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A new approach in multimodeling strategy is proposed. Multimodel strategies in which control
agents use different simplified models of the same system are being developed using balancing
transformation and the corresponding order reduction concepts. Traditionally, the multimodeling
concept was studied using the ideas of multitime scales (singular perturbations) and weak
subsystem coupling. For all reduced-order models obtained, a Linear Quadratic Gaussian (LQG)
control problem was solved. Different order reduction techniques were compared based on the
values of the optimized criteria for the closed-loop case where the full-order balanced model
utilizes regulators calculated to be the optimal for various reduced-order models. The results
obtained were demonstrated on a real-world example: a multiarea power system consisting of
two identical areas, that is, two identical power plants.

1. Introduction

Large-scale systems have been the subject of research work for several decades [1–20]. Some
order reduction techniques were developed for the singularly perturbed class of systems,
based on different mathematical procedures, such as graph metric [21]. The concept of
multimodel strategies for large-scale systems is originated from [17]. According to that
concept, a large-scale system may be controlled by several independent agents using several
simplified models of the system. In the singular perturbation [17], methodology has been
used to developmultimodel strategies by exploiting the nature of the system that has two fast
subsystems mutually weakly coupled and both strongly connected to the slow subsystem.
The basic contribution of [17] has been to establish a set of conditions under which a
multimodel strategy is well posed in the sense that the performance of the control system
is close to the performance that would have been obtained had the control strategy been
designed by a single controller knowing the exact model of the overall system. Multimodel
strategies [17] have been studied and employed in several papers, either within the context of
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singular perturbations or in different mathematical set-ups [14]. Conditions for a multimodel
strategy to be well-posed are investigated in [14] for a linear quadratic Gaussian (LQG)
optimal control problem [22].

The multimodeling structure used in the classical approach via singular perturbations
and weak coupling is defined by a linear dynamic system that has one slow and two
fast subsystems [11]. The fast subsystems are strongly connected to the slow subsystem
and weakly connected (or not connected) among themselves. This structure describes well
the dynamics of several real-world systems, for example, power systems [15, 17] and
automobiles [2]. The correspondingmultimodeling representation [11, 17] is defined by (1.1):

⎡
⎢⎢⎣

ẋ0(t)

ε1ẋ1(t)

ε2ẋ2(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A00 A01 A02

A10 A11 ε3A12

A20 ε3A21 A22

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x0(t)

x1(t)

x2(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

B01 B02

B11 ε3B12

ε3B21 B22

⎤
⎥⎥⎦
[
u1(t)

u2(t)

]
, (1.1)

y(t) = C

⎡
⎢⎢⎣
x0(t)

x1(t)

x2(t)

⎤
⎥⎥⎦ +D

[
u1(t)

u2(t)

]
, (1.2)

where x0 ∈ Rn0 are slow state variables, x1 ∈ Rn1 , x2 ∈ Rn2 are fast state variables,
u1 ∈ Rm1 , u2 ∈ Rm2 are control inputs, y ∈ Rp are outputs, ε1, ε2 are small positive singular
perturbation parameters, and ε3 is small weak-coupling parameter. (For ε3 = 0, (1.1) describes
multiparameter singularly perturbed system (MSPS) studied in detail in literature [5–11].)

For the purpose of deterministic optimal control of the abovemultimodeling structure,
the quadratic performance criterion has to be minimized by the proper choice of the
control variables u1(t) and u2(t). The performance criterion for the linear quadratic Gaussian
optimization [22] is given by

J =
1
2

∫+∞

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt, Q = QT ≥ 0, R = RT > 0, (1.3)

where

x(t) =

⎡
⎢⎢⎣
x0(t)

x1(t)

x2(t)

⎤
⎥⎥⎦, u(t) =

[
u1(t)

u2(t)

]
, Q =

⎡
⎢⎢⎣
Q00 Q01 Q02

QT
01 Q11 0

QT
02 0 Q22

⎤
⎥⎥⎦, R =

[
R1 0

0 R2

]
,

Q = qTq =

[
q01 q11 0

q02 0 q22

]T[
q01 q11 0

q02 0 q22

]
=

⎡
⎢⎢⎣
qT01q01 + qT02q02 qT01q11 qT02q22

qT11q01 qT11q11 0

qT22q02 0 qT22q22

⎤
⎥⎥⎦.

(1.4)

In the general multimodeling case, all zero-elements in matrices R and Q can be replaced by
O(ε) elements. (O(εi) is defined by O(εi) < cεi, where c is a bounded constant, i is a real
number, and ε = ‖[ε1 ε2]‖.)
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To solve the multimodeling problem one proceeds with constructing two different
models of (1.1), obtained by setting ε1 = 0, which leads to the first model for the first
controller, and by setting ε2 = 0, which produces the second model for the second controller.
In order to simplify equations, without loss of generality, small coupling parameter ε3 is set
to zero.

The fast dynamics of the other subsystem is approximated by an algebraic equation
(the corresponding εi is set to zero).

Two approximations of the original model derived from (1.1) are

⎡
⎢⎢⎣

ẋ0(t)

ε1ẋ1(t)

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A00 A01 A02

A10 A11 0

A20 0 A22

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x0(t)

x1(t)

x2(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
B01 B02

B11 0

0 B22

⎤
⎥⎥⎦
[
u1(t)

u2(t)

]
,

⎡
⎢⎢⎣

ẋ0(t)

0

ε2ẋ2(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A00 A01 A02

A10 A11 0

A20 0 A22

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x0(t)

x1(t)

x2(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
B01 B02

B11 0

0 B22

⎤
⎥⎥⎦
[
u1(t)

u2(t)

]
.

