— o0 the bounds of the tracking errors
[[%4 (£) =% O], | Vg ©) = y; ®)]], Jug (€)= u; @®)], converge asymptotically to zero.

3.5. Finite time stability analysis of linear autonomous fractional order systems
with delayed state —example PD“ fractional control of robotic time delay systems

The problem of time delay system has been discussed over many years and time
delay is very often encountered in different technical systems. The existence of pure time
delay, regardless of its presence in a control and/or state, may cause undesirable system
transient response, or generally, even an instability. Here, another approach is presented,
i.e system stability from the non-Lyapunov point of view is considered. In practice one is
not only interested in system stability (e.g. in the sense of Lypunov), but also in bounds
of system trajectories. A system could be stable but still completely useless because it
possesses undesirable transient performances. Thus, it may be useful to consider the
stability of such systems with respect to certain subsets of state-space which are defined a
priori in a given problem. Besides that, it is of particular significance to concern the
behavior of dynamical systems only over a finite time interval. Recently, there have been
some advances in control theory of fractional differential systems for stability questions.
However, for fractional order dynamic systems, it is difficult to evaluate the stability by
simply examining its characteristic equation either by finding its dominant roots or by
using other algebraic methods. The problem of sufficient conditions is examined that
enable system trajectories to stay within the a priori given sets for the particular class of
linear fractional order time-delay systems in state space form. A linear, ordinary,
multivariable time-delay system can be represented by differential equation:

dx(t)
—== A X(t)+ A x(t—7),
at AgX(t)+ A x(t—7) (55)
and with associated function of initial state:
X(O) =y, (), —-7<t<0, (56)
or lwlc = max|w (@) (57)

-7<0<0
where7 >0 s a pure time delay. Dynamical behavior of an autonomous system (55) is
defined over time interval J =1{to:ts +T}. . Time invariant sets, used as bounds of system
trajectories, are assumed to be open, connected and bounded. Let index ¢ stands for the
set of all allowable states of system and index 8" for the set of all initial states of the

kA0, <o), where Q1
system, such that the set Ss =S. and S, = X-”X(t)"Q <Pf, where Q is assumed to be

symmetric, positive definite, real matrix. It is assumed that the usual smoothness
conditions are present so that there are no difficulties with questions of existence,
uniqueness, and continuity of solutions with respect to initial data. Here, it presented a
result of sufficient conditions that enable system trajectories to stay within the a priori
given sets for the particular class of linear autonomous fractional order time-delay
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systems.System given by (55) satisfying initial condition (56) is finite stable w.r.t
{te.3.6,6,7}, 5 <& if and only if:
vl <o (58)
implies:
[x®)|<e . vtel (59)

where ¢ is areal positive numbers e R, < ¢.

Here, it is considered a class of fractional linear autonomous system with time delay
described by the state space equation:

d¥x(t)
——= = Agx(t) + Ax(t—7)
dt* (60)
with associated function of initial state (57), where it is discussed the case O<a<l,

Main theorem [28]:
A) Autonomous system given by (60) satisfying initial condition (57) is finite time stable

wrtid.enty 3}, d<e , if the following condition is satisfied:

A _ a G (1=10)"
14 Omae(t=t)" | e <gl5, Vtel. (61)
F(a+1)

where Fmax () being the largest singular value of matrix (.), namely:

O-rﬁax = O-max (A) ) + O-max (Al )’ (62)
Here, particular attention is paid to the finite time stability of robotic system Newcastle

robot where a time delay appears in PD fractional control system,[29].The equation of
motion of Newcastle robot with one degree of freedom in case of PD“ controller is:

mg(t)+cq(t)+kq(t)=

=Q,(1)+K, [qd (t-7)—q(t- z')] +K, [qga) (t-7)- q* (t- Z')j| ©3)

For the small ¥ =Y —0 perturbation and after linearization leads to the linear time
delay-differential equation as follows:

(t)+28y(t)+a’y(t) =k, y(t—7)+k, y@ (t-7) (64)
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So,one may convert some linear equations with commensurate multiple fractional
derivatives into linear system of fractional differential equations of low order, one can
obtain:

0 1 0 x(t) 0 0 0 0| x(t-2)

DY2x(t) = 0 O 0 x,(t) 0 0 0 0 x(t-17) (65)
0 1 x(t) 0 0 0 0fx(t-7)
-w° 0 =28 0|[x,(®)| |ko ky, O O} x,(t—7)

In that way using results of previous theorem, one can easily check stability condition
for this system. Besides, it is also established new stability result for the particular class
of nonlinear perturbed autonomous fractional order time-delay systems described by the
state space equation,[30],[31]:

dx(t) _

e (Ag+AA ) X(t) + (A +AA ) x(t—7) + T, (X(1)), (66)

