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1. INTRODUCTION 
 

In general, modelling of kinematics and dynamics of rigid 
bodies systems has been mostly based on the Euler angles 
representation of rotation. It is well known that three 
angles can’t afford a regular representation of the 
rotation, since there are singularities. Euler proposed a 
solution to circumvent this problem by introducing a set 
of four quantities, the so-called Euler parameters, based 
on relations among Euler angles. Later on, Hamilton 
(1844) invented the quaternions, an extension of complex 
numbers, and soon afterwards, it was discovered that 
rotations may be represented by quaternions [1]. 

In [2] and [3], Lagrange’s equations of second kind 
of rigid bodies system in covariant form were developed 
using Rodriguez matrix for the representation of 
orientation of rigid body with respect to the inertial 
frame. Our goal is to develop the same form of 
equation, but with the help of quaternions. 

Further research will be based on control system 
designs, because quaternions enable singularity-free 
mathematical representation of orientations [4,5]. 

 
2. MATHEMATICAL BACKGROUND OF THE 

QUATERNIONS 
 

2.1 Definition 
 

Quaternions are hyper-complex numbers of rank 4 
consisting of one real and three imaginary parts. The 
quaternions were first described by Irish mathematician 
Sir William Rowan Hamilton in 1844 and applied to 
mechanics in three-dimensional space. Crucial to this 
description was his celebrated rule: 

 2 2 2 1-= = = ⊗ ⊗ =i j k i j k , (1) 

where ⊗  denotes quaternion or the Hamilton product. 
The quaternion is defined as: 

 0 1 2 3q q q q q= + + +i j k , (2) 

where q0 represents real part, and q1, q2 and q3 represent 
imaginary parts of the quaternion. Pure part of the 
quaternion (2) is defined as: 

 1 2 3q q q= + +q i j k . (3) 

 
2.2 Algebraic properties 

 
Let p and q be two quaternions. The sum of p and q can 
be written as: 

 ( ) ( ) ( ) ( )0 0 1 1 2 2 3 3p q p q p q p q p q+ = + + + + + + +i j k . (4) 

If c is scalar, then the product of quaternion q and 
scalar c is given by: 

 0 1 2 3cq cq cq cq cq= + + +i j k . (5) 

For two quaternions p and q, their Hamilton or 
quaternion product is determined by the product of the 
basis elements and the distributive law. This gives the 
following expression [6]: 

 0 0 0 0p q p q p q⊗ = − ⋅ + + + ×p q q p p q . (6) 

From (6) it can be seen that quaternions form non-
commutative under multiplication. Let q be the quaternion. 
The complex conjugate of quaternion q is defined as: 

 *
0 0 1 2 3q q q q q q= − = − − −q i j k . (7) 

From (6) and (7) it can be concluded the following: 

 ( )* * *p q q p⊗ = ⊗ . (8) 

The norm of quaternion q is defined as: 

 ( ) * 2 2 2 2
0 1 2 3N q q q q q q q q= ⊗ = + + + = , (9) 

and inverse of quaternion q is: 

 
( )

* *
1

2 2
q qq

N q q
− = = . (10) 
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2.3 Quaternionic representation of rotation of the 
rigid body 

 
The rigid body (V) rotates about axis 0τ which is 
represented by unit vector e (Fig. 1). Reference frame 
0xyz is inertial, and reference frame 0ξηζ is body-fixed 
frame. Unit vectors of axis x, y and z are denoted by i, j 
and k, and unit vectors of axis ξ, η and ζ are denoted by 
λ, µ and ν. 

 
Figure 1. Rotation of the rigid body 

In initial time these two reference frames were 
equivalent. Vector OM = r (point M belongs to the 
body (V)) can be expressed in both reference frames: 

 x y z= + +r i j k , (11) 

and 

 ( )1 ξ η ζ= + +r λ µ ν . (12) 

Superscript in (12) denotes body-fixed reference frame 
in which vector r is expressed. Vectors (11) and (12) belong 
to the set of vectors. In order to operate with the quaternion, 
a vector, which lives in R3, needs to be treated as a pure 
quaternion (that is a quaternion which real part is zero) 
which lives in R4. The set of all pure quaternions (denoted 
by Q0) is the subset of Q, the set of all quaternions. It can be 
defined as one-to-one correspondence between the set of 
vectors and the set of pure quaternions, a correspondence in 
which a vector 3R∈r  corresponds to pure quaternion 

00 Qr ∈+= r , that is: 

 3
00R r Q Q∈ → = + ∈ ⊂r r . (13) 

The relation between the vector expressed in inertial 
frame (11) and the vector expressed in body-fixed frame 
(12) is given by: 

 ( )1 *q q= ⊗ ⊗r r , (14) 

where q is unit quaternion (a quaternion with norm one) 
which has the following structure: 

 cos sin
2 2

q θ θ
= + e , (15) 

where θ represents the rotation angle about axis 0τ, and 
e is pure quaternion which corresponds to the unit 
vector axis 0τ. The result of (14) is also pure quaternion 
which corresponds to the position vector of point M. It 
can be illustrated in the following figure (Fig. 2): 

 
Figure 2. Quaternionic representation of rotation of the 
rigid body 

Vector e is invariant, and because of that property it 
is all the same in which the coordinate frame this vector 
would be expressed. 