(1.5)

The above equations can be rewritten as:

[
ẋ0(t)

ε1ẋ1(t)

]
=

[(
A00 −A02A

−1
22A20

)
A01

A10 A11

][
x0(t)

x1(t)

]
+

[
B01

(
B02 −A02A

−1
22B22

)

B11 0

][
u1(t)

u2(t)

]
,

[
ẋ0(t)

ε2ẋ2(t)

]
=

[(
A00 −A01A

−1
11A10

)
A02

A20 A22

][
x0(t)

x2(t)

]
+

[(
B01 −A01A

−1
11B11

)
B02

0 B22

][
u1(t)

u2(t)

]
,

(1.6)

leading to two different models of the original system. The algebraic equations defined
in (1.5) are used in (1.3) by each controller to form their own performance criterion.
Such simplified criteria are optimized by each controller via the corresponding reduced-
order model and the obtained control strategies form the multimodeling strategy. The
multimodeling strategy is well posed if it is O(ε) close to the global optimal control
strategy obtained by performing direct optimization on the original system and the original
performance criterion, as shown in [14].

2. The Use of Balancing Transformation for
the System Order Reduction

Robust order reduction based on the use of balancing transformation has been described in
[20]. Concisely, consideration is given to a linear, time invariant system as in (2.1):

dx(t)
dt

= Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t) +Du(t),
(2.1)
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where x(t) is an n-dimensional state vector, u(t) is an m-dimensional input vector, and y(t) is
a p-dimensional output vector.

For a linear, time invariant system (2.1) the corresponding transfer function for the
open-loop system is given by (2.2):

G(s) = C(sI −A)−1B +D. (2.2)

It is assumed that the system (2.1) is asymptotically stable and that aG(s) is of minimal
realization.

Assumption 1. A system is asymptotically stable, a pair (A,B) is controllable, and a pair (A,C)
is observable.

The controllability and observability Gramians of the original system (2.1) satisfy the
algebraic equations of Lyapunov [15, 16]:

PAT +AP + BBT = 0,

QA +ATQ + CTC = 0.
(2.3)

For a system that is controllable and observable, both controllability Gramian and
observability Gramian are positive definite matrices, P > 0, Q > 0.

The balancing transformation is applied on the space vector in order to achieve that
the controllability and the observability Gramians are identical and diagonal, that is,

xb(t) = Tx(t), det(T)/= 0 =⇒
dxb(t)
dt

= Abxb(t) + Bbu(t),

yb(t) = Cbxb(t) +Dbu(t) = y(t),

(2.4)

Ab = TAT−1, Bb = TB, Cb = CT−1, Db = D, (2.5)

Pb = Qb = Σ = diag{σ1, σ2, . . . , σn}, σ1 ≥ σ2 ≥ · · · ≥ σn > 0, (2.6)

where σi are known as the Hankel singular values (HSVs).
Assuming that the original system is controllable and observable, a balanced system

will also be both controllable and observable, since the similarity transformation preserves
controllability and observability of the system that was transformed [15, 16]. Hence all σi are
positive. Furthermore, both original and balanced systems are of minimal realization. The
transfer function of the balanced system given by

Gb(s) = Cb(sI −Ab)−1Bb +D = G(s) (2.7)
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stays unchanged thanks to a coordinate change through a nonsingular transformation. The
balanced controllability and observability Gramians satisfy the following algebraic Lyapunov
equations:

ΣAT
b +AbΣ + BbB

T
b = 0 ⇐⇒ PbA

T
b +AbPb + BbB

T
b = 0,

ΣAb +AT
bΣ + CT

bCb = 0 ⇐⇒ QbAb +AT
bQb + CT

bCb = 0.
(2.8)

The idea of the order reduction through balancing transformation can be linked with
the canonical system decomposition. It was shown that the system’s modes that were either
uncontrollable or unobservable did not appear in the system transfer function. In [15, 16] it is
shown that the system modes that are both weakly controllable and weakly observable have
little influence on the system dynamics; so they can be neglected.

However, it was noticed that those modes which are weakly controllable and well
observable cannot be neglected as can neither be neglected those modes that are well
controllable and weakly observable. Let us assume that the balanced system (2.4)–(2.6) is
partitioned in the following way:

Ab =

[
A11 A12

A21 A22

]
, Bb =

[
B11

B22

]
, Cb =

[
C11 C22

]
, Db = D,

Σ =

[
Σ1 0

0 Σ2

]
, Σ1 = diag{σ1, σ2, . . . , σr}, Σ2 = diag{σr+1, σr+2, . . . , σn}.

(2.9)

Assuming that σr > σr+1, balanced truncation produces a system of lower order, r, defined by

dx1(t)
dt

= A11x1(t) + B11u(t),

y(t) = C11x1(t) +Du(t),
(2.10)

and the corresponding transfer function of the reduced-order system is

G11(s) = C11(sI −A11)−1B11 +D. (2.11)

The reduced-order system attained in this way is both controllable and observable
since all corresponding HSVs are positive. Furthermore, the reduced-order system is
balanced and asymptotically stable. It was shown in literature, for example, [20] that the
H∞ norm for the reduced-order system, obtained through the truncation procedure given
above, satisfies the condition:

‖G(s) −G11(s)‖∞ ≤ 2(σr+1 + σr+2 + · · · + σn). (2.12)
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It was noticed that the reduced-order system obtained through the balanced truncation
procedure gives very good approximation of the original system in the case of pulse input
for both control signals (good spectra approximation on higher frequencies) but shows a
considerable, steady-state error in the case of step input (poor spectra approximation on
lower frequencies). This error is due to the fact that the original system and the reduced
order system have different DC gains. Actually, after the above-described truncation through
balancing transformation, most of the spectra on lower frequencies are kept and also some
of the spectra on higher frequencies, but some of the spectra on lower frequencies are lost
as well as most of the spectra on higher frequencies. By eliminating part of the spectra on
lower frequencies (which occur in the neglected part of the system—state variables x2(t))
we have produced gain that differs from the gain of the original system that was balanced.
This discrepancy was eliminated in [16] where a technique of balanced residualization was
proposed that produced an accurate (exact) DC gain and a very good spectra approximation
on lower frequencies and sometimes even on middle frequencies. It should be noted that
in [20] a residualisation technique was also used. An improved truncation method that
preserves the exact DC gain value as in the original system is given in [16] and applied in
[19].

