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a b s t r a c t

The problem of the brachistochronic motion of a variable mass particle is considered. The
particle moves through a resistant medium in the field of arbitrary active forces. Beginning
from these general assumptions, and applying Pontryagin’s minimum principle along with
singular optimal control theory, a corresponding two-point boundary value problem is
obtained and solved. The solution proposed involves an appropriate numerical procedure
based upon the shooting method. In this numerical procedure, the evaluation of ranges for
unknown values of costate variables is avoided by the choice of a corresponding Cartesian
coordinate of the particle as an independent variable. A numerical example assuming the
resistance force proportional to the square of the particle speed is presented. A review of
existing results for related problems is provided, and it can be shown that these problems
may be regarded as special cases of the brachistochrone problem formulated and solved in
this paper under very general assumptions by means of optimal control theory.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In 1696 Johann Bernoulli formulated the brachistochrone problem: find a smooth curve down which a particle slides
from rest at a point A to a point B in a vertical plane influenced by its own gravity in the least time. After the brachistochrone
problem had been independently solved by the Bernoulli brothers (Johann and Jacob), Newton, Leibnitz, Huygens and
L’Hospital, various generalizations of the classical brachistochrone problem have been made. The brachistochronic motion
of a particle was considered in various fields of active forces as well as under the action of various types of resistance forces
(viscous friction forces, Coulomb friction force etc.). It is characteristic that the variational calculus method [1,2] was mainly
used for various generalizations of the classical brachistochrone problem. However, from [3] to [4] and to [5], Pontryagin’s
minimum principle [6,7] and the singular optimal control theory [8] were included in solving this problem. Thus, in [3]
the solution to the brachistochrone problem was realized within the theory of optimal control, while for the case of the
brachistochrone in a resistant medium and the field of central forces the corresponding relations were developed only,
representing the necessary optimality conditions. A numerical solution to the classical brachistochrone problem is given
in [4]. An analytical solution to the problem of brachistochrone with Coulomb friction is presented in [5]. In other papers,
generalizations of the problemweremade using the variational calculus method: in the cases with Coulomb friction [9–13],
where analytical solutions were obtained in [9–12] under various boundary conditions and various parameterizations of
the brachistochrone curve, while in [13] the solution was obtained numerically; in the case with viscous friction, where
as an independent variable was the particle speed in [14] and the slope angle of the brachistochrone curve in [15]; in the
case with various fields of central forces in [16–19]. Among the mentioned types of generalizations of the brachistochrone
problem, the paper [20] is interesting for its use of the Fermat principle from geometric optics. This principle was utilized
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Fig. 1. Variable mass particle acted upon by arbitrary forces.

by Bernoulli as evident from the monograph [21]. The papers [22–24] considered the brachistochronic motion of a particle
on a surface: in the cases of a smooth surface [23], Coulomb friction [22] and viscous friction [24]. In [22] it was shown that
results from [9,11,15] represent special cases of the brachistochronicmotion of a particle on a surface. Also, a certain number
of references can be singled out [4,25–28] where the solution of the classical brachistochrone problem (cycloid) was used
with the aim of testing various numerical methods in solving nonlinear engineering optimization problems. Thus, in [4] the
classical Chebyshevmethodwas utilized, in [27] the single-termWalsh series, in [25,26,28] the evolutionary computational
technique based on the Darwinian principles of natural selection.

