
RESEARCH Open Access

Common fixed point under contractive condition
of Ćirić’s type on cone metric type spaces
Marija P Stanić1*, Aleksandar S Cvetković2, Suzana Simić1 and Sladjana Dimitrijević1

* Correspondence: stanicm@kg.ac.
rs
1Department of Mathematics and
Informatics, Faculty of Science,
University of Kragujevac, Radoja
Domanovića 12, 34000 Kragujevac,
Serbia
Full list of author information is
available at the end of the article

Abstract

The purpose of this article is to generalize common fixed point theorems under
contractive condition of Ćirić’s type on a cone metric type space. We give basic facts
about cone metric type spaces, and we prove common fixed point theorems under
contractive condition of Ćirić’s type on a cone metric type space without assumption
of normality for cone. As special cases we get the corresponding fixed point
theorems on a cone metric space with respect to a solid cone. Obtained results in
this article extend, generalize, and improve, well-known comparable results in the
literature.
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1 Introduction
Replacing the real numbers, as the co-domain of a metric, by an ordered Banach space

we obtain a generalization of metric space (see, e.g., [1-3]). Huang and Zhang [4] rein-

troduced such spaces under the name of cone metric spaces. They described the con-

vergence in cone metric space, introduced their completeness and proved some fixed

point theorems for contractive mappings. Cones and ordered normed spaces have

some applications in optimization theory (see [5,6]). The initial study of Huang and

Zhang [4] inspired many authors to prove fixed point theorems, as well as common

fixed point theorems for two or more mappings on cone metric space, e.g., [7-18].

In [19], a generalization of a cone metric space, called a cone metric type space was

considered, and some common fixed point theorems for four mappings in such space

were proved. Common fixed point theorem under contractive condition of Ćirić’s type
(see [20]) on cone metric space in settings of a normal cone was proved in [21]. In

this article, we extend that result proving common fixed point theorems under con-

tractive condition of Ćirić’s type on a cone metric type space without assumption of

normality for cone. As special cases we get the corresponding fixed point theorems in

a cone metric space with respect to a solid cone.

The article is organized as follows. In Section 2, we repeat some definitions and well

known results which will be needed in the sequel. In Section 3, we prove common

fixed point theorems on a cone metric type space and present some corollaries.
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2 Definitions and notation
Let E be a real Banach space and P be a subset of E. By θ we denote zero element of E

and by int P the interior of P. The subset P is called a cone if and only if:

(i) P is closed, nonempty and P ≠ {θ};

(ii) a,b Î ℝ, a,b ≥ 0, and x,y Î P imply ax + by Î P;

(iii) P ∩(−P) = {θ}.

For a given cone P, a partial ordering ≼ with respect to P is introduced in the follow-

ing way: x ≼ y if and only if y - x Î P. In order to indicate that x ≼ y, but x ≠ y, we

write x ≺ y. If y - x Î int P, we write x ≪ y.

The cone P is called normal if there is a number k >0, such that, for all x,y Î E, θ ≼
x ≼ y implies ║x║ ≤ k║y║. If a cone is not normal, it is called non-normal.

If int P ≠ Ø, the cone P is called solid.

In the sequel, we always suppose that E is a real Banach space, P is a solid cone in E,

and ≼ is partial ordering with respect to P.

Definition 2.1. ([19]) Let X be a nonempty set and E be a real Banach space with

cone P. A vector-valued function d : X × X ® E is said to be a cone metric type func-

tion on X with constant K ≥ 1, if the following conditions are satisfied:

(d1) θ ≼ d(x, y) for all x, y Î X and d(x, y) = θ if and only if x = y;

(d2) d(x,y) = d(y,x) for all x,y Î X;
(d3) d(x,y) ≼ K(d(x,z) + d(z,y)) for all x,y,z Î X.
The pair (X,d) is called a cone metric type space (in brief CMTS).

Remark 2.1. For K = 1 in Definition 2.1 we obtain a cone metric space introduced in

[4].

Definition 2.2. Let (X,d) be a CMTS and {xn} be a sequence in X.