3. Multimodeling via System Balancing

Two multimodeling order reduction concepts are mentioned above: the first one uses the
small-parameter idea and the second one is based on balancing transformation, presented
through two specific methods—balanced truncation and balanced residualization. Here, we
will present the idea of multimodeling via system balancing, which is more general than
multimodeling via singular perturbation since the latter requires special structures of the
original model. Multimodeling via singular perturbation is performed on the assumption
that two fast weakly connected subsystems, whose system matrices are invertible, are both
strongly coupled to the slow subsystem while no such assumption is necessary for the
multimodeling via system balancing.

Let us consider a time invariant linear system represented by (3.1):

⎡
⎢⎢⎣
ẋ0(t)

ẋ1(t)

ẋ2(t)

⎤
⎥⎥⎦ = A

⎡
⎢⎢⎣
x0(t)

x1(t)

x2(t)

⎤
⎥⎥⎦ + B

[
u1(t)

u2(t)

]
,

y(t) = C

⎡
⎢⎢⎣
x0(t)

x1(t)

x2(t)

⎤
⎥⎥⎦ +D

[
u1(t)

u2(t)

]
,

(3.1)

where

A =

⎡
⎢⎢⎣

A00 A01 A02

A10 A11 A12

A20 A21 A22

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

B01 B02

B11 B12

B21 B22

⎤
⎥⎥⎦. (3.2)
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The balanced model is derived as in (2.4)-(2.5), that is,

xb(t) = Tx(t), det(T)/= 0 =⇒
dxb(t)
dt

= Abxb(t) + Bbu(t),

yb(t) = Cbxb(t) +Dbu(t) = y(t),

Ab = TAT−1, Bb = TB, Cb = CT−1, Db = D,

Pb = Qb = Σ = diag{σ1, σ2, . . . , σn}, σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

(3.3)

The HSVs are the same as the HSVs of the original model (1.1) and are sorted in a descending
order so that they can help in determining how to partition the model: the first few state space
variables for the slow subsystem and the following two for the two fast parts, as in (3.4).

The balanced model will be partitioned in the following manner (3.4)-(3.5):

⎡
⎢⎢⎣
ẋb0(t)

ẋb1(t)

ẋb2(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Ab00 Ab01 Ab02

Ab10 Ab11 Ab12

Ab20 Ab21 Ab22

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xb0(t)

xb1(t)

xb2(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
Bb01 Bb02

Bb11 Bb12

Bb21 Bb22

⎤
⎥⎥⎦
[
u1(t)

u2(t)

]
, (3.4)

yb(t) =
[
Cb0 Cb1 Cb2

]
⎡
⎢⎢⎣
xb0(t)

xb1(t)

xb2(t)

⎤
⎥⎥⎦ +

[
Db1 Db2

][u1(t)

u2(t)

]
= y(t), (3.5)

where xb0 ∈ Rn0 are slow or the common-core state variables of the balanced model; xb1 ∈
Rn1 , xb2 ∈ Rn2 are state variables of the balancedmodel, having a small amount of total energy
(n0 + n1 + n2 = n); u1 ∈ Rm1 , u2 ∈ Rm2 are control inputs of the balanced and original model
(m1 +m2 = m); yb ∈ Rp, y ∈ Rp are outputs of the balanced and original model; respectively,
and Abij , Bbik, Cbj , and Dbk (i, j = 0, 1, 2 and k = 1, 2) are submatrices of the balanced system
matrices Ab, Bb, Cb, and Db, having the corresponding dimensions.

Instead of zero-submatrices in [12] a more general case is considered here, where
submatrices Ab12, Ab21, Bb12, and Bb21 are nonzero matrices, as it is usually the case in the
real-world systems.

The corresponding quadratic performance criterion which has to be minimized is

Jb =
1
2

∫+∞

0

[
xT
b (t)Qbxb(t) + uT (t)Rbu(t)

]
dt, Qb = QT

b ≥ 0, Rb = RT
b > 0, (3.6)

where, without loss of generality, we assume that Qb and Rb are block-diagonal matrices:

Qb =

⎡
⎣
Qb00 0 0
0 Qb11 0
0 0 Qb22

⎤
⎦, Rb =

[
Rb11 0
0 Rb22

]
. (3.7)
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Now the decomposition of the balanced model (3.4) is performed into two reduced-
order models, both of them composed of the common core—a subsystem corresponding
to slow modes of the balanced model, and one of the two different remaining subsystems,
corresponding to the modes having a small amount of total energy, namely, the first reduced-
order model and the second reduced-order model. Cross-coupling matrices Ab12, Ab21 will be
neglected though they have nonzero values. The first reduced-order model obtained is

[
ẋb0(t)

ẋb1(t)

]
= A1r

[
xb0(t)

xb1(t)

]
+ B1r

[
u1(t)

u2(t)

]
,

yb1(t) =
[
Cb0 Cb1

][xb0(t)

xb1(t)

]
+Db1u1(t),

(3.8)

