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A non-isothermal two-dimensional compressible gas flow in a slider 
microbearing with constant and equal wall temperature is investigated in 
this paper analytically. The slip flow is defined by the Navier-Stokes and 
energy continuum equations along with the velocity slip and the 
temperature jump first order boundary conditions. Knudsen number is in 
the range of 10-3 to 10-1, which corresponds to the slip flow. The gas flow 
is subsonic and the ratio κM2/Re is taken to be a small parameter. 
Moreover, it is assumed that the microbearing cross-section varies slowly, 
which implies that all physical quantities vary slowly in x-direction. The 
model solution is treated by developing a perturbation scheme. The first 
approximation corresponds to the continuum flow conditions, while the 
second one involves the influence of inertia as well as rarefaction effect. 
The analytical solutions of the pressure, velocity and temperature for 
moderately high Reynolds numbers are obtained. 
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1. INTRODUCTION 
 

Gas lubrication is a component of most micro-electro-
mechanical systems (MEMS) such as microbearings, 
micropumps, microvalves or magnetic disk storages [1]. 
The hard disc industry demands nanometer distances 
between slider with read/write head and rotating 
recording disk. The gas slider bearing flow is traditionally 
modelled by the Reynolds lubrication equation which is 
derived from the Navier-Stokes and continuity equations 
under the no slip continuum boundary conditions. The 
thickness of the lubricating film in microdevices is of the 
order of the mean free path of gas molecules and the 
continuum theory is not applicable. A wide range of 
Knudsen numbers is possible in microdevice flows, but 
the slip flow regime with 10-3 < Kn < 0.1 is the most 
frequent. Therefore, solutions for such flow conditions in 
microbearings are very useful. 

Analytical and numerical investigations of the slip 
gas flow in microbearings were performed. Burgdorfer 
[2] made the Reynolds equation correction by including 
the Maxwells first order slip conditions at the wall. 
Mitsuya [3] set up 1.5-order slip model for ultra thin gas 
lubrication. Hsia and Domoto [4] developed the second 
order model by incorporating their second order 
boundary condition in the Reynolds lubrication equation. 
They also carried out experiments with different gases in 
microbearings, and compared the obtained load carrying 
capacity with analytical results. Sun et al. [5] 
incorporated expression for the effective viscosity in the 
Navier-Stokes equation and obtained modified Reynolds 
equation. Bahukudumbi and Beskok [6] developed semi 
analytical model for gas lubricated microbearings. They 
remarked that the viscosity coefficient depends on the 

Knudsen number. Since the proposed relation is not 
general, the rarefaction correction parameter is 
introduced in this relation. Values of the rarefaction 
correction parameter are defined for certain Knudsen 
number and surface accommodation parameter values by 
comparing obtained flow rate results with numerical 
solutions of the Boltzmann equation under the same 
conditions [7,8]. Finally, the derived function of the 
viscosity coefficient is introduced in the model, and the 
new modified Reynolds equation is obtained. Liu and Ng 
[9] analysed the posture effects of a slider air bearing 
and the influence of the lower plate velocity on the 
pressure distribution and velocity field with a direct 
simulation Monte Carlo method. 

The model developed in this paper for non-
isothermal microbearing gas flow with constant and 
equal wall temperature is based on already verified 
results for a isothermal pressure driven gas flow in a 
microchannel with slowly varying cross-section [10] 
and isothermal gas flow in the microbearing [11,12]. 
The low Mach number gas flow is considered, which 
enables a definition of the small parameter ε = κM2/Re. 
Moreover, it is assumed that the channel cross-section 
varies slowly, which also implies that all physical 
quantities vary slowly in the flow direction. All these 
assumptions together with the defined relations between 
the Reynolds, Mach and Knudsen number and the small 
parameter ε, enable a precise estimation of each term in 
the dimensionless governing equations, as well as in the 
boundary conditions. In the solving procedure, the 
pressure, velocity and temperature are expressed as the 
perturbation series of the Knudsen number. The system 
of nonlinear second order differential equations is 
obtained, and it is solved numerically. 

