
1

Security Analysis for Distributed IoT-Based
Industrial Automation

Vuk Lesi, Student Member, IEEE, Zivana Jakovljevic, Member, IEEE, and Miroslav Pajic, Senior Member, IEEE

Abstract—With ever-expanding computation and communi-
cation capabilities of modern embedded platforms, Internet of
Things (IoT) technologies enable development of Reconfigurable
Manufacturing Systems—a new generation of highly modularized
industrial equipment suitable for highly-customized manufac-
turing. Sequential control in these systems is largely based on
discrete events, while their formal execution semantics is specified
as Control Interpreted Petri Nets (CIPN). Despite industry-wide
use of programming languages based on the CIPN formalism,
formal verification of such control applications in the presence of
adversarial activity is not supported. Consequently, in this paper
we focus on security-aware modeling and verification challenges
for CIPN-based sequential control applications. Specifically, we
show how CIPN models of networked industrial IoT controllers
can be transformed into Time Petri Net (TPN)-based models,
and composed with plant and security-aware channel models
in order to enable system-level verification of safety properties
in the presence of network-based attacks. Additionally, we
introduce realistic channel-specific attack models that capture
adversarial behavior using nondeterminism. Moreover, we show
how verification results can be utilized to introduce security
patches and motivate design of attack detectors that improve
overall system resiliency, and allow satisfaction of critical safety
properties. Finally, we evaluate our framework on an industrial
case study.

Note to Practitioners—Our main goal is to provide formal secu-
rity guarantees for distributed sequential controllers. Specifically,
we target smart automation controllers geared towards Industrial
IoT applications, that are typically programmed in C/C++, and
are running applications originally designed in e.g., GRAFCET
(IEC 60848)/SFC (IEC 61131-3) automation programming lan-
guages. Since existing tools for design of distributed automation
do not support system-level verification of relevant safety proper-
ties, we show how security-aware transceiver and communication
models can be developed and composed with distributed con-
troller models. Then, we show how existing tools for verification
of Time Petri Nets can be used to verify relevant properties
including safety and liveness of the distributed automation system
in the presence of network-based attacks. To provide an end-to-
end analysis as well as security patching, results of our analysis
can be used to deploy suitable firmware updates during the stage
when executable code for target controllers (e.g., in C/C++) is
generated based on GRAFCET/SFC control models. We also
show that security guarantees can be improved as the relevant
safety/liveness properties can be verified after corresponding se-
curity patches are deployed. Finally, we show applicability of our
methodology on a realistic distributed pneumatic manipulator.

Primary and Secondary Keywords—Primary Topics: Sequential
control systems, Secure distributed automation, Industrial Inter-

V. Lesi and M. Pajic are with the Department of Electrical and Com-
puter Engineering, Duke University, Durham, NC, 27708 USA (email:
vuk.lesi@duke.edu; miroslav.pajic@duke.edu.

Z. Jakovljevic is with University of Belgrade, Faculty of Mechanical
Engineering, Department for Production Engineering, 11000 Belgrade, Serbia
(e-mail: zjakovljevic@mas.bg.ac.rs).

Manuscript composed December 15, 2019.

net of Things; Secondary Topics: Petri nets, Non-deterministic
analysis

I. INTRODUCTION

Advanced capabilities of smart Internet of Things (IoT)
devices have lead to their widespread adoption in industrial
automation system, rapidly advancing reconfigurable manufac-
turing [1]; the rise of the fourth industrial revolution, known as
Industry 4.0 [2], introduces the new era of highly-customized
(rather than highly-serialized) manufacturing [3]. In this vi-
sion, manufacturing resources are highly modularized, pro-
viding the necessary flexibility to adapt to dynamical market
demands. Efficient structural and functional changes are sup-
ported by Reconfigurable Manufacturing Systems (RMS) that
can be configured ad-hoc with little or zero downtime [4].

The foundation of RMS are modules controlled by smart In-
dustrial IoT (IIoT)-enabled controllers. IIoT endpoints (some-
times referred to as industrial assets) are heterogeneous by
definition—they represent multi-vendor components whose
deployment environment dynamically changes depending on
the process needs and current configuration of RMS. Fur-
thermore, a plethora of different communication technologies
(wired and wireless) and protocols are employed [5]. Seamless
reconfiguration, integration and reliable functioning of RMS
requires that components are highly autonomous. Specifically,
they must be capable of seamlessly communicating with each
other using compatible protocols (integrability), exchanging
both low-level control-related and high-level process-bound
information (interoperability) and to interact with each other
in different ways to enable operation in a plethora of config-
urations (composability) [6].