A 1r =

[
Ab00 Ab01

Ab10 Ab11

]
, B1r =

[
Bb01 Bb02

Bb11 Bb12

]
. (3.9)

The second reduced-order model is

[
ẋb0(t)

ẋb2(t)

]
= A2r

[
xb0(t)

xb2(t)

]
+ B2r

[
u1(t)

u2(t)

]
,

yb2(t) =
[
Cb0 Cb2

][xb0(t)

xb2(t)

]
+Db2u2(t),

(3.10)

where

A2r =
[
Ab00 Ab02

Ab20 Ab22

]
, B2r =

[
Bb01 Bb02

Bb12 Bb22

]
. (3.11)

It is interesting to note that the first and the second reduced-order models in (3.8) and
(3.10) both have HSVs corresponding to the common core modes of the original system and
two complement sets of the HSVs corresponding to the modes of the original system that
have a small amount of total energy, if we keep all parts of the Bb matrix.

If, however, coupling submatrices Bb12 and Bb21 are set to zero-matrices of the
corresponding dimensions, as suggested in [11], the HSVs obtained for the first and the
second subsystems will differ from those of the original full-order model, and the reduced-
order models will be as in (3.12)–(3.13) and (3.14). These two types of reduced-order models
would still contain all control signals of the original and balanced models.

The first reduced-order model is obtained as in [11, 17]:

[
ẋb0(t)

ẋb1(t)

]
= A1r

[
xb0(t)

xb1(t)

]
+ B1r

[
u1(t)

u2(t)

]
,

yb1(t) =
[
Cb0 Cb1

][xb0(t)

xb1(t)

]
+Db1u1(t),

(3.12)
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where

A1r =
[
Ab00 Ab01

Ab10 Ab11

]
, B1r =

[
Bb01 Bb02

Bb11 0

]
. (3.13)

The second reduced-order model is obtained as in [11, 17]:

[
ẋb0(t)

ẋb2(t)

]
= A2r

[
xb0(t)

xb2(t)

]
+ B2r

[
u1(t)

u2(t)

]
,

yb2(t) =
[
Cb0 Cb2

][xb0(t)

xb2(t)

]
+Db2u2(t).

A2r =

[
Ab00 Ab02

Ab20 Ab22

]
, B2r =

[
Bb01 Bb02

0 bb22

]
.

(3.14)

The same approximation is done for the performance criterion (1.3); hence two
performance criteria are needed, which leads to multicriteria optimization problem.
Depending on the actual problem setup, very often described by differential games, the two
controllers find their own optimal strategies and apply such strategies to the global system
defined by (1.1). In such a way, the multimodeling strategy is well posed if the performance
criterion under the multimodeling strategy is O(σr+1/σr) close to the global optimal control
strategy obtained by performing direct optimization of the original performance criterion for
the original system.

The following two criteria to be optimized now are

J1 =
1
2

∫+∞

0

{[
xb0(t) xb1(t)

]
Q1

[
xb0(t)
xb1(t)

]
+
[
u1(t) u2(t)

]
R1

[
u1(t)
u2(t)

]}
dt,

Q1 = QT
1 ≥ 0, R1 = RT

1 > 0,

(3.15)

J2 =
1
2

∫+∞

0

{[
xb0(t) xb2(t)

]
Q2

[
xb0(t)
xb2(t)

]
+
[
u1(t) u2(t)

]
R2

[
u1(t)
u2(t)

]}
dt,

Q2 = QT
2 ≥ 0, R2 = RT

2 > 0.

(3.16)

Q1 and Q2 are block-diagonal matrices and R1 and R2 are submatrices of Rb having
corresponding dimensions:

Q1 = QT
1 =

[
Qb00 0

0 Qb11

]
≥ 0, R1 = RT

1 = Rb11 > 0,

Q2 = QT
2 =

[
Qb00 0

0 Qb22

]
≥ 0, R2 = RT

2 = Rb22 > 0.

(3.17)
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The optimal control problem we refer to, following the suggestions in [2, 14, 17], is to
minimize a convex sum of J1 and J2 given in (3.15) and (3.16), that is, for some γ1 and γ2

JMMC = γ1J1 + γ2J2, γ1 + γ2 = 1, γ1 > 0, γ2 > 0. (3.18)

This corresponds to a Pareto optimal cooperative strategy [6].
In Pareto optimal strategy a situation is considered in which decision makers should

decide on their strategies through mutual cooperation [14, 17]. The essence of this is that
no variation from a Pareto optimal strategy can decrease the costs of either of the decision
makers. Let each decision maker have a quadratic cost functional as in (3.15) and (3.16). A
Pareto solution is a pair uopt1(t), uopt2(t) which minimizes (3.18) for some γ1 and γ2 [6]. The
optimal feedback solution to (3.15) and (3.16) is given by (3.19):

uopt(t) =
[
uopt1(t)
uopt2(t)

]
= −R−1

b BT
b Pbxb(t). (3.19)

Here Pb is the positive semidefinite stabilizing solution of the algebraic Riccati equation:

AT
bPb + PbAb +Qb − PbSbPb = 0, Sb = BbR

−1
b BT

b . (3.20)

The optimal state regulator is a special case of this problem where the decision makers
agree on a choice of γ1 and γ2 as weighting factors. Without prejudice to the generality, we
chose γ1 = γ2 = 0.5. We expect that the approximation of the optimization criteria would be

1
2
(J1 + J2) ≈ Jb, (3.21)

and according to [17] it is to be expected that:

JMMC =
1
2
J1 +

1
2
J2 +O

(
σr+1

σr

)
≈ J. (3.22)

The original result is obtained in [9], where instead of O(σr+1/σr), O(‖μ‖2) was used,

where μ stood for a norm of [ε1 ε2 ε3], in specific ‖μ‖ =
√
ε21 + ε22 + ε23. Still adhering to this

idea but including criteria for balancing truncation, instead ofO(‖μ‖2)we can useO(σr+1/σr)
having in mind that the order r is chosen where σr+1 is of order of percent of the σr . In [6] a
recursive algorithm is developed for solving multiparameter Riccati equations with the rate
of convergence O(‖μ‖i) and the rate of accuracy for the near-optimal strategy is O(‖μ‖i+1)
where i is the iteration number.