 
2. PROBLEM DESCRIPTION 

 
Two-dimensional and compressible gas flow in 
microbearing with constant wall temperature (as 
presented in Figure 1) is considered. Although the 
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temperature of the walls is the same and constant, and 
the distance between the walls is of the micron scale, 
the gas flow is not treated as isothermal. In that way, 
apart from the continuity, momentum, equation of 
state, and slip boundary condition at the wall, the 
energy equation and temperature jump boundary 
condition has to be involved too. These equations are 
transformed into a dimensionless form by the 
introduction of the following scales: exit microbearing 
height eh  for all lengths, wall velocity wu  for all 

velocity components, walls temperature wT  for 
temperature and the pressure and density are scaled 
with the corresponding values ep  and eρ  at the 
channel outlet cross-section. Then the assumption of 
the low Mach number flow conditions enables a 
definition of the small parameter 

 2
e eε M /Reκ=  (1) 

where κ = cp/cv is the ratio of specific heats, Me is the 
referent Mach number value defined as 

 e w e eM u p ρκ=  (2) 

and Ree is the referent Reynolds number 

 e e w eRe u hρ µ= . (3) 
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Figure 1. Slider microbearing geometry 

Dynamic viscosity µ  is assumed to be constant. 
Now, the expression for the small parameter ε follows: 

( )w e eu p hε µ= . 

The assumption of the slowly varying channel cross-
section α ≈ ε << 1, where α is the channel wall 
inclination (Fig. 1) implies that all flow parameters 
change vary slowly in the x-axes direction, which is 
explicitly expressed by the introduction of the slow 
coordinate ξ = εx. Also, the crosswise velocity 
component v is much smaller than the streamwise 
component u, which leads to the following relation: 
v(x,y) = εV(ξ,y), V = O(1). 

The continuity equation, the Navier-Stokes 
equations for the stream-wise and cross-wise 
directions and the equation of state in dimensionless 
form are: 

 ( ) ( )/ / 0pu pV yξ∂ ∂ + ∂ ∂ =  (4) 

 ( )
2

2 2
2e

u u p uM p u V O
y y

κ ε
ξ ξ

⎛ ⎞∂ ∂ ∂ ∂
+ = − + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (5) 

 ( )2p O
y

ε∂
=

∂
 (6) 

( )2 2 1e e
T T pM Pr u V M Pr - u

y
κ ρ κ

ξ ξ
⎛ ⎞∂ ∂ ∂

+ = +⎜ ⎟∂ ∂ ∂⎝ ⎠
 

 ( ) ( )
2

2 21e
T uM Pr - O

y y y
κ ε

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (7) 

 p Tρ= . (8) 

 
Further, all dimensionless parameters are denoted 

without a bar, i.e. pressure as p, stream-wise velocity 
component as u, temperature as T, etc. The thermal 
conductivity k  is treated as constant. Therefore, the 
Prandtl number pPr c kµ=  is constant, where cp is the 
specific heat at the constant pressure. In accordance 
with the slip flow theory, the gas velocity and the 
temperature at the wall in the dimensionless form are 
respectively: 

 0y = : ( )1 e
w

1

2 v

v

σ Kn T uu-u
σ p y
− ∂

=
∂

, 0V =  (9) 

    ( )y h ξ= : 
( ) e2 v2

v2

Kn T uu
p y

σ
σ
− ∂

= −
∂

, d
d

hV=u
ξ

 (10) 

    0y = , 
( )

( )
e

w
2 2

1
T

T

Kn T TT T
+ Pr p y

σ κ
σ κ
− ∂

= +
∂

 (11) 

   ( )y h ξ= , 
( )

( )
e

w
2 2

1
T

T

Kn T TT T
+ Pr p y

σ κ
σ κ
− ∂

= −
∂

. (12) 

These are well-known Maxwell-Smoluchowski first-
order slip boundary conditions, where σv and σT are 
momentum and thermal accommodation coefficients 
and Kne is the reference Knudsen number defined as 

e eKn hλ= . Since the molecular mean-free path is 

defined as 2RT pλ µ= π  [6], the relation between 

local Kn hλ=  and the reference Knudsen number Kne 

is eKn Kn T p= . Furthermore, the relation between 
Kne, Me and Ree is: 

 e
e

e 2
M

Kn
Re

κπ
= . (13) 

The presumption of extremely subsonic flow in the 
slip regime enables the relation between the Mach and 
Knudsen numbers and the small parameter ε: κMe