This paper considers the brachistochronic motion of a variable mass particle. This type of generalization of the brachis-
tochrone problem has been considered only in the papers [29,30]. In [29] considerations involved the motion of a variable
mass particle in the homogeneous gravitational field in a resistant medium, where it was taken that the relative velocity of
the expelled (or gained)mass has the direction of the tangent to the particle path and a constantmagnitude. At the initial par-
ticle position, the mass and speed of the particle were specified. A solution in parametric form was obtained with the slope
angle of a tangent to the brachistochrone curve being taken as the parameter. This solution requires further numerical com-
putations. In [30] the assumption of homogeneous gravitational fieldwas retained and Coulomb friction force appears as the
resistance force. The law of the rate ofmass variationwith respect to time as an exponential function of timewas specified as
well as the relative speed of the expelled mass as a function of the particle speed. The form of the particle trajectory was de-
termined as well as the law of change in angle between the relative velocity of the expelledmass and the particle velocity so
that the particle starting froma specified initial position reaches a specified final positionwith the given velocity in the short-
est descent time. Like in [29], the task has not been completely analytically solved. In our paper itwas assumed that a variable
mass particle moves under the action of arbitrary active forces. The form of a brachistochrone curve is determined, which
ensures that the particle starting from a specified initial position with a specifiedmass and initial speed comes to a specified
final position in the shortest descent time. The formulated problem is solved by the application of Pontryagin’s minimum
principle [6,7] and the singular optimal control theory [8]. After a corresponding two-point boundary value problemhas been
formulated, a procedure for its numerical solving is presented. This procedure is based upon the shootingmethod [31] along
with a combination of symbolic and numerical evaluations. The horizontal Cartesian coordinate of the particle has been cho-
sen as an independent variable. This considerably simplifies the solution effort because the physical variables (mass, velocity,
slope angle) are chosen in applying the shootingmethod. For these variables it is possible to assess the region in which their
values are found, in contrast to the costate variables where it is difficult to do this. The results are illustrated by an example.

2. Formulation of the problem

Consider the motion of a particle M of variable mass m in the plane xOy of the Cartesian rectangular coordinate system
along a smooth curve which is treated as a bilateral constraint (the particle must slide along the curve like a bead on a
wire) under the action of arbitrary active forces (see Fig. 1). The axis Oy is directed vertically upward. The task consists of
determining the form of the curve (brachistochrone) y = y(x) which ensures that the particle, starting from the specified
position M0(x0 > 0, y0 > 0) with the initial speed v0 and mass m0, reaches the origin O of the coordinate system in the
shortest descent time tf .

It is assumed below that the resultant of active forces, in a general case, is a function of the y coordinate, the massm, the
slope angle ϕ of the tangent to the particle path, and the particle speed v, i.e.

−→
F

a
=

−→
F

a
(y, v, ϕ,m). (1)

Also, it is assumed that there exists a unique solution y = y(x) to the posed problem with the monotonically decreasing
coordinate x, that is, ẋ < 0. From these assumptions it follows that the angle ϕ will vary within the interval

−
π

2
< ϕ <

π

2
. (2)
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The kinematics equations of the particle motion read

ẋ = −v cosϕ, ẏ = −v sinϕ (3)

where an overdot denotes the derivative with respect to time t .
The differential equation describing the particle motion is

m−→a =
−→
F

a
+

−→
N +

−→
Φ , (4)

where
−→
N is the constraint reaction force, while

−→
Φ =

−→
Φ (v, ϕ,m) = ṁ−→v r (5)

is the Meshchersky reactive force [32], where the law of the time-rate of mass variation is assumed to be known and of the
form

ṁ = ṁ(m, v) (6)

as well as the relative velocity of the expelled (or gained) mass

−→v r =
−→v r(v, ϕ). (7)

Similar to [11,12], introducing the following unit vectors

−→t = (− cosϕ)
−→
i + (− sinϕ)

−→
j ,

d−→t
dϕ

= (sinϕ)
−→
i + (− cosϕ)