The next case is when the rigid body rotates about 
the moving axis. The rigid body (V) rotates about 
moving axis 0τ2 represented by unit vector e2. At the 
same time, this axis rotates about the axis 0τ1 
represented by unit vector e1. The reference frame 0xyz 
is inertial, 0ξ2η2ζ2 is body-fixed and 0ξ1η1ζ1 is fixed on 
the rotation axis 0τ2 (Fig. 3). At initial time these three 
frames were equivalent. 

 
Figure 3. Rotation of the rigid body about moving axis 

Vector OM = r (point M belongs to the body (V)) 
expressed in reference frame 0ξ1η1ζ1 is: 

 ( ) ( )1 2 *
2 2q q= ⊗ ⊗r r , (16) 

where 

 ( )22 2
2 2cos sin

2 2
q

θ θ
= + e . (17) 

It must be mentioned that vector e2 is invariant in 
relation to reference frames 0ξ1η1ζ1 and 0ξ2η2ζ2, and 
vector e1 is invariant in relation to reference frames 0xyz 
and 0ξ1η1ζ1. Vector OM = r expressed in inertial 
reference frame is: 

 ( )1 *
1 1q q= ⊗ ⊗r r , (18) 

where 

 1 1
1 1cos sin

2 2
q

θ θ
= + e . (19) 

Substituting (16) in (18), one can get following 
expression: 
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( )2 * *
1 2 2 1q q q q= ⊗ ⊗ ⊗ ⊗ =r r  

      ( ) ( ) ( ) ( )*2 2 *
1 2 1 2q q q q q q= ⊗ ⊗ ⊗ ⊗ = ⊗ ⊗r r , (20) 

where 

 1 2q q q= ⊗  (21) 

represents composite quaternion. 
 

3. KINEMATICS OF OPEN CHAIN SYSTEM 
 

3.1 Transformation of coordinates 
 

The open chain system of rigid bodies (V1), (V2), ..., (Vn) is 
shown in Figure 4. The rigid body (V1) is connected to the 
fixed stand. Two neighboring bodies, (Vi-1) and (Vi) of chain 
are connected together with joint (i), which allows 
translation along the axis which is represented by unit vector 
ei, or rotation about the same axis body (Vi) in respect to 
body (Vi-1). The values qi represent generalized coordinates. 

 
Figure 4. Open chain of the rigid bodies system 

The reference frame 0xyz is inertial Cartesian frame, 
and the reference frame 0ξiηiζi is local body-frame 
which is associated to the body (Vi) at the point Ci 
which represents the centre of inertia of body (Vi). At 
initial time, corresponding axis of reference frames were 
parallel. This configuration is called reference 
configuration and it is denoted by (0). The symbols ξi 
and ξ  can be introduced, which are defined as: 

 1iξ = , 0iξ =  (22) 

in the case when bodies (Vi-1) and (Vi) are connected 
with prismatic joint, and 

 0iξ = , 1iξ =  (23) 

in the case when bodies (Vi-1) and (Vi) are connected with 
cylindrical joint. Arbitrary vector τj, associated with the 
body (Vj) is given (Fig. 5). In reference configuration, 
this vector is identical in both reference frames 

 ( )
( )

( )
( )1

0 0
j j

j j
− =τ τ . (24) 

 
Figure 5. Vector τj on rigid body (Vj) 

In the case when bodies (Vj-1) and (Vj) are connected 
by cylindrical joint, after rotation of the body (Vj) about 

the axis ej for angle qj, vector τj in body-fixed reference 
frame 0ξj-1ηj-1ζj-1 has the following value: 

 ( ) ( )1 *j j
j jj jp p− = ⊗ ⊗τ τ , (25) 

where pj represents unit quaternion which is defined as 

 ( )cos sin
2 2

j jj
j j

q qp = + e . (26) 

If rigid body (Vj-2) is connected with (Vj-1) by 
cylindrical joint, then: 

 ( ) ( )2 *
2, 2 1,

j j
j j jj jp p−
− −= ⊗ ⊗τ τ , (27) 

where 

 2, 1j j j jp p p− −= ⊗ , (28) 

and: 

 ( )1 11
1 1cos sin

2 2

j jj
j j

q qp
− −

−
− −= + e . (29) 

In the case of prismatic joint, vector τj is the same in 
both local body-fixed frames: 

 ( ) ( )1j j
j j
− =τ τ . (30) 

In the general case, with the help of symbol ξ , the 
quaternion (26) has the following form: 

 ( )cos sin
2 2

e
j j

jj j
j j

q q
p

ξ ξ
= + . (31) 

Vector τj in inertial reference frame 0xyz has the 
following value: 

 ( ) *
0, 0,τ τ j

j j jjp p= ⊗ , (32) 

where 

 0, 1 2 ...j jp p p p= ⊗ ⊗ ⊗ , (33) 

and 

 , 1j jp = . (34) 

 
3.2 Velocity of inertia centre of the rigid body (Vi) 

 
The position vector of inertia centre Ci of the rigid body (Vi) 
has the following value in inertial reference frame (Fig. 4): 

 ( )
1

OC r ρ e ρ
i

k
i i kk k k i

k
qξ

=
= = + +∑ , (35) 

where 

 ( ) *
0, 0,ρ ρ k

kk k kkkp p= ⊗ ⊗ , (36) 

 ( ) *
0, 1 0, 1e e k

k k kkp p− −= ⊗ ⊗ , (37) 

 ( ) *
0, 0,ρ ρ i

i i iip p= ⊗ ⊗ . (38) 
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Velocity of the centre of inertia is: 