The required solution of the algebraic Riccati equation (3.20) is based on the standard
assumption [5, 12].

Assumption 2. The triples (A1r , B1r , chol(Q1)) and (A2r , B2r , chol(Q2)) are stabilizable-detec-
table. (Here chol(Q) is the Cholesky decomposition of a matrix Q.)

Assumption 3. The pairs (A1r , chol(Q1)) and (A2r , chol(Q2)) are detectable-observable.
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The matrices (Air, Bir), i = 1, 2 are given by (3.23):

A1r =
[
Ab00 Ab01

Ab10 Ab11

]
, B1r =

[
Bb01 Bb02

Bb11 0

]
, A2r =

[
Ab00 Ab02

Ab20 Ab22

]
, B2r =

[
Bb01 Bb02

0 Bb22

]
. (3.23)

The optimal feedback solution to (3.12)–(3.13) and (3.15) is given by

uthe firstopt(t) =

[
ufirstopt1(t)

ufirstopt2(t)

]
= −R−1

1 BT
1rP1

[
xb0(t)
xb1(t)

]
, (3.24)

where P1 is the positive semidefinite stabilizing solution of the corresponding algebraic
Riccati equation (3.25):

AT
1rP1 + P1A1r +Q1 − P1S1P1 = 0, S1 = B1rR

−1
1 BT

1r . (3.25)

The optimal feedback solution to (3.14) and (3.16) is given by

uthe secondopt(t) =

[
usecondopt1(t)
usecondopt2(t)

]
= −R−1

2 BT
2rP2

[
xb0(t)
xb2(t)

]
, (3.26)

where P2 is the positive semidefinite stabilizing solution of the corresponding algebraic
Riccati equation:

AT
2rP2 + P2A2r +Q2 − P2S2P2 = 0, S2 = B2rR

−1
2 BT

2r . (3.27)

It is intuitively clear that a further reduction could be made for some models. If the
control signals in the original model are weakly coupled, then it is possible to form two
subsystems as described above, however the first one having only inputs u1 and the second
subsystem having only inputs u2. This would mean that the neglected modes having a small
amount of total energy are considered to have reached their steady-state values, rather than as
changing variables. Models of the type (1.1) are sound candidates for this type of reduction.
This would be as if the submatrices Bb02 in (3.13) and Bb01 in (3.14) were set to zero-matrices
of the corresponding dimensions, resulting in (3.28)–(3.31) and (3.32)–(3.35), respectively.
The first reduced-order model obtained by neglecting the control variable u2 in (3.12)–(3.13)
is

[
ẋb0(t)
ẋb1(t)

]
=
[
Ab00 Ab01

Ab10 Ab11

][
xb0(t)
xb1(t)

]
+
[
Bb01 0
Bb11 0

][
u1(t)
u2(t)

]
, (3.28)
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or

[
ẋb0(t)

ẋb1(t)

]
= A1r

[
xb0(t)

xb1(t)

]
+ B1ru1(t), (3.29)

yb1(t) =
[
Cb0 Cb1

][xb0(t)
xb1(t)

]
+Db1u1(t), (3.30)

A1r =

[
Ab00 Ab01

Ab10 Ab11

]
, B1r =

[
Bb01

Bb11

]
. (3.31)

The second reduced-order model obtained by neglecting the control variables u1 in
(3.14) is presented in (3.32)–(3.35):

[
ẋb0(t)
ẋb2(t)

]
=
[
Ab00 Ab02

Ab20 Ab22

][
xb0(t)
xb2(t)

]
+
[
0 Bb02

0 Bb22

][
u1(t)
u2(t)

]
, (3.32)

or

[
ẋb0(t)

ẋb2(t)

]
= A2r

[
xb0(t)

xb2(t)

]
+ B2ru2(t), (3.33)

yb2(t) =
[
Cb0 Cb2

][xb0(t)
xb2(t)

]
+Db2u2(t), (3.34)

A2r =

[
Ab00 Ab02

Ab20 Ab22

]
, B2r =

[
Bb02

Bb22

]
. (3.35)

The same approximation is done for the performance criterion (3.15)-(3.16); hence
two performance criteria are obtained, as in (3.36)-(3.37) and (3.38)-(3.39), each of them
having its own control signal. Taking into consideration multicriteria optimization, both of
these criteria would be regarded as having equal importance. Again, the multimodeling
strategy will be considered to be well posed if the performance criterion under the
multimodeling strategy is O(σr+1/σr) close to the global optimal control strategy obtained
by performing direct optimization on the original system and the original performance
criterion.