−→
j , (8)

the acceleration of the particle can be written in the form

−→a = v̇
−→t + vϕ̇

d−→t
dϕ

, (9)

while resolution of the vector differential equation (4) into components along the directions of −→t and d−→t /dϕ yields

mv̇ = F a
t (y, v, ϕ,m) + Φt(v, ϕ,m),

mvϕ̇ = F a
n (y, v, ϕ,m) + Φn(v, ϕ,m) + Nn, (10)

where Φt =
−→
Φ ·

−→t , Φn =
−→
Φ · (d−→t /dϕ),Nt =

−→
N ·

−→t ≡ 0,Nn =
−→
N · (d−→t /dϕ), Ft =

−→
F ·

−→t , Fn =
−→
F · (d−→t /dϕ). For

more details on the advantages of using the vector d−→t /dϕ see [12]. Introducing the variable

p =
dy
dx

= tanϕ (11)

a corresponding task of the optimal control can be formulated. In regard to this, using Eqs. (3), (6), (10) and (11) and taking
the quantities y, p, v, andm as state variables, which are regarded as implicit functions of the variable x, the following state
evolution equations can be formed

dy
dx

= p,
dp
dx

= u,

dv
dx

= −
F a
t + Φt

m
Ψ (p, v) , Ψv(y, p, v,m),

dm
dx

= −ṁΨ (p, v) , Ψm(p, v,m), (12)

with the initial and final conditions

y(x0) = y0, v(x0) = v0, m(x0) = m0, y(0) = 0, (13)

and where the optimal control u represents the second derivative of the coordinate y with respect to the variable x, which
is directly related to the curvature of the particle path. In (12), the function Ψ (p, v) is defined as:

Ψ (p, v) ≡ −
dt
dx

=


1 + p2

v
. (14)

Now, an optimal control should be defined

u = u(x) (15)

and its corresponding optimal trajectory in the state space

y = y(x), p = p(x), v = v(x), m = m(x) (16)
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so that the functional, taking into account (14),

J =

∫ tf

0
dt =

∫ 0

x0

dt
dx

dx =

∫ x0

0
Ψ (p, v)dx (17)

has a minimum value, where Eq. (12) and the conditions (13) are satisfied.
If it were needed, the reaction of constraint Nn(x) can be determined from Eqs. (3) and (10)–(12) as

Nn(x) = −
muv2

(1 + p2)3/2
− F a

n − Φn. (18)

It should be pointed out that here a general case of active forces is considered. They involve both potential
(e.g. gravitational) and non-potential forces (e.g. viscous friction forces proportional to arbitrary power of speed).

3. Solution of the problem within the framework of optimal control theory

To solve the tasks set applying the optimal control theory, the Hamiltonian [6,7] is formed
H = Ψ + λyp + λpu + λvΨv + λmΨm, (19)

where (λy, λp, λv, λm) are coordinates of the costate vector. The corresponding costate evolution equations read
dλy

dx
= −

∂H
∂y

= −λv

∂Ψv

∂y
,

dλp

dx
= −

∂H
∂p

= −
∂Ψ

∂p
− λy − λv

∂Ψv

∂p
− λm

∂Ψm

∂p
,

dλv

dx
= −

∂H
∂v

= −
∂Ψ

∂v
− λv

∂Ψv

∂v
− λm

∂Ψm

∂v
, Ωv(y, p, v,m, λv, λm),

dλm

dx
= −

∂H
∂m

= −λv

∂Ψv

∂m
− λm

∂Ψm

∂m
, Ωm(y, p, v,m, λv, λm) (20)

with the boundary conditions (transversality conditions)
λp(x0) = 0, λp(0) = 0, λv(0) = 0, λm(0) = 0. (21)

If a Hamiltonian H linearly depends upon a scalar control variable u (a typical case in which singular control arises
in applications), then the necessary condition ∂H/∂u = 0 requires that the coefficient of u in H be (identically) zero on
the optimal state-space trajectory. Accordingly, all higher-order derivatives of ∂H/∂u which are taken with respect to the
independent variable x must be zero as well:

dk

dxk

[
∂H
∂u

]
= 0; k = 0, 1, 2, . . . . (22)