(c1) {xn} converges to x Î X if for every c Î E with θ ≪ c there exists n0 Î N such that

d(xn, x) ≪ c for all n < n0. We write lim
n→∞ xn = x , or xn ® x, n ® ∞.

(c2) If for every c Î E with θ ≪ c, there exists n0 Î N such that d(xn, xm) ≪ c for all

n, m > n0, then {xn} is called a Cauchy sequence in X.

If every Cauchy sequence is convergent in X, then X is called a complete CMTS.

Remark 2.2. If(X, d) is a cone metric space (i.e., CMTS with K = 1) relative to a nor-

mal cone P, then a sequence {xn} in X converges to x Î X if and only if d(xn,x) ® θ,

n ® ∞, i.e., if and only if ║d(xn, x)║® 0, n ® ∞ (see [[4], Lemma 4] ). Further, {xn} in

X is a Cauchy sequence if and only if d(xn,xm) ® θ, n, m ® ∞, i.e., if and only if ║d
(xn,xm)║ ® 0, n, m ® ∞ (see [[4], Lemma 4]).

In the case of a non-normal cone equivalences in previous statements do not hold. For

a non-normal cone d(xn,x) ® θ,n ® ∞ implies xn ® x, n ® ∞, and d(xm,xn) ®θ, m,

n ® ∞ implies that {xn} is a Cauchy sequence.

Example 2.1. ([19]) Let B = {ei | i = 1,..., n} be orthonormal basis of ℝn with inner

product (·,·). Let p> 0 and

Xp =

⎧⎨
⎩[x] |x : [0, 1] → Rn,

1∫

0

∣∣(x(t), ek)∣∣pdt ∈ R, k = 1, . . . ,n

⎫⎬
⎭ ,
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where [x] represents class of element x with respect to equivalence relation of func-

tions equal almost everywhere. If we choose E = ℝn and

PB =
{
y ∈ Rn|(y, ei) ≥ 0, i = 1, . . . ,n

}

then PB is a solid cone. For d : Xp × Xp ® PB defined by

d(f , g) =
n∑
i=1

ei

1∫

0

∣∣((f − g)(t), ei)
∣∣pdt, f , g ∈ Xp,

(Xp,d) is CMTS with K = 2p−1.

The following properties hold in the case of a CMTS.

Lemma 2.1. Let (X, d) be a CMTS over ordered real Banach space E with a cone P.

The following properties hold (a,b,c Î E):
(p1) If a ≼ b and b ≪ c, then a ≪ c.

(p2) If θ ≼ a ≪ c for all c Î int P, then a = θ.

(p3) If a ≼ la, where a Î P and 0 ≤ l <1, then a = θ.

(p4) Let xn ® θ in E and let θ ≪ c. Then there exists positive integer n0 such that xn
≪ c for each n > n0.

3 Fixed point theorems
Theorem 3.1. Let (X,d) be a complete CMTS with constant K Î [1,2]relative to a solid

cone P. Let {F,T} be a pair of self-mappings on X such that for some constant l Î (0,1/
(2K)) for all x,y Î X there exists

u(x, y) ∈ {
d(x, y), d(x, Fx), d(y,Ty), d(x,Ty), d(y, Fx)

}
, (3:1)

such that the following inequality

d(Fx,Ty) ≺− λu(x, y) (3:2)

holds. Then F and T have a unique common fixed point.

Proof. Let us choose x0 Î X arbitrary and define sequence {xn} as follows: x2n+1 =

Fx2n, x2n+2 = Tx2n+1, n = 0,1,2,.... We shall show that

d(xk+1, xk) ≺− αd(xk, xk−1), k ≥ 1, (3:3)

where a = lK/(1 − lK) (since lK <1/2, it is easy to see that a Î (0,1)). In order to

prove this, we consider the cases of an odd integer k and of an even k.