 ( )
1 1

d
d
r r

V T
i i

i i
i iq q

t q
α α

αα
α α= =

∂
= = =

∂
∑ ∑ , (39) 

where 

 ( )
r

T i
i qα α

∂
=
∂

, (40) 

which is called the quasi-basic vector. Generalized 
coordinate partial derivatives of the quaternion are: 

 0kp
qα
∂

=
∂

, k α≠ , (41) 

and 

( )1 1sin cos
2 2 2 2

e
p q q
q

α α
αα α α

α α αα
ξ ξ

ξ ξ
∂

= − + =
∂

 

 ( )1 sin cos
2 2 2

e
q qα α

αα α
α α

ξ ξ
ξ

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
. (42) 

Since 

 ( ) ( ) 1e eα α
α α− ⊗ =  (43) 

then, multiplication of (42) with (43) on the left side, 
(43) becomes: 

( )( ) ( )1
2

e e
p
q

α αα
α α αα ξ

∂
= − ⊗ ⊗

∂
 

( )sin cos
2 2

e
q qα α

αα α
α

ξ ξ⎛ ⎞
⊗ − + =⎜ ⎟⎜ ⎟
⎝ ⎠

 

( ) ( )1 sin cos
2 2 2

e e
q qα α

α α α α
α α α

ξ ξ
ξ

⎛ ⎞
= − ⊗ − − =⎜ ⎟⎜ ⎟

⎝ ⎠
 

( ) ( )1 sin cos
2 2 2

e e
q qα α

α α α α
α α α

ξ ξ
ξ

⎛ ⎞
= ⊗ + =⎜ ⎟⎜ ⎟

⎝ ⎠
 

 ( )1
2

e pα
α α αξ= ⊗ . (44) 

Also, taking into account: 

 * 1p p⊗ = , (45) 

then 

 ( )
*

* * 0
p p

p p p p
q q q

α α
α α α αα α α

∂ ∂∂
⊗ = ⊗ + ⊗ =

∂ ∂ ∂
, (46) 

and, from the previous expression: 

     ( )
*

* *1
2

e
p p

p p p p
q q

αα α
α α α α α αα α ξ

∂ ∂
⊗ = − ⊗ = − ⊗ ⊗

∂ ∂
. (47) 

Multiplication of the previous expression with *
αp  

on the right side gives: 

 ( )
*

*1
2

e
p

p
q

αα
α α αα ξ

∂
= − ⊗

∂
. (48) 

In the case α ≤ k, generalized coordinate partial 
derivative of vector ρkk is: 

( )( )*
0, 0,ρρ

k
k kkkkk

p p

q qα α

∂ ⊗ ⊗∂
= =

∂ ∂
 

 ( ) ( )
*

0, 0,*
0, 0,ρ ρk kk k

k kkk kk
p p

p p
q qα α

∂ ∂
= ⊗ ⊗ + ⊗ ⊗
∂ ∂

, (49) 

where 

0,
1 2 ... ...k

k
p p

p p p
q q

α
α α

∂ ∂
= ⊗ ⊗ ⊗ ⊗ ⊗ =

∂ ∂
 

( )
1 1

1 ... ...
2

e kp p p pα
α α α αξ −= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ =  

 ( )
0, 1 1,

1
2

e kp pα
α α α αξ − −= ⊗ ⊗ , (50) 

and 

* *
0, * *

1... ...k
k

p p
p q

q q
α

α α

∂ ∂
= ⊗ ⊗ ⊗ ⊗ =

∂ ∂
 

( )* * * *
1 1

1 ... ...
2

ekp p p pα
α α α αξ −= − ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ =  

 ( )* *
1, 0, 1

1
2

ekp pα
α α α αξ − −= − ⊗ ⊗ . (51) 

Since 

 ( ) *
0, 1 0, 1e ep pα

α α α α− −= ⊗ ⊗ , (52) 

then (50) and (51) become: 

 0,
0,

1
2

ek
k

p
p

q
α αα ξ

∂
= ⊗

∂
, (53) 

and 

 
*
0, *

0,
1
2

ek
k

p
p

q
α αα ξ

∂
= − ⊗

∂
. (54) 

Substituting (53) and (54) in (49), one can get 
following expression: 

( ) *
0, 0,

1
2

ρ
e ρ kkk

k kkkp p
q

α αα ξ
∂

= ⊗ ⊗ ⊗ −
∂

 

( ) *
0, 0,

1
2

ρ ek
k kkkp pα αξ− ⊗ ⊗ ⊗ =  

1 1
2 2

e ρ ρ ekk kkα α α αξ ξ= ⊗ − ⊗ =  

( )1
2

e ρ e ρ ρ e ρ ekk kk kk kkα α α α αξ= − ⋅ + × + ⋅ − × =  

( )1
2

e ρ e ρ e ρ e ρkk kk kk kkα α α α αξ= − ⋅ + × + ⋅ + × =  

 e ρkkα αξ= × . (55) 
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In the case α > k, there follows: 

 0
ρkk

qα
∂

=
∂

. (56) 

Similar to the previous expressions, it can be written 
the following: 

 
e

e ek
k

q
α αα ξ

∂
= ×

∂
, (57) 

when α ≤ k, 

 0
ek

qα
∂

=
∂

, (58) 

when α > k, 

 
ρ

e ρi
i

q
α αα ξ

∂
= ×

∂
. (59) 