2 = 
βεm, β = O(1) and Kne = ηεn, η = O(1). Due to the 
relation between the Reynolds, Mach and Knudsen 
number (13) and the definition of the small parameter ε, 
the exact expression for the Reynolds number and 
relations among introduced parameters m and n, as well 
as β and η follows: Ree = βεm-1, 2n + m = 2 and 

π 2η β= . Supposition of the low Mach and Knudsen 
number flow, limited m and n values to positive 
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domain, which together with the relation 2n + m = 2 
gives that this parameters must be in the following 
ranges: 0 < m < 2 and 0 < n < 1. In this frame two 
characteristic problems could be analysed: Re < 1 if 1 < 
m < 2 ⇒  0 < n < 1/2 and Re > 1 if 0 < m < 1 ⇒  1/2 < 
n < 1. In derivation of the Reynolds equation for 
lubrication theory, the inertia term is neglected which 
corresponds to the low Reynolds number case which 
was already obtained [11]. In this paper solution for Re 
> 1 is presented. Values for parameters m and n are 
chosen to enable attendance of the inertia effect together 
with the rarefaction: m = n = 2/3. The relations for the 
dimensionless numbers are: Ree = βε-1/3, κMe

2 = βε2/3, 
Kne = ηε2/3. 

All dependant variables from (4) to (8), i.e. pressure, 
temperature and velocity components, are presented in 
the form of perturbation series 

 2 3
0 1f f fε= +  (14) 

where f0 is the solution for the flow with no-slip 
boundary conditions, and f1 comprise the corrections for 
the inertia effect and the slip on the wall. The systems of 
equations for two approximations together with 
corresponding boundary conditions are obtained by 
substitution perturbation series for pressure and 
velocities in (4) to (8) and (9) to (12). In order to catch 
up the slip effect already in the second approximation, 
the power for small parameter in the second term on the 
r.h.s. of (14) is the same as for the Knudsen number 
(ε2/3). As inertia in (5) is of the order κMe

2 = βε2/3, for 
the perturbation series in (14), the inertia effect is 
included also in the second approximation. The 
velocity, temperature and pressure perturbation 
expressions, in the form of equation (14), are introduced 
in the continuity equation (4), the momentum 
conservation equation (5) energy equation (7), equation 
of state (8) and the boundary conditions (9) to (12). 
From these equations, the terms of the order O(1) and 
O(ε2/3) are extracted, and the following sets of equations 
are obtained 

• for O(1) 
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u V
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 (15a) 
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 (15c) 

 0 0 0p Tρ=  (15d) 

 0y = : 0 1u = , 0 0V = , 0 1T =  (15e) 

 ( )y h ξ= : 0 0u = , 0 0V = , 0 1T =  (15f) 

• for O(ε2/3) 
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( )y h ξ= : 
( ) 0 0

1
0

2 v2

v2

T u
u

p y
ησ

σ
− ∂

= −
∂

, 1 1
d
d

hV =u
ξ

, 

 
( )

( )
0 0

1
0

2 2
1

T

T

T T
T

+ Pr p y
σ κ η

σ κ
− ∂

= −
∂

. (16f) 

The solution procedure for each system of these 
equations is the same. The approximations of the 
temperature T0, T1 are derived from the corresponding 
energy equations (15c) and (16c), then stream-wise 
velocity component u0, u1 from the corresponding 
momentum equations (15b) and (16b). The pressure 
approximations p0, p1 are derived from the 
corresponding continuity equations (15a) and (16a). 
Temperature, velocity and pressure equations for the 
first two approximations are obtained in the following 
form 

• the first approximation 

 0 1T =  (17) 
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y h yu p p
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 ( ) ( )3
0 0 06 0lh p p p hξ′ ′⎡ ⎤′ − =⎣ ⎦  (19) 

• the second approximation 
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where: 
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where the stream-wise coordinate is X = ξ/ξl. The prime 
denotes d/dX, while h is the channel cross-section in 
dependence on X defined as: h(X) = hi – X(hi – 1), where 
hi is dimensionless parameter defined as ratio of the 
inlet and outlet microbearing height i i eh h h= . 