The two criteria to be optimized now are

Jthe first =
1
2

∫+∞

0

{[
xb0(t) xb1(t)

]
Q1

[
xb0(t)

xb1(t)

]
+ u1(t)TR1u1(t)

}
dt, (3.36)

Q1 = QT
1 =

[
Qb00 0
0 Qb11

]
≥ 0, R1 = RT

1 = Rb11 > 0, (3.37)
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Jthe second =
1
2

∫+∞

0

{[
xb0(t) xb2(t)

]
Q2

[
xb0(t)
xb2(t)

]
+ u2(t)TR2u2(t)

}
dt, (3.38)

Q2 = QT
2 =

[
Qb00 0

0 Qb22

]
≥ 0, R2 = RT

2 = Rb22 > 0. (3.39)

In the simulation example it has been chosen that Q1 and Q2 are unity matrices of
the corresponding dimensions, while R1 and R2 are unity matrices of the corresponding
dimensions multiplied by some weighing factor which is in accordance with the suggestions
made in [17]:

Q1 = QT
1 = In0+n1 ≥ 0, R1 = RT

1 = Const · Im1 > 0, (3.40)

Q2 = QT
2 = In0+n2 ≥ 0, R2 = RT

2 = Const · Im2 > 0. (3.41)

The optimal feedback solution to (3.36)-(3.37) and (3.40) is given by (3.42):

uthe firstopt(t) = −R−1
1 BT

1rPthe first

[
xb0(t)
xb1(t)

]
, B1r =

[
Bb01

Bb11

]
, (3.42)

where Pthe first is the positive semidefinite stabilizing solution of the algebraic Riccati equation:

AT
1rPthe first + Pthe firstA1r +Q1 − Pthe firstSthe firstPthe first = 0, Sthe first = B1rR

−1
1 BT

1r , (3.43)

while the optimal feedback solution to (3.38)-(3.39) and (3.41) is given by:

uthe secondopt(t) = −R−1
2 BT

2rPthe second

[
xb0(t)
xb2(t)

]
, B2r =

[
Bb02

Bb22

]
. (3.44)

Here Pthe second is the positive semidefinite stabilizing solution of the algebraic Riccati
equation:

AT
2rPthe second + Pthe secondA2r +Q2 − Pthe secondSthe secondPthe second = 0, Sthe second = B2rR

−1
2 BT

2r .
(3.45)

It could be explored at a later stage what the sufficient and necessary conditions should
be for the existence of solutions to Riccati equations (3.43) and (3.45). Some useful ideas
and efficient iterative solutions with the existence conditions could be found in the work of
Mukaidani et al. [5–11].



14 Mathematical Problems in Engineering

The next step is to implement optimal control from (3.42) and (3.44) to the full-order
model. Optimal regulators (3.42) and (3.44) are easier to design than an optimal regulator for
the full-order model (3.6). Since both control agents are of equal importance to the full-order
model, approximation of the optimal control strategy could be

uapproxopt(t) =

[
uthe firstopt(t)
uthe secondopt(t)

]
=

⎡
⎢⎢⎢⎣

−R−1
1 BT

1rPthe first

[
xb0(t)
xb1(t)

]

−R−1
2 BT

2rPthe second

[
xb0(t)
xb2(t)

]

⎤
⎥⎥⎥⎦, (3.46)

as was shown in the simulation example.
The optimal control problem we refer to, following the suggestions in [2, 14, 17], is to

minimize a convex sum of Jthe first and Jthe second given in (3.36) and (3.38) for some γ1 and γ2:

Japproximated = γ1Jthe first + γ2Jthe second, γ1 + γ2 = 1, γ1 > 0, γ2 > 0. (3.47)

This corresponds to a Pareto optimal cooperative strategy [6].
In Pareto optimal strategy we have considered a situation in which decision makers

decide on their strategies through mutual cooperation [14, 17]. The essence of this approach
is that no variation from a Pareto optimal strategy can decrease the costs of any of the decision
makers. Let each decision maker have a quadratic cost functional as in (3.36) and (3.38). A
Pareto solution is a pair uthe firstopt(t), uthe secondopt(t)which minimized (3.47) for some γ1 and γ2
[6]. The optimal state regulator is a special aspect of this problem where the decision makers
agree on the choice of γ1 and γ2 as weighting factors.

Without prejudice to the generality of the above considerations, we chose γ1 = γ2 = 0.5.
According to [17] it is to be expected that the approximation of the optimization criteria
would be

Japproximated = Jbal. I and II =
1
2
(Jthe first + Jthe second) ≈ Jb. (3.48)

4. Example

The methods for the order reduction displayed here were tested on an example known from
literature and taken from [17]with somemodification. Such example is a state space model of
a power system consisting of two interconnected identical areas, where each area consists of
one plant. The model behavior was simulated in the open-loop as well as in the closed-loop.

For the model example a system was chosen having two inputs and one output. Based
on HSVs a decision was made on what should be taken for the reduced order while the order
of the slow or common-core subsystem and of the two fast parts (i.e., parts having a small
amount of total energy)was chosen as suggested in [17]. Several reduced-order models were
produced, using the methods as mentioned and described above.

The efficiency of these approximations was compared first in the open-loop case for
typical input functions: impulse, step, ramp, and sine. In the open-loop case a comparison
was also madewith the balancedmodel for all frequency characteristics (bothmagnitude and
phase spectra) of all available transfer functions. Control strategy in this paper was different
from the one used in [17]. Optimal linear quadratic regulators (LQRs) were designed for
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original and balanced models as well as for the ones of reduced order. Gain matrices of the
reduced-order models were expanded by zeros to obtain the full order, and these reduced-
order regulators were used to close the loop on the balancedmodel. Different approximations
were compared with respect to the values of optimized LQG criteria.

The model in the state-space representation is of the order n = 9 with the astatism of
the second order therefore being unstable and is described by means of the matrices:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 4.5 0 1 0 0 0 0

0 0 0 4.5 −1 0 0 0 0

0 0 −0.05 0 −0.1 0.1 0 0 0

0 0 0 −0.05 0.1 0 0 0.1 0

0 0 32.7 −32.7 0 0 0 0 0

0 0 0 0 0 −5 5 0 0

0 0 −40 0 0 0 −10 0 0

0 0 0 0 0 0 0 −5 5

0 0 0 −40 0 0 0 0 −10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

BT =

[
0 0 0.1 0 0 0 10 0 0

0 0 0 0.1 0 0 0 0 10

]
.

