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This paper presents the authors’ efforts to conceptual design of control
system that can learn from its own experience. The ability of adaptive
behaviour regarding the given task in real, unpredictable conditions is one
of the main demands for every intelligent robotic system. To solve this
problem, the authors suggest a learning approach that combines empirical
control strategy, reinforcement learning and axiomatic design theory. The
proposed concept uses best features of mentioned theoretical approaches
to produce optimal action in the current state of the mobile robot. In this
paper empirical control theory imparts the basis of conceptual solution for
the navigation problem of mobile robot. Reinforcement learning enables
the mechanisms that memorize and update environment responses, and
combining with the empirical control theory determines best possible
action according to the present circumstances. Axiomatic design theory
accurately defines the problem and possible solution for the given task in
terms of the elements defined by two previously mentioned approaches.
Part of the proposed algorithm was implemented on the LEGO
Mindstorms NXT mobile robot for the navigation task in an unknown
manufacturing environment. Experimental results have shown good
perspective for development of efficient and adaptable control system,
which could lead to autonomous mobile robot behaviour.

Keywords: learning mobile robot, empirical control theory, reinforcement

learning, axiomatic design theory, mobile robot navigation.

1. INTRODUCTION

One of the key objectives in modern robotics is to
produce such a behaviour that is adaptive in real,
stochastic conditions. In order to have productive, safe,
and robust working robots, we need them to be able to
cope with the dynamic nature of real environments: like
humans or animals, robot should be able to adapt and
learn from their own experiences instead of relying on
predefined rules, models, or hardware controllers [1].
The same robot, running the same control program, can
act differently considering real conditions in moment of
a robot state transition. Hence, the reliability of such
system cannot be satisfactory in terms of producing the
best possible behaviour in a given moment. It is clear
that adaptability is one of the main characteristics robot
should possess.

The presented approach to conceptual design of
control system inevitably leads to involving algorithm
that includes active learning parameters. Those variables
must store the environmental response of performed
robot action, and also must indicate to control system
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what is the best possible action in the current robot state,
with aspect to the real conditions and specified task. In
that sense, several approaches can be distinguished:
evolutionary computation, reinforcement learning (RL),
empirical control (EC) theory [2], and others. These
methods are well known and well established in various
solutions for robot motion control problems.

Also, one of the main missions comprising mobile
robot navigation task is properly and accurately defining
a problem and a solution. From that point of view, it is
necessary to design functional requirements and design
parameters as elements of axiomatic design theory (AD)
developed by Professor Suh of MIT [3]. Design, in
Suh’s terms, consists of a continuous interaction
between the functional and the physical spaces. In that
context, word functional may refer to the ability of a
mobile robot learning based on the empirical data
gathered from external sensors, i.e. main requirement in
mobile robot navigation problem. The term physical
may refer to the proposed empirical control algorithm,
which is the main design parameter. One of the paper’s
aims is to present axiomatic design theory as a
systematic tool for structure development of the mobile
robot control system related to the navigation problem,
and also a proper solution to that problem.

This paper sets up an original empirical control
system based on the elements of reinforcement learning,
particularly designed for solving the task of mobile robot
navigation in unknown manufacturing environment.
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Obtained results show good starting point for developing
an autonomous behaviour of a mobile robot.

2. LEARNING METHODS

In this section will be explained basic concepts that are
used in proposed empirical control system design.
Empirical control theory and reinforcement learning
theory will be clarified, with application to the proposed
algorithm. Similarity and dissimilarity between these
two approaches will also be pointed out.

2.1 Empirical control theory

Foundations of EC theory were first established by R.A.
Brown [2]. Inspiration for this approach Brown got from
observing real time natural systems and their interaction
with the environment. He perceived that natural system or
individual that behaves successfully appears to
understand the requirements and information natural
environment, which is direct consequence of the presence
of natural intelligence. Much of the ability of natural
systems comes about through practice and experience.
The true value of obtained experience is demonstrated by
comparing the systems’ first attempt to execute a given
task with a performance of the system after a large
number of iterations. Such empirical systems have
objectives which can be met by a system are designed to
carry out just three steps presented in Table 1 [2,4,5].