Also, when α ≤ i, and 

 0
ρi

qα
∂

=
∂

, (60) 

when α > i. According to the previous expressions, (40) 
becomes: 

( ) ( )r
T e ρ e e

i
ki

kk k ki
k

q
q

α α α αα α
α
ξ ξ ξ

=

∂
= = × + × +
∂

∑  

e e ρiα α α αξ ξ+ + × =  

 ( )e ρ e ρ e
i

k
kk k k i

k
qα α α α

α
ξ ξ ξ

=

⎡ ⎤
= × + + +⎢ ⎥

⎢ ⎥⎣ ⎦
∑  (61) 

when i≤∀α , and: 

 ( ) 0T iα =  (62) 

when i>∀α . According to (61) and (62), the 
expression for velocity of the centre inertia of the rigid 
body (Vi) is the following: 

 ( )
1

V T
n

i i qαα
α=

= ∑ . (63) 

If vectors in (61) are expressed in local body-fixed 
coordinate frames, then quasibasic vectors become: 

( )
( )( )*

0, 1 0, 1T ei p pα
α α α αα ξ − −= ⊗ ⊗ ×  

( ) ( )( )* *
0, 0, 0, 1 0, 1ρ e

i k k k
k k k k kkk k

k
p p p p q

α
ξ − −

=

⎡ ⎛ ⎞× ⊗ ⊗ + ⊗ ⊗ +⎢ ⎜ ⎟
⎝ ⎠⎢⎣

∑  

( ) *
0, 0,ρ i

i iip p ⎤+ ⊗ ⊗ +⎥⎦
 

 ( )( )*
0, 1 0, 1ep pα

α α α αξ − −+ ⊗ ⊗  (64) 

when i≤∀α . 
 

3.3 Acceleration of the inertia centre of the rigid body (Vi) 
 

Acceleration of the inertia centre of the rigid body (Vi) 
is time derivative of (39): 

 ( )
( )

1 1

d

d

T
a a T

i i i
C i ii q q

t
αα α

α
α α= =

= = +∑ ∑ . (65) 

The second part of the previous expression can be 
written as: 

 ( ) ( )

1

d

d

T Tii i
q

t q

α α β
β

β=

∂
=

∂
∑ . (66) 

According to (40), it can be written the following: 

 ( ) ( ) ( )2T T Tri i ii

q q q q q
α α β
β α β β α

∂ ∂ ∂∂
= ⇒ =

∂ ∂ ∂ ∂ ∂
, (67) 

then (65) becomes: 

 ( ) ( )
1 1 1

a T Γ
i i i

i i i
β

q q qα α β
α αβ

α α= = =
= +∑ ∑ ∑ , (68) 

where 

 ( )
( )T

Γ
i

i q
α

αβ β

∂
=

∂
, (69) 

and 
 ( ) ( )Γ Γi iαβ βα= . (70) 

In the case α ≤ β then (see (55)): 

 ( )
( )

( )
T

Γ e T
i

i iq
β

α ααβ βα ξ
∂

= = ×
∂

, (71) 

and, in the case α > β: 

 ( )
( )

( )
T

Γ e T
i

i iq
α

β βαβ αβ ξ
∂

= = ×
∂

. (72) 

The expressions (71) and (72) can be written in the 
unique form: 

 ( ) ( ) ( ) ( )( )inf , inf , sup ,Γ e Ti iαβ α β α β α βξ= × . (73) 

The expression (65) can be written in the following way: 

 ( ) ( )
1 1 1

a T Γ
n n n

i i iq q qα α β
α αβ

α α β= = =
= +∑ ∑ ∑ . (74) 

The vectors in (73), expressed in local body-fixed 
coordinate frames have the following form: 

( )inf ,e α β =  

 ( ) ( )
( )( )

( )
inf , *

0,inf , 1 0,inf , 1inf ,ep pα β
α β α βα β− −

⎛ ⎞= ⊗ ⊗⎜ ⎟
⎝ ⎠

, (75) 

( )( ) ( )
( )( )*

0, 1 0, 1sup , sup ,T ei p pα
α α αα β α βξ − −= ⊗ ⊗ ×  

( ) ( )( )* *
0, 0, 0, 1 0, 1ρ e

i k k k
k k k k kkk k

k
p p p p q

α
ξ − −

=

⎡ ⎛ ⎞× ⊗ ⊗ + ⊗ ⊗ +⎢ ⎜ ⎟
⎝ ⎠⎢⎣

∑  

( ) *
0, 0,ρ i

i iip p ⎤+ ⊗ ⊗ +⎥⎦
 

 ( )( )*
0, 1 0, 1ep pα

α α α αξ − −+ ⊗ ⊗ . (76) 
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3.4 Angular velocity of the rigid body (Vi) 
 

Angular velocity of the rigid body (Vi) can be obtained 
from the following expression: 

 
1

ω e
i

i qαα α
α

ξ
=

= ∑ , (77) 

or 

 ( )
1

ω Ω
n

i i qαα
α=

= ∑ , ( )
,

0,
e

Ω i
α α

α
ξ⎧

= ⎨
⎩

i
i

α
α

∀ ≤
∀ >

. (78) 

If unit vector of axis in (77) is expressed in the local 
body-fixed reference frames, then (77) has the following 
form: 

 ( )( )*
0, 1 0, 1

1
ω e

i

i p p qα α
α α α α

α
ξ − −

=
= ⊗ ⊗∑ . (79) 

 
4. KINETIC ENERGY OF THE RIGID BODIES SYSTEM 

 
Consider an open chain of the rigid bodies system (V1), 
(V2), ..., (Vn). Differential of kinetic energy of the body 
(Vi) (Fig. 6) is: 

 ( )
21d d

2
Vik i Mi

E m= , (80) 

where Ci represents inertia centre, dVi is infinitesimal 
volume of the body (Vi) which corresponds to 
infinitesimal mass dmi. 