It is then found that
∂H
∂u

= λp,

d
dx

[
∂H
∂u

]
=

dλp

dx

= −
∂Ψ

∂p
− λy − λv

∂Ψv

∂p
− λm

∂Ψm

∂p
,

d2

dx2

[
∂H
∂u

]
= −

∂2Ψ

∂p2
dp
dx

−
∂2Ψ

∂v∂p
dv
dx

−
dλy

dx

−
dλv

dx
∂Ψv

∂p
− λv

[
∂2Ψv

∂y∂p
dy
dx

+
∂2Ψv

∂p2
dp
dx

+
∂2Ψv

∂v∂p
dv
dx

+
∂2Ψv

∂m∂p
dm
dx

]
−

dλm

dx
∂Ψm

∂p
− λm

[
∂2Ψm

∂p2
dp
dx

+
∂2Ψm

∂v∂p
dv
dx

+
∂2Ψm

∂m∂p
dm
dx

]
=

[
−

∂2Ψ

∂p2
− λv

∂2Ψv

∂p2
− λm

∂2Ψm

∂p2

]
u

−

[
∂2Ψv

∂v∂p
Ψv +

∂2Ψv

∂m∂p
Ψm +

∂2Ψv

∂y∂p
p −

∂Ψv

∂y
−

∂Ψv

∂p
∂Ψv

∂v
−

∂Ψm

∂p
∂Ψv

∂m

]
λv

−

[
∂2Ψm

∂v∂p
Ψv +

∂2Ψm

∂m∂p
Ψm −

∂Ψv

∂p
∂Ψm

∂v
−

∂Ψm

∂p
∂Ψm

∂m

]
λm −

[
−

∂Ψv

∂p
∂Ψ

∂v
+

∂2Ψ

∂v∂p
Ψv

]
(23)
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by means of Eqs. (12) and (20), where the dependences of the functions indicated in these equations have been inferred
from the forms of the functions assumed for Ψv, Ψm, and Ψ .

Thus, for k = 0, 1, and 2, Eq. (22) through (23) yield
λp ≡ 0, (24)

λy = −
∂Ψ

∂p
− λv

∂Ψv

∂p
− λm

∂Ψm

∂p
, (25)

u =

[
∂2Ψv

∂v∂p
Ψv +

∂2Ψv

∂m∂p
Ψm +

∂2Ψv

∂y∂p
p −

∂Ψv

∂y
−

∂Ψv

∂p
∂Ψv

∂v
−

∂Ψm

∂p
∂Ψv

∂m

]
λv

+

[
∂2Ψm

∂v∂p
Ψv +

∂2Ψm

∂m∂p
Ψm −

∂Ψv

∂p
∂Ψm

∂v
−

∂Ψm

∂p
∂Ψm

∂m

]
λm

+

[
−

∂Ψv

∂p
∂Ψ

∂v
+

∂2Ψ

∂v∂p
Ψv

]
/

[
−

∂2Ψ

∂p2
− λv

∂2Ψv

∂p2
− λm

∂2Ψm

∂p2

]
, Γ (y, p, v,m, λv, λm). (26)

It is observed that the resultλp ≡ 0 fulfills the boundary conditions imposed uponλp, so these conditions can be excluded
from further consideration. Furthermore, λy does not appear (except for its derivative) in any of the remaining governing
relations. As a result, the expression for λy (though valid) is not required nor immediately useful. Hence, it is expedient to
consider the case of k = 2 in Eq. (22) in order to determine the control law for u. The control u represents the singular
optimal control of the first order. The Kelley necessary condition [8] for optimality of the first-order singular control u

(−1)n
∂

∂u


d2n

dx2n

[
∂H
∂u

]
≥ 0, n = 1, (27)

with n ∈ N denoting the order of the singular optimal control, yields

∂2Ψ

∂p2
+ λv

∂2Ψv

∂p2
+ λm

∂2Ψm

∂p2
≥ 0. (28)