Reconfigurability is naturally supported by distributed con-
trol architectures; conventionally centralized controllers are
responsible of all aspects of control—from low-level event
signaling, to high-level coordination. Their complexity hinders
reconfigurability both from the hardware perspective (i.e.,
requiring component re-wiring), and the software aspect (i.e.,
having to ensure the control software is aware of and functions
correctly under the new hardware configuration). Thus, the
new generation of smart manufacturing resources must exploit
not only functionally-required components (such as sensors
and actuators) but also intrinsic computation and communica-
tion capabilities of IIoT-enabled controllers in order to enable a
higher level of automation and autonomy. Control distribution
enables decoupling of fine-grained details about how control
over the specific physical resource is performed, from the re-
sources coordination problem which only needs to worry about
what the manufacturing resources are capable of performing.

ar
X

iv
:2

00
6.

00
04

4v
1

 [
ee

ss
.S

Y
]

 2
9

M
ay

 2
02

0

2

Local CIPN

controller models

Channel/

Attacker

model

Local TPN

controller models

11CIPN1

CIPN→TPN

transformation
1
ctrl

1
ctrl

TPN1
ctrl

1
plant

1
plant
1TPNplant

Plant models

TPNch
Executable code

(e.g., C)
Code generation

1
Inclusion of security

mechanisms

1

2

3

Resiliency analysis

(safety/security verification)

Fig. 1. Our methodology for resilient IIoT-based distributed automation—in
Phase 1, the composition of existing distributed control models, which are
used to generate executable code for IIoT controllers, with channel and plant
models is used to formally verify properties of interest in Phase 2. Finally,
in Phase 3, the results of the security analysis are used to enhance system
resiliency, by adding suitable security mechanisms during code generation.

However, the networked nature of the new generation of
distributed automation systems makes them susceptible to
network-based attacks [7], similar to security vulnerabilities
reported in other cyber-physical systems domains (e.g., [8]).
For example, an adversary may inject false events [9], de-
lay or deny network access to legitimate controllers [10],
or manipulate control commands [11] sent over unsecure
communication channels. On the one hand, providing security
guarantees is critical in distributed sequential control systems
where progress is directly impacted by communication un-
availability. Yet, despite devastating effects such attacks could
have on operation of distributed industrial automation systems,
existing approaches to securing such systems are somewhat ad-
hoc; commonly, the benefits of included security mechanisms
for control performance (i.e., Quality-of-Control—QoC) are
unclear and hard to evaluate if no formal system analysis can
be performed. Consequently, to enable building of secure and
correct-by-design RMS, in this work we introduce efficient
techniques for systematic security analysis of distributed con-
trol applications deployed on IIoT-enabled local controllers
(LCs). We also show how results of the security analysis
can be used to improve automation performance and safety
guarantees in the presence of attacks, by adding suitable
security mechanisms that address the detected vulnerabilities.
This results in the overall framework, shown in Fig. 1, for
formal safety analysis and patching of distributed sequential
automation systems under adversarial influences.

Coordination between components in a large fraction of IoT
systems is based on discrete events. While a plethora of formal
modeling frameworks is employed under the umbrella of IoT
(e.g., [12], [13], [14]), industrial automation systems are com-
monly based on GRAFCET (IEC 60848)/SFC (IEC 61131-3)
control designs, and consequently on the underlying formal
semantics of Control Interpreted Petri Nets (CIPN). Therefore,
we focus on formal security analysis of IIoT-enabled con-
trollers that are described using CIPNs; such controllers may
be developed directly, or automatically derived using methods
for distribution of existing centralized sequential automation
designs (e.g., [15]), which allow for deployment of legacy
control applications over IIoT-enabled smart controllers.

While inherent determinism of CIPNs is not a limitation
when the formalism is used to specify controllers’ behaviors,
it prevents the use of CIPNs to model malicious actions [7]. On
the other hand, the sister formalism of Time Petri Nets (TPN)
supports nondeterminism, which makes it a great candidate for
security-aware modeling. Thus, for the first phase of our secu-
rity analysis, we introduce methods for automatic transforma-
tion of domain-specific CIPN-based controller specifications
(i.e., designs) into TPN-compliant representations. These TPN
models enable closed-loop system modeling and analysis, by
composing them with corresponding non-deterministic plant
and security-aware communication channel models; we show
how such security-aware models can be developed with the
desired level of abstraction that allows us to capture impacts
of attacks on automation performance. While our framework
generally supports any communication channel implementa-
tion, we focus on the IEEE 802.15.4-based implementation
featured in our evaluation setup.