(4.1)

Inspired by [1, page 227, Case 3] and [17]we have chosen

C =
[
1 1 0 0 0 1 0 1 0

]
, D =

[
0 0

]
. (4.2)

For the model chosen for simulation, state-space variables as in [17] are as follows:
x1 and v1 the integral of the area control error for the area 1, x2 and v2 the integral of the
area control error for the area 2, x3 and Δf1 frequency variation for the area 1, x4 and Δf2
frequency variation for the area 2, x5 and ΔP12 tie-line power flow variation, x6 and ΔPG1

turbine output variation for the plant 1 or the area 1, x7 and Δa1 turbine valve position
variation for the plant 1 or the area 1, x8 and ΔPG2 turbine output variation for the plant
2 or the area 2, and x9 and Δa2 turbine valve position variation for the plant 2 or the area 2,
and control signals are as follows: u1 and ΔPc1 speed changer variation for the plant 1 or the
area 1, and u2 and ΔPc1 speed changer variation for the plant 2 or the area 2.

It is significant to note that the astatism is not inherent to the system—it is induced
by including the integrals of the area control error (ACE) v1 and v2 into state vector. So the
simulation could be performedwith the modification of this model where these two variables
would be omitted from the state space vector but retained in the output or outputs, resulting
in the model having full-order n = 7.

Here we have chosen another modification. To make the model in the simulation
example stabilized, matrix A is changed according to the prescribed degree of stability:

A = A + αI9, (4.3)
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where α is chosen to be −10 and I9 denotes unitymatrix of dimension 9. Other systemmatrices
remained unchanged. MatrixAwhich is changed to have the prescribed degree of stability is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10 0 4.5 0 1 0 0 0 0
0 −10 0 4.5 −1 0 0 0 0
0 0 −10.05 0 −0.1 0.1 0 0 0
0 0 0 −10.05 0.1 0 0 0.1 0
0 0 32.7 −32.7 −10 0 0 0 0
0 0 0 0 0 −15 5 0 0
0 0 −40 0 0 0 −20 0 0
0 0 0 0 0 0 0 −15 5
0 0 0 −40 0 0 0 0 −20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.4)

However, the system obtained in this way is still unobservable—only four of its modes
are observable. From the matrix dimensions in (4.4) it is obvious that n = 9 is the order of the
system.

Table 1 shows HSVs of the original and balanced models. On the basis of the HSVs a
decisionwasmade that the reduced order could be (and so it was chosen to be) r = 2, since the
third Hankel singular value is more than 400 (410.4444) times smaller than the second one.
For the reduced-order model of order r = 2 good quality approximation will be achieved,
both in the open- and in closed-loop cases. However, in this manner we would omit state
space variables that are important to be retained.

Multimodeling allows us to reduce the order of themodel while keeping all state space
variables accounted for, only decoupled into two intersecting subsets.

As for the multimodeling, the reduced-order system which consisted of a common
core subsystem and subsystem corresponding to modes having a small amount of total
energy was called the first while the second referred to the one which consisted of a common
core subsystem and subsystem corresponding to the remaining modes, having a smaller
amount of total energy.

According to the suggestions made in [17] the slow or common core subsystem order
was chosen to be of order n0 = 5, and the orders of the two fast subsystems, that is, subsystems
corresponding to modes with a small amount of total energy were n1 = 2, and n2 = 2,
respectively; so the first and the second subsystems were of the same order, n0+n1 = n0+n2 = 7.
For the first and the second reduced-order models a multimodeling was performed through
balanced truncation. In this way two subsystems were obtained having one input, with u 1

being input to the first subsystem, as in (3.28)–(3.31), and u2 being input to the second one, as in
(3.32)–(3.35).

Table 1 contains also the HSVs for the first and the second reduced-order models
(ROMs) obtained through multimodeling using balanced truncation. It seems that the largest
four HSVs for the first subsystem and the second one are identical. However, the difference
between them is of the order 10−15 or less.

Each of the model approximations as well as the original one was tested on the open-
loop case for typical input functions: impulse, step, ramp, and sine. In the time domain all
of the approximations produce good and similar performances, except for both the first and
the second subsystems obtained through multimodeling, that exhibit a considerable degree of
difference in behavior when compared to models in the cases of ramp and sine input signals.
However, the behavior of the first model and the second one is almost identical.
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Table 1: Hankel singular values.

For the original and
balanced models

For the first ROM obtained through
multimodeling

For the second ROM obtained through
multimodeling

0.14006 0.099037 0.099037

0.023921 0.016915 0.016915

0.58281·10−4 0.41211·10−4 0.41211·10−4
0.41813·10−5 0.29566·10−5 0.29566·10−5
0.25878·10−8 0.17367·10−21 0.13413·10−20
0.61066·10−9 0.1615·10−23 0.19797·10−21
0.52878·10−10 1.4047·10−28 5.6210·10−26
0.1103·10−10
0.58426·10−13

The optimal gain matrices were subsequently calculated for the original model, its
balanced equivalent, and the four reduced-order models: one obtained through balanced
truncation, one obtained through balanced residualization, whereas two reduced-order models
were comprised of the slow subsystem and one fast subsystem—called the first and the
second—consisted of the slow subsystem and the rest of the fast subsystem. Matrices needed
for optimization criteria, chosen in accordance with those from [17], and used for the original
and balanced nonreduced model and for various reduced-order models are in (4.5):

Q = I9, R = 20I2,

Qtruncated = Qrezidualized = I2, Rtruncated = Rrezidualized = 20I2,

Qthe first = Qthe second = I7, Rthe first = Rthe second = 20.