[fo (x| < & [x(t)], te[0,0) (67)

with the initial functions (57)of the system and vector functions fo satisfied (67).
Main theorem: Nonlinear autonomous system given by (66) satisfying initial condition

(57) and (67) is finite time stable w.r.t. {9:€.te. 3.}, <& if the following condition
is satisfied:

u (t—t )a 4y (t1o)
1+ 0 e M@l <o/5 vied  (68)
F(a+1)

Hpoco =9a0 t7aA tCo»
where (69)
ONA =OAL T 7AA Hp = Haoco T OAIA

4, CONCLUSION

Proposed synergy approach allows resolving redundancy control problem i.e. actuator
redundancy, in the framework of optimal control problem which it is solved by
Pontryagin's maximum principle. Also, modeling and resolving kinematic redundancy of
(bio)mechanical/robotically system in synergy like fashion, can be achieved using
optimization law with suitable kinematic and dynamic criteria which are the function of
generalized coordinates, velocities, accelerations and control vectors, respectively.
Besides that, model of (bio)mechanical system may be obtained using another biological
concept called distributed positioning (DP) which is based on the inertial properties and
actuation of joints of considered mechanical system. Also, they are presented other
biological principles such as: principle of minimum interaction which takes a main role in
hierarchical structure of control and self-adjusting principle (introduce local
positive/negative feedback on control with great amplifying), which allows efficiently
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realization of control based on iterative natural learning. In the second part of this paper,
newly, recently obtained results of author in fields of stability, electroviscoelasticity, and
control theory which are based on using fractional calculus are presented. First of them, it
is an example within a new theory of electroviscoelasticity, which describes the behavior
of electrified liquid-liquid interfaces in fine dispersed systems, and is based on a new
constitutive model of liquids: fractional order model -generalized the Van der Pol
equation. Also, a new algorithms for fractional iterative learning control (ILC),

aP14D” types are proposed for fractional time (delay) systems are also presented. At
last, new stability test procedure (finite time and practical stability) is shown for
(non)linear (non)homogeneous time-invariant fractional order time delay systems where
sufficient conditions of this kind of stability are derived.
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E!4930 AWAST.
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BUOJIOIIKN HHCITMPUCAHO YIIPAB/BAIBE U
MOJAEJUPABE (BU)POBOTCKUX CUCTEMA U HEKE
IMPUMEHE ®PAKIIMOHOI' PAYYHA Y MEXAHUIIU

Muxamnao I1. JIazapesuh

ANCTPAKT: ' g0y pady, npesenmosane cy npumene GUOTOWKU UHCRUPUCAHOZ
modenuparea u ynpasmarsa (buo)mexanuuxum (He)peoyHOAHMHUM MEXAHUSMUMA, KAO U
H080000UjeHu pe3yamamu aymopa y 001acmu npumersene Mexanuxe Koju ¢y 3aCHO8aHU
Ha npumenu padyHa Heyenoopojroe peoa. Ilpeo, npednosicero je kopuwherve duonroukoe
AHANI020HA-CUHEpauje 3ax8amyjyhiu nocmojarwy HenpoOMeH/HUBUX OOTUKA Y UBPUIABAFLY
@ynuxyuonarnux nokpema. Jlpyeo, mooen (6uo)mexanuuxoz cucmema modxce ce 00oumu
nNpUMEeHOM Opy20e OUOIOWKOZ KOHYenma NOZHAMUM HOO HA3UBOM OUCTHPUOYUPAHO
nosuyuonuparwe ([II), Koju je 3acHo8an HA UHEPYUAIHUM CE0JCMEA U  NOKPEmarby
32100064 pazmampanoz mexanuukoe cucmema. Taxohe,npeodnagice ce kopuwiherse opyaux
OUONOWIKUX NPUHYUNA KAO WIMO CY: NPUHYUN MUHUMATHE UHmMepaxKyuje, Koju umda
2NABHY YNIO2Y Y XUJEPaAPXUjCKOj CMPYKMypu YRpaewsared U NpUHYun camonooemasard
(v60ou noxanne nosumusnylnecamueny nospamuy cnpezy y YApaemwayKkoj nemsmsu u mo
ca enuKuUM nojauarnem), Koju omoeyhasa epuxacho ocmeapugare ynpasmoara Ha 6asu
umepamugnoz npupoonoe yuera. Taxohe, nosu, nedagno nyOIUKOSAHU pe3yImamu
aymopa ¢y makohe npedcmagwenu Yy obracmu  cmadbUIHOCMuU,  eleKmpo-
BUCKOCTACMUYHOCTNU U MeopUuju Ynpasmsard a Koju Cy 3dCHOBAHU HA Kopuuthersy
PauyHa HeyenobpojHoe peod.

Kuyune puu: buonowky uHCRupucanu cucmemu, aicopummu ynpasnared, Gpakyuonu
DPauyH, CmaduIHoCm.
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