Table 1. Three steps used by a self-learning system

No. Description

Produce certain behavior under certain conditions.

2. Measure whether that behavior is carried out.

Produce the behavior that has the highest probability of
being carried out succesfully under those conditions.

On the basis of these three steps the empirical
control algorithm for industrial robot learning has been
developed [4,5]. Four simple steps defined in this
algorithm [4,5] create the growth, evolution, i.e.
successful development of this robot, which combined
with artificial neural networks [6] represents
successfully developed empirical control system.

Also, EC theory served as inspiration for designing a
new hybrid control architecture for intelligent mobile
robot navigation in a manufacturing environment [7].
So, from these examples one can realize the enormous
potential that lies in described settings for control
system design.

2.2 Introduction to reinforcement learning

In a RL paradigm [8], an agent interacts with the
environment through a set of actions. The environment
is modified in the sense of agent perception through
external sensor and state in the next time step according
to the selected action. Furthermore, at each step the
agent receives an external award, as shown in Figure 1.
The objective of the RL agent is to maximize a
numerical reward signal [9,10]. The main advantage of
RL is that it does not need the model of the
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environment, i.e. the path planning algorithm for mobile
robot navigation is not necessary.

-
Intelligent agent - mobile
robot
TT Reward
~
Environment
Action ) State

Figure 1. Basic model of a RL agent

Watkins introduced in 1989 the method of
reinforcement learning called Q-learning. [11]. Q-
learning algorithm attempts to learn a state-action value
Q (s,a), whose value is the maximum discounted reward
that can be achieved by starting in state X, taking an
action a, and following the optimal policy thereafter
[12]. The action space is discrete and a separate Q (S,a)
value exists for each state-action pair.

In each time step the agent takes an action a from
the state S, and the current state-action pair value
estimate from a and s donated by Q (s,a) is updated as
follows [12]:

Qi (s.a) < Q(s,a)+
+0‘[Vt+1+7m§XQt(5t+1»a)—Qt (St’a)} (M

where: t+ 1 denotes the time constant in the next robot
state; yis the discount factor with value between 0 and
1; req is payoff that agent receives when action a is
taken in state S; and parameter « is a learning rate.

Recommended values for scalars y and « are > 0.9
and < 0.2, respectively.

Pseudo code for Q-learning algorithm is given in
Table 2.

Table 2. Pseudo code of Q-learning algorithm

Initialize state-action function Q (s,a)

Present current state S

Calculate optimal action

Execute selected action (e-greedy) a;

Observe new state and reinforcement signal, S, and I |,
respectively

Update state-action function as

Qi (s,a) < Q(s,a)+
]y mxQ (5.1.8) - (2]

New state becomes current state

2.3 Similarity and diversity of presented learning
methods

Although the presented methods have a lot in common,
the main difference between them reflects onto the
approach of learning state-action value function. While
reinforcement learning modifies Qi (S,a) (in each
iteration), the empirical theory tends to guide the agent
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to remember all of the previous transition states and
applied actions. In that way, for the same sensory
readings, the agent will select successful action
according to the previously same obtained
environment response. This should largely reduce the
number of implied iterations of robot state-action
transitions. At the same time, Q-learning represents
great model for storing state transition probabilities,
which can be employed in the novel control design
approach. Thus, the authors propose the hybrid control
system that contains the best features of both described
methods.

3. PROBLEM STATEMENT

Described control system design methods will be
partially implemented for the problem of the mobile
robot navigation in unknown environment. The
presented algorithm also includes a solution to an
obstacle avoidance problem [13,14], although it has not
yet been implemented mainly because of the large
number of iterations needed. Iterations necessary for
successful intelligent behaviour overcome tens of
thousands, because the tabula rasa mobile robot [10] is
not capable of faster learning. As mentioned, mobile
robot should visit every possible state and produce
every possible action in that state to have complete
knowledge of optimal navigation path.