For k = 2n + 1, from (3.2) we have

d(x2n+2, x2n+1) = d(Fx2n,Tx2n+1) ≺− λu(x2n, x2n+1),

where, according to (3.1),

u(x2n, x2n+1) ∈ {
d(x2n, x2n+1), d(x2n, Fx2n), d(x2n+1,Tx2n+1),

d(x2n,Tx2n+1), d(x2n+1, Fx2n)
}

=
{
d(x2n, x2n+1), d(x2n+1, x2n+2), d(x2n, x2n+2), θ

}

Thus, we get the following cases:
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• d(x2n+2, x2n+1) ≼ ld(x2n+1, x2n+2), which, according to (p3), implies d(x2n+1, x2n+2)

= θ;

• d(x2n+2, x2n+1) ≼ ld(x2n, x2n+1);
• d(x2n+2, x2n+1) ≼ ld(x2n, x2n+2), that is, because of (d3),

d(x2n+2, x2n+1) ≺− λK(d(x2n, x2n+1) + d(x2n+1, x2n+2)),

which implies

d(x2n+2, x2n+1) ≺−
λK

1 − λK
d(x2n, x2n+1).

Hence, (3.3) is satisfied, where a = max{l, lK/(1 − lK)} = lK/(1 − lK).
Now, for k = 2n + 2,we have

d(x2n+3, x2n+2) = d(Fx2n+2,Tx2n+1) ≺− λu(x2n+2, x2n+1),

where

u(x2n+2, x2n+1) ∈ {d(x2n+2, x2n+1), d(x2n+2, Fx2n+2), d(x2n+1,Tx2n+1),
d(x2n+2,Tx2n+1), d(x2n+1, Fx2n+2)

}
=

{
d(x2n+2, x2n+1), d(x2n+2, x2n+3), θ , d(x2n+1, x2n+3)

}
,

and we get the following cases:

• d(x2n+3, x2n+2) ≼ ld(x2n+2, x2n+1);
• d(x2n+3, x2n+2) ≼ ld(x2n+3, x2n+2), which gives d(x2n+3, x2n+2) = θ;

• d(x2n+3, x2n+2) ≼ ld(x2n+3, x2n+1) ≼ lK(d(x2n+3, x2n+2) + d(x2n+2, x2n+1)), which

implies

d(x2n+3, x2n+2) ≺−
λK

1 − λK
d(x2n+2, x2n+1).

So, inequality (3.3) is satisfied in this case, too.

Therefore, (3.3) is satisfied for all k Î N0, and by iterating we get

d(xk, xk+1) ≺− αkd(x0, x1). (3:4)

Since K ≥ 1, for m > k we have

d(xk, xm) ≺− Kd(xk, xk+1) + K2d(xk+1, xk+2) + · · · + Km−k−1d(xm−1, xm)

≺− (Kαk + K2αk+1 + · · · + Km−kαm−1)d(x0, x1)

≺−
Kαk

1 − Kα
d(x0, x1) → θ , as k → ∞.

Hence, {xk} is a Cauchy sequence in X (it follows, by (p4) and (p1), that for every c Î
int P there exists positive integer k0 such that d(xk,xm) ≪ c for every m>k> k0).

Since X is complete CMTS, there exists ν Î X such that xk ® ν, as k ® ∞. Let us

show that Fν = Tν = ν. We have d(Fx2n, Tν) ≼ lu(x2n, ν), where

u(x2n,υ) ∈ {
d(x2n,υ), d(x2n, Fx2n), d(υ,Tυ), d(x2n,Tυ), d(υ, Fx2n)

}
.
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Thus, for any θ ≪ c and sufficiently large n, at least one of the following cases hold:

• d(Fx2n,Tν) ≼ ld(x2n,ν) ≪ l ⋅ c/l = c;

• d(Fx2n,Tν) ≼ ld(x2n, Fx2n), i.e.,

d(Fx2n,Tυ) ≺− λKd(x2n,υ) + λKd(υ, x2n+1) � λK
c

2λK
+ λK

c
2λK

= c;

• d(Fx2n,Tν) ≼ ld(ν,Tν) ≼ lK(d (ν,Fx2n) + d(Fx2n, Tv)), i.e.,

d(Fx2n,Tυ) ≺−
λK

1 − λK
d(υ, x2n+1) � λK

1 − λK

c(1 − λK)
λK

= c;