Assembled all together, the relevant governing relations for determination of the singular control and the optimal state-
space trajectory are

dy
dx

= p,
dp
dx

= Γ (y, p, v,m, λv, λm)
dv
dx

= Ψv(y, p, v,m),

dm
dx

= Ψm(p, v,m),
dλv

dx
= Ωv(y, p, v,m, λv, λm),

dλm

dx
= Ωm(y, p, v,m, λv, λm) (29)

with the accompanying boundary conditions
y(x0) = y0, v(x0) = v0, m(x0) = m0,

y(0) = 0, λv(0) = 0, λm(0) = 0. (30)
Although, in a general case, solving the two-point boundary value problem of the minimum principle is very complex, it

is not like that in this case. If this problem is solved using the shooting method [31], by choosing the values
v(0) = vf , p(0) = pf , m(0) = mf , (31)

and solving the corresponding Cauchy problem defined by Eqs. (29) and (30), the following dependences can be established
in a numerical form

y0 = fy(vf , pf ,mf )

v0 = fv(vf , pf ,mf )

m0 = fm(vf , pf ,mf ). (32)
Each of these dependences can be graphically represented in a vf , pf ,mf -space, and at the intersection of these surfaces

there is a solution of the systemof nonlinear equation (32). The fact that themissing conditions (31), in contrast to the costate
variables, represent physical quantities (speed, slope, and mass) considerably simplifies the estimation of the intervals

v⋆
f ≤ vf ≤ v⋆⋆

f

p⋆
f ≤ pf ≤ p⋆⋆

f

m⋆
f ≤ mf ≤ m⋆⋆

f (33)
in which the solutions of the system of Eq. (32) should be examined. Solving the system (32) for the unknown values vf , pf
andmf , the task posed is completed. The described procedure can be implemented in Mathematica 6.0 [33] as follows:

(*** This defines functions that return the values y(x0), v(x0), and m(x0) as functions of numerical values for p(x), v(x),
andm(x) at x = 0 ***)
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fy1[mf_?NumberQ,pf_?NumberQ,vf_?NumberQ]:=First[y[x1]
/.NDSolve[{y’[x]==p[x],p’[x] ==u,v’[x] ==Fv, m’[x] ==Fm,
lv’[x] == Flv, lm’[x]==Flm, y[0]==0,p[0]==pf,v[0]==vf,
m[0]==mf,lv[0]==0,lm[0]==0},
{y,p,v,m,lv,lm},{x,0,x0}]]

fv1[mf_?NumberQ,pf_?NumberQ,vf_?NumberQ]:=First[v[x1]
/.NDSolve[{y’[x]==p[x],p’[x] ==u,v’[x] ==Fv, m’[x] ==Fm,
lv’[x] ==Flv, lm’[x]==Flm, y[0]==0,p[0]==pf,v[0]==vf,
m[0]==mf,lv[0]==0,lm[0]==0},
{y,p,v,m,lv,lm},{x,0,x0}]]

fm1[mf_?NumberQ,pf_?NumberQ,vf_?NumberQ]:=First[m[x1]
/.NDSolve[{y’[x]==p[x],p’[x] ==u,v’[x] ==Fv, m’[x] ==Fm,
lv’[x] ==Flv, lm’[x]==Flm, y[0]==0,p[0]==pf,v[0]==vf,
m[0]==mf,lv[0]==0,lm[0]==0},
{y,p,v,m,lv,lm},{x,0,x0}]]

(***This makes plots of functions in Eq. (32)***)

Show[ContourPlot3D[fy1[mf,pf,vf]==y0,
{mf, mfmin,mfmax},{pf,pfmin,pfmax},
{vf,vfmin,vfmax},
AxesLabel->{Subscript[m,f],
Subscript[p,f], Subscript[v,f]}],

ContourPlot3D[fv1[mf,pf,vf]==y0,
{mf,mfmin,mfmax },{pf,pfmin,pfmax},
{vf,vfmin,vfmax},
AxesLabel ->{Subscript[m,f],
Subscript[p,f], Subscript[v,f]}],

ContourPlot3D[fm1[mf,pf,vf]==y0,
{mf,mfmin,mfmax},{pf,pfmin,pfmax},
{vf,vfmin,vfmax},
AxesLabel ->{Subscript[m,f],