 
Figure 6. Characteristic vectors of the rigid body (Vi) 

Velocity of the point Mi which belongs to the body 
(Vi) is: 

 V V V ω ρM i C i ii i= = + × . (81) 

Kinetic energy of the body (Vi) is: 

  ( ) ( ) ( )
( )

1 d
2

V ω ρ V ω ρC i i C i i ik i i i
Vi

E m= + × ⋅ + ×∫ . (82) 

Due to (see[3]): 

 
( )

0ρ ρi i i Ci
Vi

dm m= =∫ , (83) 

the expression (82) becomes: 

( )
1
2

V Vi C Ck i i iE m= ⋅ +  

 ( ) ( )
( )

1 d
2

ω ρ ω ρi i i i i
Vi

m+ × ⋅ ×∫ . (84) 

Kinetic energy of the system of the rigid bodies is 
equal to the sum of kinetic energies of each body: 

( )
1 1

1
2

V V
n n

k i C Ck i i i
i i

E E m
= =

= = ⋅ +∑ ∑  

 ( ) ( )
( )1

1 d
2

ω ρ ω ρ
n

i i i i i
i Vi

m
=

+ × ⋅ ×∑ ∫ . (85) 

Since 

 
1

r
V

n Ci
Ci q

q
α

α
α=

∂
=

∂
∑  (86) 

then 

 
1 1

r r
V V

n n C Ci i
C Ci i q q

q q
α β

α β
α β= =

∂ ∂
⋅ = ⋅

∂ ∂
∑ ∑ . (87) 

The second part of (85), using (78), can be 
transformed as follows: 

 ( )( )
1 1

n ρ
ω ρ Ω ρ

n
i

i i ii q q
q

α α
α α

α α= =

∂
× = × =

∂
∑ ∑  (88) 

then, it becomes: 

( ) ( )
( )1

dω ρ ω ρ
n

i i i i i
i Vi

m
=

× ⋅ × =∑ ∫  

 
( )1 1 1

d
ρ ρn n n

i i
i

i Vi

q q m
q q

α β
α β

α β= = =

∂ ∂
= ⋅

∂ ∂
∑∑ ∑ ∫ , (89) 

Substituting (87) and (89) in (85), it can be obtained: 

1 1 1

1
2

r rn n n C Ci i
k i

i
E m

q qα β
α β= = =

∂ ∂⎡
= ⋅ +⎢

∂ ∂⎢⎣
∑ ∑ ∑  

( )1
d

ρ ρn
i i

i
i Vi

m q q
q q

α β
α β

=

⎤∂ ∂ ⎥+ ⋅ =
⎥∂ ∂
⎦

∑ ∫  

 
1 1

1
2

n n
a q qα β
αβ

α β= =
= ∑ ∑ , (90) 

where 

1

r rn C Ci i
i

i
a m

q q
αβ α β

=

∂ ∂
= ⋅ +

∂ ∂
∑  

 
( )1

d
ρ ρn

i i
i

i Vi

m
q qα β

=

∂ ∂
+ ⋅

∂ ∂
∑ ∫ . (91) 

Coefficients ααβ are called the covariant coordinates 
of the basic metric tensor, and matrix [ ] nnRa ×∈αβ  are 
called basic metric tensor. According to (40), the first 
part of (91) becomes: 
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( ) ( )
1 1

r r
T T

n nC Ci i
i i i i

i i
m m

q q α βα β
= =

∂ ∂
⋅ = ⋅ =

∂ ∂
∑ ∑  

 ( )( ) ( ){ }
1

T T
n

i i i
i

m α β
=

= ∑ . (92) 

The second part of the right side of (91) can be 
transformed in the following way: 

( )1
d

ρ ρn
i i

i
i Vi

m
q qα β

=

∂ ∂
⋅ =

∂ ∂
∑ ∫  

 ( ) ( )
( )1

de ρ e ρ
n

i i i
i Vi

mα β α βξ ξ
=

= × ⋅ ×∑ ∫ . (93) 

Since (see[3]): 

 ( ){ } ( ) { }
2

e ρ e ρ e ed
i i iα β α αρ⎡ ⎤× × = − ⎣ ⎦ , (94) 

then (93) becomes: 

( )1
d

ρ ρn
i i

i
i Vi

m
q qα β

=

∂ ∂
⋅ =

∂ ∂
∑ ∫  

( )
( )

{ }2

1
de e

n
d
i i

i Vi

mα β α βξ ξ ρ
=

⎛ ⎞
⎜ ⎟⎡ ⎤= =⎣ ⎦⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∫  

 ( ) { }
1

e e
n

Ci
i

Jα β α βξ ξ
=

⎡ ⎤= ⎣ ⎦∑ , (95) 

where 

( )

2
dd

C i ii
Vi

J mρ⎡ ⎤⎡ ⎤ = =⎣ ⎦ ⎣ ⎦∫  

 
( )