For this study the starting and goal point was chosen
randomly. The robot was acting according to the
defined actions choosing them randomly too. The values
for Q(s,a) were updated in accordance with the
described Q-learning algorithm. Memorized sensor
readings were stored in a matrix, and for each set of
gathered empirical data Q (s,a) value was assigned.
Then, after a certain number of iterations, the two
Q (s,a) values were compared, and the one with higher
probability was chosen. Obtained data was processed in
the MATLAB software package [15], and then
graphically presented as shown in the section below.

4. MAIN CONCEPT OF AXIOMATIC DESIGN

For the purpose of proper design and development of
solution to the given task, the Axiomatic Design theory
(AD) developed by Suh was adopted [3]. The described
theory presents rigorous rules within solutions design
for any given engineering problem. In this case, the
main problem can be described as adaptive learning
problem during navigation task performed by a mobile
robot. That problem can be divided into two sub
problems, that is, a problem of learning during specific
task and a problem of using that learned experience to
improve the existing behaviour.

According to [16,17] the design process in
axiomatic design theory consists of five steps stated in
the Table 3.

The design axioms present the basis for the concept
of AD. The first axiom is known as the Independence
Axiom, and the second one is known as the Information
Axiom. Their description is given in the Table 4 [3].

As stated earlier, the engineering axiomatic design
refers to mapping between functional and physical
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Table 3. Several steps of design process defined by AD
theory

Step .
No. Description
1 Establishment of designed goals to satisfy a given
’ set of percieved needs.
Conceptualization of designed solutions.
3. Analysis of the proposed solution.
4 Selection of the best design from among those
’ proposed.
5. Implementation.

Table 4. Axioms of AD and their short description

Axiom .
No. Name and description
The Indipendence Axiom.
1. Maintain the independence of functional
requirements.
2 The Information Axiom.

Minimizes the information concept.

domain. These domains are defined with functional
requirements (FR) and design parameters (DP),
respectively [3,17,18]. In mathematical terms, the
relationship between the FRs and DPs is expressed as:

{FR} =|A|-{DP}. )

In given equation, {FR} denotes the functional
requirement vector, {DP} denotes the design parameter
vector, and |A| denotes the design matrix that
characterizes the design process. The structure of the
matrix |A|, defines the type of design being considered.
In order to satisfy the first axiom of AD, matrix |A|
should be uncoupled or coupled design.

In uncoupled design, the |A| matrix is a diagonal
matrix, whose shape indicates the independence of FR-
DP pairs. So, logically, this type of design is most
preferred. Decoupled design has the triangular design
matrix |A|. This indicates that FRs can be satisfied
systematically from the first FR to the last one, by
considering the first n DPs only. In the previous
sentence n denotes total number of FRs. This type of
design is most common in practice. If the design matrix
has no specific shape, then those designs are called
coupled designs. These designs are undesirable, and
every system designer should try to avoid them.

4.1 Axiomatic design theory applied on the given
control problem

The first stage in designing the solution for the stated
problem is to define the main functional requirement, i.e.
to define the functional requirements (FRs) of the system
in the highest level of all FRs in the functional domain.
In this step extreme care should be given to choosing the
right functional requirement, since different FR can lead
to completely different solutions. Since the main
problem has been formulated, the functional requirement
of top hierarchal level can be defined as follows:
o FR: The ability of mobile robot to learn (using
Q-learning algorithm) based on the obtained
empirical data from the environment.
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Appropriate DP can be formulated as the proposed
method of empirical control system of a mobile robot. So,
the design parameter of the highest level is formulated as:

o DP: proposal of the empirical control system.

In the next steps the zigzagging process is applied.
First, the main FR is decomposed into two levels, so
that each level consists of several lower levels FRs. The
same principle is applied on the main DP. In that
manner, every DPs in the lower level corresponds to
defined FRs in the same level. Also, the analysis of
appropriate design matrix is given. Decoupled and
uncoupled design matrices have been obtained, so the
given result confirms the proposed solution to the
problem. All of the experimental results regarding FRs
and DPs at the lower levels with the corresponding
design matrices are presented in Table 5.

As it is shown in the table, the decoupled designs are
obtained in every case, except for the second FR in the
third hierarchical level. In that case, the uncoupled
design is obtained, which is the best possible outcome
of the design process. The results show that the
proposed control system developed for a given
navigation task is based on good outlines, which give
solid foundations for further research.