(4.5)

Here Ik denotes unity matrix of dimension k.
Simulations were carried out using MATLAB. Proportional regulator gain matrices

were computed for the original and the balanced models of the full-order and the truncated
and residualized reduced-order models of order 2 as well as for the first and the second
reduced models of order 7.

Corresponding matrices for the first and the second subsystems, Kthe first and
Kthe second, are close to submatrices of Kbalanced and of the necessary dimensions:

Kbalanced=
[−3.28·10−3 −1.561·10−3 0.34·10−4 −0.15·10−4 −0.33·10−3 0.89·10−3 −0.32·10−5 −0.111·10−3 −2.65·10−3
−3.28·10−3 −1.561·10−3 0.34·10−4 −0.15·10−4 0.586·10−3 −0.89·10−3 0.32·10−5 0.111·10−3 2.65·10−3

]
,

Ktruncated =

[−3.2778 · 10 −3 −1.5597 · 10 −3

−3.2778 · 10 −3 −1.5597 · 10 −3

]

Krezidualized =

[−3.2785 · 10 −3 −1.5635 · 10 −3

−3.2785 · 10 −3 −1.5635 · 10 −3

]
,

Kthe first =
[−3.28 · 10−3 −1.561 · 10−3 0.34 · 10−4 −0.15 · 10−4 −0.397 · 10−3 −0.78 · 10−4 −0.247 · 10−3],

Kthe second =
[−3.280 · 10−3 −1.561 · 10−3 0.34 · 10−4 −0.15 · 10−4 0.586 · 10−3 −0.111 · 10−3 2.234 · 10−3].

(4.6)
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Finally, a regulator is composed of the Kthe first and Kthe second as in

Kbal. I and II =
[−3.28·10−3 −1.561·10−3 0.34·10−4 −0.15·10−4 −0.397·10−3 −0.78·10−4 −0.247·10−3 0 0

−3.28·10−3 −1.561·10−3 0.34·10−4 −0.15·10−4 0.586·10−3 0 0 −0.111·10−3 2.234·10−3

]
.

(4.7)

The closed-loop systems were also tested for various input functions: impulse, step,
ramp and sine. Regulators, calculated on reduced order models were subsequently used to
form the closed loop on the balanced full-order model.

The corresponding Lyapunov equations were solved and the traces of their solutions
were compared to derive which of the closed-loop models obtained in this manner is the
closest to the optimal case with a regulator having gain matrix Kbalanced. The values of
the optimal criteria for the balanced model with its optimal P regulator and the values of
suboptimal criteria for the balancedmodel with an optimal regulator for the various reduced-
order models, are seemingly identical, as in Criteria B:

Criteria B =
[
0.4584 0.4584 0.4584 0.4584 0.4584 0.4584

]
. (4.8)

From the values of Criteria B it appears that we have reached the desired approximation of
the optimization criteria:

Japproximated = Jbal. I and II =
1
2
Jthe first +

1
2
Jthe second ≈ 0.4584. (4.9)

Absolute errors with respect to balanced full-order optimal case are

Criteria Error B =
[
0 0.768 · 10−5 0.772 · 10−5 0.1402 · 10−4 0.1030 · 10−4 0.469 · 10−5

]
.

(4.10)

However, the difference in the optimal criteria value is in the Criteria Error B and for
the balanced model with optimal regulator for the truncated model it is 0.768·10−5.

For the balanced model with optimal regulator for the residualized the difference in
the optimal criteria value is 0.772·10−5. The difference in the optimal criteria value for the
balanced model with optimal regulator for the first subsystem is 0.1402·10−4. For the balanced
model with optimal regulator for the second subsystem the difference is 0.1030·10−4.

For the regulator composed of the Kthe first and Kthe second gain matrices as described
above, the difference between the corresponding suboptimal criteria and the optimal one
is the smallest of all tested reduced-order models: 0.469·10−5. This concurs with the quality
approximation expected from the results of [17].

The corresponding relative errors with respect to the optimal criteria value for the
balanced system are

Criteria Relative Error B =
[
0% 0.0017% 0.0017% 0.0031% 0.0022% 0.0010%

]
. (4.11)
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Apparently, a combination of the first and the second optimal gain matrices produces
performance of the closed-loop model that is the closest to the balanced full-order model.
The relative difference in the optimal criteria value is in the Criteria Relative Error B and,
respectively, for the balanced model using regulator optimal for the truncated model it is
0.0017%. As for the balanced model with optimal regulator for the residualized, it is identical
to the above value, that is, 0.0017%. For the balanced model using regulator optimal for
the first subsystem relative criteria error is 0.0031%, and finally, for the balanced model with
optimal regulator for the second subsystem it is 0.0022%.

For the regulator composed of the Kthe first and Kthe second as described above, the
relative difference between the corresponding suboptimal criteria and the optimal one is
the smallest of all tested reduced-order models: 0.0010%. This result confirms that the
approximation achieved in this way is of a good quality.

5. Conclusion

Many order reduction techniques have been developed throughout the past few decades,
and this problem will stay under consideration for as long as the engineering practice keeps
developing. Here are performed and combined two already established techniques for order
reduction by means of multimodeling and balancing. The novel approach has given very
good results in the open-loop as well as in the closed-loop model approximation for real
engineering purposes. In those cases where physical interpretation of the state space variables
requires that not a single variable should be lost, multimodeling provides a way to reduce
order and simplify the regulator design. The cases of this kind are the real-world models of
power systems and cars, for example. The choice of order reduction technique can be made
more appropriate provided that all kinds of information about the original system and the
related constraints are incorporated.
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