2 2

2 2

2 2

d
i i i i i i

i i i i i i i
Vi

i i i i i i

m

η ζ ξ η ξ ζ

η ξ ζ ξ η ζ

ζ ξ ζ η η ξ

⎡ ⎤+ − −
⎢ ⎥
⎢ ⎥= − + −
⎢ ⎥
⎢ ⎥− − +⎣ ⎦

∫  (96) 

denotes inertia tensor of the rigid body (Vi). It is most 
convenient for the inertia tensor of the body (Vi) to be 
expressed in local body-fixed reference frame 0ξiηiζi, 
because, in this case, the inertia tensor is constant. After 
that, covariant coordinates have the following form: 

( )( ) ( ){ }
1

T T
n

i i i
i

a mαβ α β
=

= +∑  

 ( )( ) ( ){ }
1

e e
n ii

Ci
i

Jα β α βξ ξ
=

⎡ ⎤+ ⎣ ⎦∑ , (97) 

or 

( )( ) ( ){ }
( )sup ,

T T
n

i i i
i

a mαβ α β
α β=

= +∑  

     ( )( ) ( ){ }
( )sup ,

e e
n ii tr rot

Ci
i

J a aα β α αβ αββ
α β

ξ ξ
=

⎡ ⎤+ = +⎣ ⎦∑ , (98) 

where traαβ  and rotaαβ  denote translational and rotational 
component of covariant coordinates: 

 ( )( ) ( ){ }
( )sup ,

T T
n

tr
i i i

i
a mαβ α β

α β=
= ∑ , (99) 

and 

 ( )( ) ( ){ }
( )sup ,

e e
n iirot

Ci
i

a Jαβ α β α β
α β

ξ ξ
=

⎡ ⎤= ⎣ ⎦∑ . (100) 

From (98) it can be concluded that coefficients aαβ 
have the following property: 

 ( ) ( )1 1,..., ,...,n na q q a q qαβ βα= . (101) 

Unit vectors in (100), expressed in body-fixed 
coordinate frame have the following form: 

( ) ( )*
1, 1,e ei

i ip pα
α α α α− −= ⊗ ⊗ =  

 ( )*
, ,ei ip pα

α α α= ⊗ ⊗ , (102) 

and 

( ) ( )*
1, 1,e ei

i ip pβ
β ββ β− −= ⊗ ⊗ =  

 ( )*
, ,ei ip pβ

β ββ= ⊗ ⊗ . (103) 

 
5. DIFFERENTIAL EQUATIONS OF MOTIONS OF 

THE RIGID BODY SYSTEM 
 

In this section differential equations of motion of 
rigid bodies system in covariant form using 
quaternion algebra will be derived. Consider open 
chain system of rigid bodies (V1), (V2), ..., (Vn). It is 
assumed that constraints are holonomic, scleronomic 
and ideal. A system of independent coordinates (q1, 
q2,…,qn) can be chosen, which allows that kinetic 
energy to be written as the function of these 
coordinates and their time derivatives. In this case, 
differential equations of motion can be represented in 
the form of Lagrange’s equation expressed only as 
the function of generalized coordinates (q1, q2,…,qn) 
and their time derivatives: 

 d
d

k kE E
Q

t q q
γγ γ

⎛ ⎞∂ ∂
− =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

, (104) 

where Qγ denotes generalized force of active forces 
system which act on the rigid body system, which 
corresponds to generalized coordinate qγ. Generalized 
velocity partial derivatives of kinetic energy are: 

 
1 1

1 1
2 2

n n
kE

a q a q
q

β α
γβ αγγ

β α= =

∂
= +∑ ∑ . (105) 

According to (98), (105) can be written as: 

 
1

n
kE

a q
q

α
αγγ

α=

∂
= ∑ . (106) 
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Time derivative of (106) is: 

1

d
d

n
kE

a q
t q

α
αγγ

α=

⎛ ⎞∂
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

 
1 1

1
2

n n a a
q q

q q
αγ βγ α β
β α

α β= =

⎛ ⎞∂ ∂
+ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∑ ∑ . (107) 

Generalized coordinate partial derivatives of kinetic 
energy are: 

 
1 1

1
2

n n
k aE

q q
q q

αβ α β
γ γ

α β= =

∂∂
=

∂ ∂
∑ ∑ . (108) 

Substituting (107) and (108) in (104), the Lagrange 
equations have the following form [3]: 

 ,
1 1 1

n n n
a q q q Qα α β
αγ αβ γ γ

α α β= = =
+ Γ =∑ ∑ ∑ , (109) 

where 

 ,
1
2

a a a

q q q
βγ γα αβ

αβ γ α β γ

⎛ ⎞∂ ∂ ∂
Γ = + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 (110) 

denotes Christoffel symbols of the first kind. This form 
of equations is called covariant. According to (98), it 
can be written: 

 , , ,
tr rot

αβ γ αβ γ αβ γΓ = Γ + Γ , (111) 

where 

 ,
1
2

tr tr tr
tr a a a

q q q
βγ γα αβ

αβ γ α β γ

⎛ ⎞∂ ∂ ∂
⎜ ⎟Γ = + −
⎜ ⎟∂ ∂ ∂⎝ ⎠

 (112) 

denotes the translational components, and 

 ,
1
2

rot rot rot
rot a a a

q q q
βγ γα αβ

αβ γ α β γ

⎛ ⎞∂ ∂ ∂
⎜ ⎟Γ = + −
⎜ ⎟∂ ∂ ∂⎝ ⎠

 (113) 

denotes rotational components of Christoffel symbols. 
Deriving (99), applying the following properties: 