5. EXPERIMENTAL SETUP AND DISCUSSION

Every mentioned aspect of control system design is applied
to get an operational system for a navigational problem
task. The configuration selected for implementing the
proposed algorithm is LEGO Mindstorms NXT
configuration, as shown in Figures 2 and 3.

Figure 2. LEGO Mindstorms NXT configuration of a mobile
robot in the laboratory model of environment - front view

As an external sensor for obtaining empirical data in
the environment, the ultrasonic sensor available in the
existing LEGO kit was selected. Its motor was placed
above the configuration, so as to minimize size of the
configuration and maximize robot’s performance. The
sensor range is defined by its manufacturer [19], and in
case of testing the idea proposed in this paper it showed
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Table 5. FRs and DPs at lower levels and their
corresponding design matrix A

ing level of
reliability for
executed action

selected action
from the Q-table
with empirical

control theory

Hierar A
chical FRS. DPS. (type of
level (description) (description) design)
FR, DP,
Execution of the |Navigation task of
given task mobile robot in a
manufacturing
environment
FR, DP, X
Ability for Collecting data X X
I adaptive behaviour| from external X X X
sensors
FR, DP, (decoppled
Memorizing Application of Q- design)
successful actions | learning algorithm
and states, and
also the level of
confidence for all
performed actions
FRy DPy;
Defining possible Set of three
actions possible actions
FR;; DPy, X
Defining possible | Four possible X X
states states X X X
FRy; DPy; (decoupled
Odometry model Data from the design)
of mobile robot incremental
navigation encoders (mobile
robot wheels)
FRy, DPy,
Obstacle Correct reading
avoidance and processing of
data received from
external sensors
Adaptability for Comparison of
various real time |real and calculated X
conditions state response of a X
mobile robot
(uncoupled
III FRy; DPy; design)
Partially adaptive | Implementation of
behaviour to autonomous
unexpected events | behaviour model
in dynamic into the future
environment mobile robot
decisions
FR3 DPy;
Memorizing best | Reward endue
action in the given | depending of the
moment selected action
FR3, DP;,
Determine level of | State-action value || X
confidence of the | function Q (s,a) X X
selected action | estimation based
on the Q-learning X X X
algorithm (decoupled
FR33 DP33 deSIgn)
Increasing/decreas| Comparison of
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Figure 3. LEGO Mindstorms NXT configuration of a mobile
robot in the laboratory model of environment — top view

satisfactory results. The ultrasonic sensor reads the
distance in five measuring points, crossing the angle range
of 180 degrees. Its initial position is on the left (position 0
in the Figure 4) viewing from the direction in which the
robot is moving. It is activated at every 45 degrees, which
in total gives five measurements in one state-action
iteration. As mentioned, those values are then saved and
are given an appropriate value. When the whole angle
range of 180 degrees is visited, the sensor moves back to
its initial position. In that backward motion the sensor is
not active, i.e. it perceives readings in just one direction
(clockwise). The robot is controlled by MATLAB
package [15], using RWTH-toolbox [20]. In the Figure 4,
the robot and sensor measurement process with
measurement positions are symbolically represented.

vt @
3)

“4)

»
>

X X

Figure 4. Mobile robot and sensor measurements in a
global coordinate system

The set of possible actions is defined according to
the Table 6.

Table 6. Defined actions and short description

Alzt(l)on Name of action and description
Move forward.
1. Strateline forward movement of mobile robot cca 1
cm long.
’ Move left.
’ Mobile robot turns left at the angle of 45 degrees.
3 Move right.
’ Mobile robot turns right at the angle of 45 degrees.

FME Transactions

The reward existing in the (1) is defined according
to the measurement of an ultrasonic sensor. The
numerical values for reward signals r are assigned as
shown below:

0,min J = minU

I,minJ < minU

r= 3

—1,minU <minJ
2, Xpresent = Xgoal

where J denotes previous set of measurements, and U
set of measurements in the current state. The variable
Xpresent TEPTEsents current state in which the mobile robot
is, and Xg, denotes final state of a mobile robot.
Clearly, the algorithm rewards robot movement away
from the obstacle and reaching the final goal too, and
punishments movement that lead closer to the static
boundary. Odometry model was assigned for defining
position and orientation of a mobile robot in global
coordinates.