In Phase 2, we employ open verification tools (e.g., [16]) to
perform system-wide verification of safety and QoC-relevant
properties in the presence of attacks, based on the afore-
mentioned security-aware closed-loop system model; it is
important to highlight that we make no assumptions about the
attacker’s choice among all possible malicious actions nor the
times when they (i.e., attack actions) may occur. By enabling
security analysis within the same family of formalisms (i.e.,
using a formalism that is closely related to the formalism used
to design controllers), we provide convenient domain-specific
interpretation of analysis results. This allows us to exploit
verification results in Phase 3 to orchestrate security patches
in code generation which is performed based on original
CIPN-based models. Finally, we show the applicability of our
methodology on a real-world industrial case study—a security
analysis of an IIoT-enabled manipulator system.

Specifically, the contributions of this work are as follows:

• Security-aware framework for verification of system-level
properties for distributed discrete-event controllers (based
on CIPNs) in the presence of network-based attacks;

• TPN-based non-deterministic modeling of network-based
attacks on distributed controller communication, with em-
phasis on capturing impacts on automation performance;

• Extension of the control software development cycle from
security-aware analysis to firmware patching, in order to
ensure correct operation in the presence of attacks;

• Full-stack proof-of-concept case study based on industry-
grade components demonstrating applicability of the de-
veloped secure automation framework.

This paper is organized as follows. Sec. II gives an overview
of relevant related work, while Sec. III provides the problem
definition with emphasis on distributed IIoT-based automa-
tion. Sec. IV introduces TPN-based security-aware modelings
and Sec. V derives the security-aware communication model.
Specification and verification of relevant formal properties
is presented in Sec. VI, as well as the loop closure from
verification to code generation to include security patches and
improve system resiliency. Industrial case studies are discussed
in Sec. VII, before concluding remarks (Sec. VIII).

3

II. RELATED WORK

In [17], a model-based approach for simulating attacks on
CPS is presented, but no formal verification is supported and
experimental results are obtained based on specific attack
implementations. In [18], additional formal security assess-
ment of industrial CPS controllers is performed, but analysis
remains constrained to high-level vulnerabilities at the level
of functional models. On the other hand, a comprehensive
formal security analysis of wireless IoT communications under
a specific attack model is presented in [19], but no relations to
implications for Quality-of-Control of the underlying physical
process are considered.

Security analysis techniques for other IoT domains have also
been recently proposed. In [20], smart home IoT applications
are formally surveyed for anomalous behaviors. However,
formal adversarial models and implications of security vul-
nerabilities on system operation, such as QoC and safety in
the presence of attacks, are not considered. Similarly, [21]
introduces a dynamic policy-based enforcement system for
securing against unauthorized and unwanted control scenarios,
but focuses only on architectures and platforms for consumer
IoT applications mostly in smart home automation. In [12], an
SMT-based framework for IoT security analysis is presented;
yet, only abstract threat models are used, and the software
architecture of IoT nodes is masked by behavioral modeling.

Note that Petri Nets (PNs) have been used for security-aware
modeling and analysis. For example, penetration analysis
using attack trees was formalized through PNs (e.g., [22],
[23]). Coordinated cyber-physical attack modeling for smart
grids was done in [24], but high-level attack scenarios were
modeled, and the structure of the system components was
coarsely abstracted. Modeling of risks and vulnerabilities
towards avoidance and discovery for Unix-like software was
performed (e.g., [25]) but without specifics of the underlying
software architecture. [26], [27] adopt stochastic PN-based
attack models for CPS threats, while in [28], authors formulate
a framework for formal reliability analysis of networked IIoT
sequential control applications based on CIPNs. On the other
hand, [29] deals with fault detection in systems modeled by
PNs. However, fault/failure models are limited to stochastic
behaviors that cannot accurately capture adversarial actions
(as described in [7]). While cooperation and communication
protocols were modeled with PNs (e.g., [30], [31]) , to the
best of our knowledge, nondeterminism in Petri nets was not
exploited for adversarial modeling.

III. MOTIVATING EXAMPLE AND PROBLEM DESCRIPTION

We first introduce CIPNs and the mother formalism of PNs,
before presenting an illustrative distributed control application,
used as a running example in this work to highlight security
vulnerabilities caused by automation (i.e., control) distribution.

Petri Nets (PNs): A Petri net is a 5-tuple PN =
(P, T, F,W,M0), where P = {P1, ..., Pm} is a set of places
(represented by circles), T = {T1, ..., Tn} is a set of transitions
(represented by bars) such that P ∪ T 6= ∅ and P ∩ T = ∅,
while F ⊆ {P×T}∪{T×P} is the set of arcs between places
and transitions (no arc connects two places or two transitions).