 ( ) ( )T Tri ii

q q q q
α β
β α β α

∂ ∂∂
= =

∂ ∂ ∂ ∂
, (114) 

(71), (72) and (73), and substituting it in (112), the 
translational components of the Christoffel symbols 
become: 

( )
( )

( )
,

sup , ,

T
T

n itr
i i

i
m

q
α

αβ γ γβ
α β γ=

∂
Γ = ⋅ =

∂
∑  

( ) ( )(
( )

inf , inf ,
sup , ,

e
n

i
i

m α β α β
α β γ

ξ
=

= ×∑  

 ( )( ) ) ( ){ }sup ,T Ti iα β γ× , (115) 

where 

( )inf ,e α β =  

 ( ) ( )
( )( )

( )
inf , *

0,inf , 1 0,inf , 1inf ,ep pα β
α β α βα β− −= ⊗ ⊗ . (116) 

The rotational components of the Christoffel 
symbols are as follows: 

( )
( ){ }

( )sup ,

e
e

irot n
i

Ci
i

a
J

q q
βγ β

β γ γα α
β γ

ξ ξ
=

⎛ ⎞∂∂ ⎜ ⎟ ⎡ ⎤= +⎣ ⎦⎜ ⎟∂ ∂⎜ ⎟
⎝ ⎠

∑  

 ( )( )
( )

( )sup ,

e
e

in i
Ci

i
J

q
γ

β γ β α
β γ

ξ ξ
=

⎧ ⎫∂⎪ ⎪⎡ ⎤+ ⎨ ⎬⎣ ⎦ ∂⎪ ⎪⎩ ⎭
∑ . (117) 

According to (102) and (103), and doing the same as 
in Section 3.2, partial derivatives of unit vectors of the 
axis in the case α ≥ β,γ, are: 

 
( )

( ) ( )e
e e

i
i i

q
β

α αβα ξ
∂

= ×
∂

, (118) 

and 

 
( )

( ) ( )e
e e

i
i i

q
γ

α γ αα ξ
∂

= ×
∂

. (119) 

Substituting (118) and (119) into (117), it can be 
obtained: 

( )
( )

( )( ) ( ){ }
( )

sup ,
sup ,

e e e
rot n i i i

Ci
i

a
J

q
βγ

α β γ γβ α βα
β γ

ξ ξ ξ
=

∂
⎡ ⎤= × +⎣ ⎦∂

∑  

   ( )( ) ( )
( )

( ){ }
( )

sup ,
sup ,

e e e
n i ii

Ci
i

Jα β γ γβ α γ
β γ

ξ ξ ξ
=

⎡ ⎤+ ×⎣ ⎦∑ . (120) 

Doing similarly with other components as in (113), 
and substituting it into (126), the rotational components 
of the Christoffel symbols become: 

( )

( )
( )

( )( ) ( ){ }, sup ,
sup , ,

1
2

e e e
n i i irot

Ci
i

Jαβ γ α β γ γβ α β
α β γ

ξ ξ ξ
=

⎛ ⎡ ⎤Γ = × +⎜ ⎣ ⎦⎝∑  

( )( ) ( )
( )

( ){ } ( )
( )

( )( ) ( ){ }sup , sup ,e e e e e ei i ii i i
C Ci iJ Jγ γ αβ α γ β γ

⎡ ⎤ ⎡ ⎤+ × + × +⎣ ⎦ ⎣ ⎦  

( )( ) ( )
( )

( ){ } ( )
( )

( )( ) ( ){ }sup , sup ,e e e e e ei i ii i i
C Ci iJ Jγ α α βα β α γ

⎡ ⎤ ⎡ ⎤+ × − × −⎣ ⎦ ⎣ ⎦  

 ( )( ) ( )
( )

( ){ }sup ,e e ei ii
CiJα β β γ

⎞⎡ ⎤− × ⎟⎣ ⎦ ⎠
. (121) 

According to the certain properties of members in 
the previous expression, (121) becomes: 

,
rot
αβ γΓ =  

( )
( )

( )
( )

( )( ) ( ){ }inf , sup ,
sup , ,

1
2

e e e
n i i i

Ci
i

Jα β γ γα β α β
α β γ

ξ ξ ξ
=

⎛ ⎡ ⎤= × −⎜ ⎣ ⎦⎝∑  

  ( ) ( )( ) ( ){ } ( ) ( )( ) ( ){ }e e e e e ei ii i i i
C Ci iJ Jα γ γ αβ β

⎞⎡ ⎤ ⎡ ⎤− × − × ⎟⎣ ⎦ ⎣ ⎦ ⎠
. (122) 
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Due to the property of dual object, the inertia tensor 
can be written in the following way [3]: 

 
( )

[ ] { }( ){ }
( )

2 2d dρ ρd
C i i i i i ii

V Vi i

J m I mρ ρ⎡ ⎤⎡ ⎤ = − = −⎣ ⎦ ⎣ ⎦∫ ∫ , (123) 

and substituting (123) in (122), the Christoffel symbols 
become: 

,
rot
αβ γΓ =  

( )sup , ,

1
2

n

i
α β γ

α β γ
ξ ξ ξ

=
= ∑  

( )
( )

( )
( )( ) ( ){ }

( )

2

inf , sup ,e e ei i id
i

Vi
γα β α β ρ⎛ ⎡ ⎤− × +⎜ ⎣ ⎦⎝∫

 