[Asy +A Asq —Asy )]
OS54 +AS ool g B3 ZASL
y 2b
ASq + AS ASq —AS
X =|y|+] =2 gin| g4 42 4)
2b
o0
Asd —AS|
L 2b .

In the (4) X" denotes the next state vector of a mobile
robot. Constant b marks the wheelbase length, and Asq
and As) denotes the incremental path lengths in a mobile
robot transition from one state to another. Clearly, X, Y,
and &6 marks the current position and orientation of a
robot.

For parameters o and y constant values have been
adapted accordingly to the best results obtained. In this
case, these parameters have 0.1 and 0.99 values,
respectively.

The environment state space in this setup is
discretized, so that the Q-table has reasonably a large
size. In that sense, the biggest problem of this approach
is designing the state and action space in the way that
matrix Q (S,a) is not very computational expensive.
Several solutions are proposed to reduce the Q (S,a)
size, from which the artificial neural network (ANN) [6]
approach gave overall best results [12].

Given all stated in mind, a modification of obstacle
avoidance Q-learning algorithm [21] is given. The
improvement of this algorithm is reflected onto the
employment of the empirical control theory in the
whole process. The modified Q value is memorized
not only in the present table, but also in the space
reserved for the sensor measurement. In that sense, Q
function will faster converge to its optimal value. Also,
the new state will have additional source of
information regarding earlier sensor measurement and
prescribed Q values, in order to obtain and perform the
best possible action in a given moment. With blue
dashed line the novel empirically enhanced obstacle
avoidance control system is denoted. This algorithm is
presented in the Figure 5.
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Figure 5. Empirically enhanced obstacle avoidance algorithm

updated Q function for each iteration (episode) that has

5.1 Experimental results ended.
150 : . ,
Conducted experiment (without obstacle collision)
within the laboratory model of manufacturing 8 100} ,
environment is based on presented algorithm (Fig. 5). 2
Although tabula rasa mobile robot [10] needs 8 sl 7
enormous number of iterations to fully understand the ?
environment, the results presented below showed that h 5 . . 5 0 D
the Q function correctly updated its coefficients. Episode(lteration No)
Because the large number of iterations is conducted 156 ‘
(for real time learning), they were divided into a ©
number of steps in which the robot should reach the 8 100}
goal position. Iteration is ended in two possible cases: 2 " -
if a mobile robot reached the goal for a reasonable time g 50%3
or if the user defined time has been exceeded. The Q o
values were memorized (for each iteration), and shown s oA 00 05 04 05 0% o7
in the graph. The obtained results (Figs. 6, 7 and 8) Value Q(a)
denote the number of steps to end iteration, and Figure 6. Experimental results at 11" iteration
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Figure 7. Experimental results at 31% iteration
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Figure 8. Experimental results at 50" iteration

6. CONCLUSION

In this paper a new approach for advance control system
design is presented. The proposed approach is based on
the empirical control theory, reinforcement learning,
and the axiomatic design theory. The concept is verified
for the control problem of mobile robot navigation in an
unknown environment. For the algorithm evaluation
LEGO Mindstorms NXT mobile robot was used, which
was controlled with MATLAB software package.

The successful machine learning process of a mobile
robot, as shown in the Figures 6, 7 and 8, was evident.
Modifying the coefficients in the Q matrix, mobile robot
was able to make difference between favourable actions
in its current state. The Q values were adjusted in
accordance with the described reinforcement learning
algorithm. Also, a set of sensor measurements was
memorized and for each of them the appropriate Q
value was awarded. That value was used as a necessary
advice for the decision of optimal action selection in the
present robot state after 50" iteration. With more
iterations conducted, a mobile robot could perform
autonomous behaviour as a solution for the navigation
problem based on the shown experimental results and
machine learning trend of the proposed control system.