Subscript[p,f], Subscript[v,f]}]]

(***This numerically solves the equation system (32) for mf , pf , and vf ***)

s1=FindRoot[{fy1[mf,pf,vf]==y0,
fv1[mf,pf,vf]==v0,fm1[mf,pf,vf]==m0},
{{mf,mf*,mf**},{pf,pf*,pf**},{vf,vf*,vf**}}]

4. Numerical example

Consider a variablemass particle (see Fig. 2) of initialmassm0 and initial speed v0 at the positionM0(x0, y0), which should
reach the coordinate origin in the shortest time sliding along a smooth curve in a vertical plane in a uniform gravitational
field.

Let the particle mass variation be proportional to the particle mass

ṁ = kmm (34)

where km is a specified constant. The acquired or expelled mass is assumed to be at rest relative to a stationary reference
frame as it enters or leaves the particle, respectively, and so the relative velocity −→v r is determined from

−→v r = −
−→v (35)

so that the Meshchersky reactive force reads
−→
Φ = −kmmv

−→t . (36)

The particle is also acted upon by the resistance force proportional to the square of the particle speed
−→
F w = −kvv

2−→t , (37)
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Fig. 2. Variable mass particle in a vertical plane.

where kv is a specified positive constant. The projections of the resultant of active forces (1) are

F a
t = mg sinϕ − kvv

2, F a
n = mg cosϕ (38)

where −→g = −g
−→
j is the gravitational acceleration. Now, the differential equation (29) of the two-point boundary value

problem take the form

dy
dx

= p,

dp
dx

= g(1 + p2)

−m + m2kmλm + mkmλvv + 2v2kvλv


/[v2(−m + m2kmλm − mvλvkm − v2λvkv)],

dv
dx

= −
gp
v

+


1 + p2


kv

m
v + km


,

dm
dx

= −
kmm
v


1 + p2,

dλv

dx
= −λv


gp
v2

+
kv

m


1 + p2


−

λmkmm
v2


1 + p2 +


1 + p2

v2
,

dλm

dx
= λv

kvv

m2


1 + p2 +

λmkm
v


1 + p2, (39)

where the first-order singular optimal control (26) has the form

u = g(1 + p2)(−m + m2kmλm + mkmλvv + 2v2kvλv)/[v
2(−m + m2kmλm − mvλvkm − v2λvkv)]. (40)

The two-point boundary value problem has been solved for the following values of the parameters

m0 = 1 kg, v0 = 5
m
s

, x0 = 6 m, y0 = 2 m, km = 0.2 s−1, kv = 0.1
kg
m

. (41)

The missing boundary values mf , pf , and vf are obtained by numerically solving the equation system (32), where the
solutions are sought in the region

1.25 kg ≤ mf ≤ 1.3 kg

4.2
m
s

≤ vf ≤ 4.3
m
s

−0.35 ≤ pf ≤ −0.32 (42)

which has been defined using the graphic representation of the solution (the intersection of the surfaces (32)) in Fig. 3.
Accordingly, one obtains mf = 1.279580584 kg, vf = 4.268122289 m

s , pf = −0.320713340 and the brachistochrone
y = y(x) as well as the other solutions of the system (39) are shown in Fig. 4.

It is also possible to determine the time t = t(x) of the variable-mass particle motion along the brachistochrone by
numerically solving the differential equations

dt
dx

= −


1 + p2

v
, (43)
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–0.32

–0.33
pf

vf

mf

–0.34

–0.35

4.30

4.25

4.20

1.26

1.28

1.30

Fig. 3. Plots of the surfaces y0 = fy(vf , pf ,mf ), v0 = fv(vf , pf ,mf ),m0 = fm(vf , pf ,mf ).