The channel length expressed by the slow coordinate 

is: ( )2
e w e el l h u l p hξ ε µ= = . The bearing number 

definition is ( )2
w e e6 u l p hµΛ =  and it is evident 

relation with parameter ξl 

 6lξ = Λ  (29) 

This means that pressure distribution and velocity 
field which are obtained from (17) to (21) and (28) is 

defined by bearing number Λ, referent Knudsen number 
Kne, channel geometry h and parameter η. The system 
of the two second order differential equations (19) and 
(28) that enables the prediction of pressure along the 
microbearing, demands four boundary conditions at the 
channel inlet – p0, p1, p0′, p1′. But, the first derivate of 
pressure is not known. This problem is overcome by 
using the known pressure at channel outlet instead of 
the first pressure derivate at the inlet, which imposed the 
application of the shooting method for the solving of 
system of equations. The boundary conditions for 
pressure, prescribed at the inlet and outlet are X = 0, p = 
p0 = 1, p1 = 0 and X = 1, p = p0 = 1, p1 = 0. 

 
3. RESULTS AND DISCUSSION 

 
The defined perturbation analysis shows that the inertia 
is already involved in the second order momentum 
equation for the moderately high Reynolds number 
flows (16b). Moreover, except for the sole conduction 
term in the first approximation, the convection, 
dissipation and rate at which work is done in 
compressing the element of fluid terms appear in the 
second approximation of the energy equation, too (16c). 
Hence, the acquired gas temperature field is non-
isothermal. 

In addition, it has been proven here that the 
temperature solution does not comprise the temperature 
jump effect at the wall even in the second 
approximation. However, the velocity slip boundary 
condition is present in the second approximation of the 
problem solution. The obtained results for the pressure, 
velocity and temperature field for the moderately high 
Reynolds number flow conditions depend on the 
Reynolds, Knudsen and Prandtl numbers. 

All results shown in Figures 2, 3 and 4 are obtained 
for σv = 1, σT = 1, κ = 1.4 and Pr = 0.667. Besides, the 
results are obtained for the ratio of inlet to outlet 
heights i e 2h h = , two bearing number values, Λ = 1 
and Λ = 10, two Knudsen number values Kne = 0.1 and 
Kne = 0.05. Besides the bearing number Λ, the inlet to 
outlet ratio i eh h  and the Knudsen number, which are 
usually defined flow conditions in the microbearing 
according with the Reynolds lubrication theory which 
negligible the inertia influence, in this model the 
parameter η is also need for the solving of the system 
of differential equations (17) to (21) and (28). This is 
the consequence of the incorporation of the inertia 
effect in the model. All results presented in this paper 
are obtained for η = 1. 

The inertia, slip and temperature influence on the 
pressure distribution along the microbearing are 
presented in Figure 2. It is evident that the inertia leads 
to the pressure increase in the microbearing, while the 
non-isothermal influence for the same and constant wall 
temperature flow conditions leads to the pressure 
decrease. Hence, for bearing number Λ = 1, calculation 
which comprises non-isothermal effect together with 
inertia lids to pressure lower then pressure obtained by 
omitting non-isothermal and inertia influence. Effect of 
the temperature field on the pressure distribution in the 
microbearing is less pronounced for higher values of the 
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bearing number (Λ = 10). On Figure 2 results obtained 
for continuum flow condition (Kn = 0) are also 
presented and it is obvious that slip effect at the wall 
leads to the lower pressure in the microbearing. Figure 2 
shows excellent agreement of presented model with no 
inertia and non-isothermal effect (dashed line) with 
Fukui and Kaneko numerical solution of the Boltzmann 
equation [7,8], obtained also with inertia and non-
isothermal influence omit. 
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Figure 2. Pressure distribution in microbearing for Kne = 
0.1, hi = 2, η = 1 and two bearing numbers: Λ = 1 and Λ = 10 

The temperature profiles in the microbearing gas 
flow at various cross-sections are depicted in Figure 3. 
These are obtained from the (17) and (20). The first 
approximation corresponds to the continuum and 
isothermal flow conditions, while in the second one 
the non-isothermal effect appears as the influence of 
the conduction, the dissipation and the rate at which 
work is done in compressing the element of fluid 
terms. The convection term wanes in the second 
approximation of the temperature, since its first 
approximation is T0 = 1 = const. Also, this caused no 
temperature jump effect in (16e) and (16f) and the 
fluid temperature at the wall is wT , while the 
temperature values in the remaining flow field are 
different than the wall temperature. The lowest 
temperatures are at channel exit. 