For future research, as much needed development
tool for Q function approximation, the artificial neural
networks (ANN) arise above other solutions for the
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considered problem. Also, ANN can be very useful for
speeding up the learning process, bearing in mind the
computational expensiveness of the classical Q-learning
algorithm. Particularly, implementation of the neural
networks with a dynamical structure will be considered.
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IIPUJIOT PA3BOJY EMIINPUNJCKOI'
YIIPABJBAYKOI' CACTEMA MOBWJIHOT
POBOTA BABUPAHOI' HA EJIEMEHTUMA
MAIHUHCKOI' YYEBA OJAYABAILEM "

AKCHOMATCKOJ TEOPUJHU ITPOJEKTOBABA
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Mapxko Mutuh, 3opan Musbkosuh, Bojan badunh

OBaj pan mHpencTaB/ba HCTPAKUBAKE ayTopa Y JOMEHY
KOHLETLU]CKOT TPOjeKTOBamka YIPaBJbAauKOr CHUCTEMa
KOJHU MOJKE Jia Y4l Ha OCHOBY COIICTBEHOI' MCKYCTBA.
CrnocoOHOCT aIaliTUBHOT TOHAIIAKA MPH U3BPIIABABY
MOCTaBJbEHOI 3aJaTKa y peaHuM, HENpeIBUANBUM
yCIOBUMA, jeAaH je OJf KJbyYHHX 3ajaraKa CBaKoOr
WHTEITUTEHTHOT POOOTCKOr cucreMa. Y (QYHKIUjU
pelraBama OBOI mpoOiieMa, HpelaKe ce MPUCTYI
0a3mpaH Ha y4ewmy, H TO KOMOMHOBAKEM EMITHPH]jCKE
yIpaBJbavke cTpareruje, MAaIIHHCKOT ydema
OjayaBameM M aKCHOMAaTCKE TEOpHje IPOjeKTOBambA.
IpemnoskeHd KOHIIENT KOPHCTH HAjOOBE OCOOMHE
NOMEHYTUX TEOPH]CKUX MPUCTYIIA Y LINJbY OCTBapHBatbha
ONTHUMAJIHE OJUTYKE MOOWJIHOT po0OTa 3a TPEHYTHO
crame cucreMa. EMnupujcka ynpassbauka Teopuja ce, y
OBOM pany, & Priori KopucTu y yTBphUBamy HICjHOT
pelema 3a pelaBame mpodieMa HaBUralyje MOOWIHOT
pobota. Yueme ojauaBam-eM pealn3yje MeXaHu3Me KOjH
MEMOPHILy U aXypHPajy OIrOBOPE OKpYKema, a y
KOMOWHAIIH]H ca eMITUPH)jCKOM YIIPaBJbAYKOM TEOPHjOM
onpelyje Hajbosby Moryhy omIyKy y CKIagy ca
TPEHYTHUM  OKOJHOCTHMAa. AKCHOMAaTcKa Teopuja
MPOjeKTOBala C€ KOPHCTH TIpH  JAehUHUCABY
yIpaBJbaduKoOr TMpoOiieMa, Kao W IPH YCHOCTaBJbamby
KOHLIETILIU]CKOT pellea 3a JlaTH 33jaTak, ca acleKTa
NpUMeHe TOMEHYTHX npuctyna. Jleo npemioxeHor
QITOpPUTMa EMITMPUjCKOT YIpaBibalba pPEaM30BaH je
nomohy LEGO Mindstorms NXT wmoGuiaHor po6oTa,
Tpetupajyhu mnpoOieM HaBuranuje y HENO3HATOM
OKpyxemy. OCTBapeHH eKCIIEPUMEHTAIHH Pe3yJITaTH
HAroBelITaBajy OOOpY IEPCIEKTHBY 3a pealu3alijy
e(pUKacHOT ympaBJbama 0a3UpaHOT HA HCKYCTBY, UHjH
Jajbl  pa3Boj MOXe Ja JOBeAe MO0 OCTBapema
AyTOHOMHOT TOHAIllalka MOOWJHOT poboTa mpH
u30eraBamy MpernpeKa y TEXHOJIOUIKOM OKPYKerbY, LITO
j€ ¥ OYEKMBaHH HayYHH L[HJb.
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