Table 1
Numerical values of the parameters of brachistochrone curves for km =

0.2 s−1, kv = 0.1 kg/m, x0 = 6 m, y0 = 2 m,m0 = 1 kg, and various values
of the speed v0 .

v0 (m/s) mf (kg) ϕf vf (m/s) tf (s)

2 1.377432185 −0.549166312 3.255706264 1.601105149
3 1.343049286 −0.478235438 3.541402971 1.474713080
5 1.279580584 −0.310349890 4.268122289 1.232661779
7 1.228451502 −0.153855836 5.073097336 1.028772174
9 1.189568059 −0.032037950 5.906776905 0.867951328

12 1.148433096 0.089382734 7.207456809 0.691992439

with t0 = 0. This equation are obtained from Eqs. (3) and (11). Based on this, the descent time for the example considered
is tf = 1.232661779 s. Further, having in mind the solutions of the system (39), the Kelley condition (27)

K ≡ −
∂

∂u


d2

dx2

[
∂H
∂u

]
= (m − m2kmλm + mvλvkm + v2λvkv)/[mv(1 + p2)3/2] ≥ 0 (44)

can be also tested, as shown in Fig. 5.
Finally, using the solution of the system (39) and the expression (40), the optimal control can be completely defined as

a function of the coordinate x, as shown in Fig. 6.
The obtained curve can be used as a reference curve for investigating effects of the values of parameters m0, v0, km, and

kv on brachitochronic motion of a particle. Thus, Tables 1–4 show changes in the values of parameters mf , vf , ϕf , and tf
depending on various values of parameters m0, v0, km, and kv . Based on these data, the corresponding brachistochrone
curves are presented in Figs. 7–10. Each of these figures shows Bernoulli’s brachistochrone (km = 0, kv = 0, v0 =

5 m/s,m0 = mf = 1 kg, ϕf = −0.188543550, vf = 8.014986239 m/s, tf = 0.914748210 s) indicated by a dashed
line. In Figs. 7–10 an arrowwith designation of a corresponding parameter indicates how brachistochrone curves distribute
with the growing value of the parameter designated in figures.

Observing Figs. 7–10 as well as numerical values in Tables 1–4, the following conclusions can be drawn:

• Increase of speed v0 indirectly implies decrease of time tf and increase of the value of speed vf . Also, decrease of time tf
directly implies decrease of massmf . In Fig. 7 it is observable that with increase of speed v0, brachistochrone curves tend
to assume the shape of a straight line;



2908 O. Jeremić et al. / Mathematical and Computer Modelling 54 (2011) 2900–2912

Fig. 4. Diagrams of functions which are solutions of the system (37).

Fig. 5. Testing of the Kelley condition (K > 0).

• Increase of massm0 directly causes increase of massmf . Largerm0 mass means increase of the amount of work done by
gravity force during the particle descent, which affects increase of the value of speed vf , thereby decrease of time tf . Also,
it is observable in Fig. 8 that with increase of mass m0 brachistochrone curves assume the shape very close to the shape
of Bernoulli’s brachistochrone;
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Fig. 6. Optimal control u = u(x).

Table 2
Numerical values of the parameters of brachistochrone curves for km =

0.2 s−1, kv = 0.1 kg/m, x0 = 6 m, y0 = 2 m, v0 = 5 m/s, and various values
of the massm0 .

m0 mf (kg) ϕf vf (m/s) tf (s)

1 1.279580584 −0.310349890 4.268122289 1.232661779
2 2.495049659 −0.274725424 5.283262526 1.105807264
4 4.929125790 −0.255724639 5.967100648 1.044336438
6 7.364083584 −0.249342837 6.226707331 1.024275727
9 11.016917337 −0.245092848 6.409373208 1.011037274

Table 3
Numerical values of the parameters of brachistochrone curves for m0 =

1 kg, kv = 0.1 kg/m, x0 = 6 m, y0 = 2 m, v0 = 5 m/s, and various values
of the parameter km .

km s−1 mf (kg) ϕf vf (m/s) tf (s)