( ) ( )( ){ }( ) ( ){ }e e ρ ρ e ii i
i iα γ β+ × +  

 ( ) ( )( ){ }( ) ( ){ } de e ρ ρ ei i i
i i imγ αβ

⎞+ × ⎟
⎠

. (124) 

The last two terms of subintegral function in 
previous expression can be written as follows: 

( ) ( )( ){ }( ) ( ){ } ( ) ( )( ){ }( ) ( ){ }e e ρ ρ e e e ρ ρ ei ii i i i
i i i iα γ γ αβ β× + × =  

( )
( ) ( )( ){ }( ) ( )

( ){ }inf , sup ,e e ρ ρ ei ii
i iγα β α β= × +  

 ( )
( ) ( )( ){ }( ) ( )

( ){ }sup , inf ,e e ρ ρ ei ii
i iγα β α β+ × . (125) 

Subintegral function can be easily transformed in the 
following expression: 

( )
( )

( )
( )( ) ( ){ }inf , sup ,e e ei i id d

i i γα β α β ρ ρ⎡ ⎤ ⎡ ⎤− × +⎣ ⎦ ⎣ ⎦  

( )
( ) ( )( ){ }( ) ( )

( ){ }inf , sup ,e e ρ ρ ei ii
i iγα β α β+ × =  

 ( )
( ) ( )( ){ }( ) ( )

( ){ }sup , inf ,e e ρ ρ ei ii
i iγα β α β= × , (126) 

and, the rotational components of the Christoffel 
symbols become: 

,
rot
αβ γΓ =  

( )sup , ,

n

i
α β γ

α β γ
ξ ξ ξ

=
= ∑  

( )
( ) ( )( ){ }( ) ( )

( ){ }{ }
( )

sup , inf , de e ρ ρ ei ii
i i i

Vi

mγα β α β× =∫  

 ( )
( ) ( )( )[ ]

( )
( )

( ){ }sup , inf ,
sup , ,

e e e
n i ii

i
i

α β γ γα β α β
α β γ

ξ ξ ξ
=

= × Π∑ , (127) 

where 

 [ ] { }( )
( )

dρ ρi i i i
Vi

mΠ = ∫  (128) 

denotes the planar moment inertia [3]. Unit vectors in 
(127) can be expressed in local-body fixed coordinate 

frame like in (102), so the Christoffel symbols finally 
become: 

( ) ( )((
( )

, inf , 0,inf , 1
sup , ,

n

i
i

m pαβ γ α β α β
α β γ

ξ −
=

Γ = ⊗∑  

( )
( )( )

( ) ( )( ) ( ){ }inf , *
0,inf , 1 sup ,inf ,e T Ti ipα β

α β α β γα β −
⎞⎞⊗ ⊗ × +⎟ ⎟⎠ ⎠

 

( ) ( )
( )( )

( )

sup ,*
sup , , sup ,

sup , ,
e

n

i
i

p α β
α β γ α β α β

α β γ
ξ ξ ξ

=

⎛⎛+ ⊗ ⊗⎜⎜⎝⎝
∑  

( ) ) ( )( ))[ ]*
, ,sup , , ei i iip p pγ

γ γ γα β⊗ × ⊗ ⊗ Π  

 ( ) ( )
( )( )

( )
inf ,*

inf , , inf , ,inf ,ei ip pα β
α β α βα β

⎧ ⎫⊗ ⊗⎨ ⎬
⎩ ⎭

. (129) 

 
6. CONCLUSION 

 
This paper has shown the development of Lagrange’s 
equations of the second kind of the rigid bodies system 
in the covariant form using the quaternion algebra. It 
can be concluded that every vector which belongs to the 
arbitrary body of the rigid bodies system can be easily 
expressed in the body-fixed reference frame of another 
body making composite quaternion, which consists of 
Hamiltonian product of quaternions representing the 
rotation neighbouring bodies, avoiding trigonometric 
functions characteristic of Euler’s angles. Also, it is 
easy to find generalized coordinate partial derivatives of 
that vector. 

Unlike the existing results, where quaternionic 
approach has been applied only for the case of rotation 
of one or two bodies, it is here presented the procedure 
of obtaining the model of multi-body system of n rigid 
bodies in terms of quaternions, which is useful for 
studying kinematics, dynamics as well as for research of 
control system designs. 
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КИНЕМАТИКА И ДИНАМИКА СИСТЕМА 
КРУТИХ ТЕЛА У КВАТЕРНИОНСКОЈ 

ФОРМИ: ЛАГРАНЖЕВА ФОРМУЛАЦИЈА У 

КОВАРИЈАНТНОМ ОБЛИКУ – РОДРИГОВ 
ПРИСТУП 

 
Немања Д. Зорић, Михаило П. Лазаревић, 

Александар М. Симоновић 
 
У овом раду се предлаже кватернионски приступ за 
моделирање кинематике и динамике система крутих 
тела. Уместо регуларног „Њутн-Ојлеровог“ и 
Лагранжевог метода коришћеног на традиционалан 
начин, употребљавају се Лагранжеве једначине 
друге врсте у коваријантном облику применом 
Родриговог приступа и кватернионске алгебре. 
Добијен је модел система од n крутих тела у 
кватернионској форми који је користан за 
проучавање кинематике, динамике система за општи 
случај кретања, као и за синтезу система управљања. 

 
 