• d(Fx2n,Tν) ≼ ld(x2n,Tν) ≼ lK(d(x2n,ν) + Kd(ν,Fx2n) + Kd(Fx2n,Tυ)), i.e.,

d(Fx2n,Tυ) ≺−
λK

1 − λK2
d(x2n,υ) +

λK2

1 − λK2
d(υ, x2n+1)

� λK

1 − λK2

c(1 − λK2)
2λK

+
λK2

1 − λK2

c(1 − λK2)
2λK2

= c

(since 1 ≤ K ≤ 2, we have 0 ≤ l ≤ 1/(2K) ≤ 1/K2, i.e., 1 − lK2 >0);

• d(Fx2n, Tν) ≼ ld(ν, Fx2n) = ld(ν, x2n+1) ≪ l · c/l = c.

In all these cases, we obtain that Fx2n ® Tν, as n ® ∞, that is xn ® Tν,n ® ∞. Since

the limit of a convergent sequence in a CMTS is unique, we have that ν = Tν. Now, we

have to prove that Fν = Tν. Since

d(Fυ,υ) = d(Fυ,Tυ) ≺− λu(υ,υ),

where

u(υ,υ) ∈ {
d(υ,υ), d(υ, Fυ), d(υ,Tυ), d(υ,Tυ), d(υ, Fυ)

}
=

{
θ , d(υ, Fυ)

}
.

Hence, we get the following cases: d(Fν, ν) ≼ lθ and d(Fν, ν) ≼ ld(Fν, ν). According
to (p3), it follows that Fν = ν, that is, ν is a common fixed point of F and T. It can be

easily verified that ν is the unique common fixed point of F and T.

By using the same steps as in proof of Theorem 3.1, one can prove the following

theorem.

Theorem 3.2. Let (X, d) be a complete CMTS with constant K > 2 relative to a solid

cone P. Let {F,T} be a pair of self-mappings on X such that for some constant l Î (0,1/

K2) for all x,y Î X there exists

u(x, y) ∈ {
d(x, y), d(x, Fx), d(y,Ty), d(x,Ty), d(y, Fx)

}
,
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such that the inequality d(Fx, Ty) ≼ lu(x,y) holds. Then F and T have a unique com-

mon fixed point.

In the case of CMTS with constant K = 1 we get the following corollary, which

extends [[21], Theorem 2.1].

Corollary 3.1. Let (X,d) be a complete cone metric space relative to a solid cone P.

Let {F,T} be a pair of self-mappings on X such that for some constant l Î (0,1/2) for all
x, y Î X there exists

u(x, y) ∈ {
d(x, y), d(x, Fx), d(y,Ty), d(x,Ty), d(y, Fx)

}
,

such that the inequality d(Fx, Ty) ≼ lu(x,y) holds. Then F and T have a unique com-

mon fixed point.

Theorem 3.3. Let (X, d) be a complete CMTS with constant K ≥ 1 relative to a solid

cone P. Let {S,T} be a pair of self-mappings on X such that there exist nonnegative con-

stants ai, i = 1,..., 5, satisfying

a1 + a2 + a3 + 2K max {a4, a5} < 1, a3K + a4K2 < 1, a2K + a5K2 < 1,

such that for all x,y Î X inequality

d(Sx,Ty) ≺− a1d(x, y) + a2d(x, Sx) + a3d(y,Ty) + a4d(x,Ty) + a5d(y, Sx)

holds. Then S and T have a unique common fixed point.

Proof. Setting F = G = IX from [[19], Theorem 3.8] (IX is the identity mapping on X)

we get what is stated. □
In the case of CMTS with constant K = 1 we get the following corollary.

Corollary 3.2. Let (X,d) be a complete cone metric space relative to a solid cone P.

Let {S,T} be a pair of self-mappings on X such that there exist nonnegative constants ai,

i = 1,..., 5, satisfying a1 + a2 + a3 + 2 max{a4, a5} < 1, such that for all x, y Î X inequal-

ity

d(Sx,Ty) ≺− a1d(x, y) + a2d(x, Sx) + a3d(y,Ty) + a4d(x,Ty) + a5d(y, Sx)

holds. Then S and T have a unique common fixed point.
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