−0.5 0.600919495 −0.147380849 5.934700234 1.018588596
−0.2 0.803239573 −0.209545605 5.302425610 1.095511308
0.2 1.279580584 −0.310349890 4.268122289 1.232661779
0.5 1.987354486 −0.398100930 3.410018316 1.373608698
0.7 2.843620027 −0.458700678 2.849109575 1.492968429

Table 4
Numerical values of the parameters of brachistochrone curves form0 = 1 kg, km =

0.2 s−1, x0 = 6 m, y0 = 2m, v0 = 5 m/s, and various values of the parameter kv .

kv (kg/m) mf (kg) ϕf vf (m/s) tf (s)

0.1 1.279580584 −0.310349890 4.268122289 1.232661779
0.3 1.411348022 −0.398587425 2.585733644 1.722726458
0.5 1.531226434 −0.438986393 2.040623850 2.130345026
0.6 1.586551811 −0.452882132 1.879570639 2.307814944

• It is evident that with increase of the positive value of parameter km, the value of mass mf rises. However, for km > 0
the Meshchersky reactive force

−→
Φ represents the resistance force, therefore increase of the value for km causes increase

of effects of the resistance forces, thereby decrease of speed vf and increase of time of brachistochronic motion tf . In the
case of km < 0, the Meshchersky reactive force

−→
Φ represents the driving force. This fact implies that with decrease of

the negative value of parameter km, the value of vf increases and the value of tf decreases;
• With increase of the value of parameter kv , the value of speed vf is decreased, and the time of brachistochronic motion tf

is increased. This is a consequence of the fact that with increase of the value of coefficient kv the effect of the resistance
force

−→
F w strengthens. Also, increase of time tf directly implies increase ofmassmf . In Fig. 10 it is observable that increase

of the value of parameter kv results in change of the brachistochrone curve concavity and that it has inflection points.
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Fig. 7. Brachistochrones for various values of the parameter v0 .

Fig. 8. Brachistochrones for various values of the parameterm0 .

Fig. 9. Brachistochrones for various values of the parameter km .

In regard to (12), the optimal control u(x) at inflection points equals zero. Taking into account this fact, the x-coordinate
of inflection points can be determined based on the graph of u(x), which is shown in Fig. 11 for the case of kv = 0.5 kg/m.

5. Conclusions

In this paper, the problem of brachistochronic motion of a variable-mass particle has been formulated within the
framework of Pontryagin’s minimum principle and singular optimum control theory, and a numerical solution to the
resulting two-point boundary value problem (for cases of continuous particle mass accretion and depletion) has been
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Fig. 10. Brachistochrones for various values of the parameter kv .

Fig. 11. Optimal control u = u(x) for kv = 0.5 kg/m.

presented. Due to the fact that the solution of the considered problem in the paper is based on fairly general assumptions
with respect to active and reactive forces, the cases of the brachistochrone with viscous friction and the brachistochrone
in the field of central forces, considered in the papers cited in Section 1, can be observed as special cases of our paper. In
regard to this, it is sufficient to take m(x) = const., λm(x) ≡ 0, Ψm(p, v,m) ≡ 0, exclude from the further considerations
the last equations in the systems (12) and (20), and adapt the structure of the function Ψv in accordance with active forces
considered in above mentioned papers. By slightly changing the boundary conditions, the Refs. [29,30] can be also covered
by our paper. Even in the case of generalizations of the brachistochrone problem where analytical solutions were obtained,
there are a certain number of unknown constants in the solutions. These constants must be numerically determined from
corresponding relations (see, for example, [11,12]). Taking the above observations into account, it seems that numerical
computations are necessary (to some extent) in order to obtain a complete solution to any generalization of the classical
brachistochrone problem. This is the reason why in this paper a numerical procedure has been formed, enabling a complete
solution to the posed brachistochrone problem and the problems similar to it. The procedure can be also generalized to the
brachistochronic motion of a nonholonomic rheonomic material system [34].
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