Kn e=0.1, Λ=1,
h i=2, η =1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.997 0.999 1.001 1.003 1.005 1.007
T

y/h continuum
X=0
X=0.8105
X=1

 

Kn e=0.1, Λ=10, 
h i=2, η =1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.991 0.996 1.001 1.006
T

y/h continuum
X=0
X=0.805
X=0.95
X=1

 
Figure 3. Temperature profiles in microbearing with 
constant and equal wall temperature at various cross-
sections, for Kne = 0.1, hi = 2, η = 1, and different bearing 
numbers: Λ = 1 and Λ = 10 

In Figure 4 velocity profiles for the flow condition 
defined with Kne = 0.1, i e 2h h = , Λ = 1, η = 1 are 
presented. The full lines present velocity profiles with 
inertia influence, obtained by omitting non-isothermal 
effect, while the dashed lines present velocity profile 
with no inertia and non-isothermal effect. Full lines with 
circles show velocity profiles in microbearing obtained 
by including non-isothermal effect along with inertia. 
The difference between velocity profiles calculated 
from the four different models (continuum, slip flow 
conditions, slip flow conditions with inertia effect and 
slip flow conditions with inertia and non-isothermal 
effect) is evident. The non-isothermal and inertia effect 
have no influence on the slip at walls. Slip velocity at 
the upper wall increase along the microbearing, while at 
the lower decrease. 

 
4. CONCLUSION 

 
The analytical solutions for the non-isothermal subsonic 
slip gas flow in the microbearing with constant wall 
temperature have been obtained. The results for the 
pressure, velocity and temperature fields have been 
presented for the moderately high Reynolds number 
flow conditions. The small parameter has been defined 
by (1) and the Mach, Knudsen and Reynolds numbers 
have been expressed with it. Moreover, the exact 
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relation between these numbers has been used for a 
precise estimation of each term’s contribution in the 
continuum, momentum and energy equations, as well as 
in the boundary conditions. All physical quantities have 
been assumed with perturbation series. The first two 
approximations have been taken into account. The first 
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Figure 4. Velocity profiles in microbearing for Kne = 0.1, hi = 2, 
η = 1, Λ = 1 at three cross-sections: X = 0, X = 0.8105 and X = 1 

one corresponds to the continuum flow conditions, 
while the second represents the contribution of the 
rarefaction effect. In addition, for the moderately high 
Reynolds numbers, the second approximation includes 
the inertia effect, as well as a non-isothermal character 
of the flow. Hence, although the temperature of the 
walls is the same and constant, and the distance 
between walls is of micron scale, the obtained gas 
temperature profile is non-uniform. It has been shown 
that, for the prescribed flow conditions, the 
temperature solution does not comprise the 
temperature jump effect at the wall even in the second 
approximation. However, the velocity slip boundary 
condition is present in the second approximation of the 
problem solution. 

The presented method incorporates the energy 
equation, which leads to the prediction of the 
temperature field and its influence on the pressure and 
velocity distribution. Besides, this analytical model 
enables the inclusion of inertia effect on the pressure, 
velocity and temperature fields. It is concluded that 
inertia and non-isothermal effect have the opposite 
influence on the pressure filed. 
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СТРУЈАЊЕ ГАСА У МИКРОЛЕЖАЈИМА СА 
ЗИДОВИМА КОНСТАНТНИХ ТЕМПЕРАТУРА 
 

Невена Д. Стевановић, Снежана С. Милићев 
 
У раду је анализирано неизотермско дводимензијско 
стишљиво струјање гаса у микролежају константних 
и једнаких температура зида. Вредност Кнудсеновог 
броја је између 10-3 и 10-1, што одговара режиму 
струјања са клизањем. Овај режим струјања 
дефинише се једначинама континуума: Навије-
Стоксовом и једначином енергије и граничним 
условом клизања и температурског скока на зиду. 
Струјање гаса је дозвучно, па се мали параметар 
дефинише као ε = κM2/Re. Осим тога претпостављено 
је се попречни пресек микроканала мења споро, што 
доводи до споре промене свих величина у правцу 
струјања. Решење је добијено пертурбационом 
методом. Прва апроксимација представља решење за 
случај струјања гаса без клизања, док се у другој 
апроксимацији јавља утицај клизања и инерције. 
Добијена су аналитичка решења за расподелу 
притиска, брзине и температуре у микролежају при 
умерено великим вредностима Рејнолдсовог броја. 

 