(c) Pick&Place Controller (LC2)

Pctrl_Init

Pctrl_P&P1

Pick==1
Tctrl_wfPick1

Pick==2
Tctrl_wfPick2

PP_Act=1

P&P_Complete==1
Tctrl_P&Pcomplete1 Pctrl_Ret

PP_Act=-1

Pctrl_P&P2
PP_Act=2 Ret_Complete==1

Tctrl_wfRet

(b) Conveyor Monitor (LC1) Pcm_Init

Pcm_TxCtrl_Pick1

Tcm_Pres1
Pres2==1

Tcm_Pres2

Send(Pick,1)

Tcm_RetInit1Tcm_RetInit2

Pres1==1

Pcm_TxCtrl_Pick2
Send(Pick,2)

PP_Act=0

Pctrl_SendCMfin
Send(Complete,1)

Tctrl_RetInit

Complete==1Complete==1

Belt 1

Belt 2

LC1

Sensors

Direction

Belt 3

LC2

Pick&Place Station

Workpiece

(a) Physical setup illustration

P&P_Complete==1

Tctrl_P&Pcomplete2

Fig. 2. Distributed Automation Example: Simple CIPN-based distributed
control model of (b) conveyor monitor and (c) pick & place controller;
physical setup is illustrated in (a).

W is the vector of arc cardinalities which determines how
many tokens are removed/deposited over specific arcs upon
firing of corresponding transitions. The PN’s state is defined
by its marking, i.e., distribution of tokens (captured by dots
inside places); M0 is the initial marking (i.e., the initial token
distribution). Functionally, current PN marking determines
the system’s state, while transition firing (i.e., token flow)
represents a state change. A formal description of the PN
semantics can be found in [32].

Distributed Automation with CIPNs: CIPNs are a ver-
sion of PNs where arc cardinality is fixed to 1 and the
initial marking M0 may initialize only one place with a
token. In CIPNs, transitions’ firing can be conditioned by
system inputs (i.e., sensors) in the form sensor==value,
while actuation commands can be associated with places
in the form actuator=command. For distributed automa-
tion, functionality of each local controller (LC) is captured
by the corresponding CIPN. For (event) information ex-
change between LCs, places of a CIPN may invoke the
communication API exposed by the LC runtime environ-
ment; this is denoted as Send(signal,value) for broad-
cast or Send({dest1,dest2,...},signal,value)
for uni/multicast transmissions. Dually, the receiving LC can
condition its transitions with statements similar to conditioning
on locally connected sensors (i.e., as signal==value) [15].

Formally, a CIPN is a 6-tuple CIPN = (P, T, F,C,A,M0)
where P , T , F , and M0 are defined as for PNs; C =
{C1, ..., Cn} is a set of logical conditions enabling synchro-
nization of the controller with sensors by guarding corre-
sponding transitions in the CIPN model; A = {A1, ..., Am}
is a set of actions on actuator outputs that are allocated to

4

places; formal CIPN semantics is available in [33]. By its
definition, CIPN semantics is deterministic (does not support
nondeterminism due to CIPNs use to only model controllers),
which needs to be ensured during model design [34].

Distributed CIPN-based controller models are obtained di-
rectly by design, or by distributing existing (i.e., centralized)
controllers (e.g., as done in [15]). Fig. 2 shows a simple control
application, built with two wireless nodes, that we will use as
a running example in this work.

Example 1: Consider a simple application from Fig. 2.
Control over the physical system (Fig. 2(a)) is performed by
the conveyor monitor (LC1) and the pick & place station
controller (LC2). Two sensors (e.g., proximity, retro-reflective)
locally connected to LC1 overlook two parallel incoming
conveyor belts; they sense if a workpiece is ready to be
picked from either of the conveyors and placed on the third,
outgoing conveyor. The CIPN-based controllers for LC1 and
LC2 are shown in Fig. 2(b-c). Initially, LC1 is in state
Pcm_Init where it is waiting for either of its sensors to
indicate workpiece presence (i.e., transition Tcm_Pres1 /
Tcm_Pres2 is conditioned by the sensing event Pres1==1 /
Pres2==1).1 Upon detection of a workpiece (i.e., when one
of Pres1==1 / Pres2==1 is satisfied, and thus transition
Tcm_Pres1 / Tcm_Pres2 is enabled), LC1 sends a message
to LC2 (via API call Send(Pick,1) / Send(Pick,2)
in place Pcm_TxCtrl_Pick1 / ..._Pick2); the message
indicates which conveyor has a workpiece ready to be picked.
LC1 then waits for completion of the pick & place operation.

Concurrently, LC2’s initial state is Pctrl_Init where the
pick & place station is commanded to halt (by PP_Act=0).
Once the signal Pick is received from LC1, based on its value
the token in LC2 model transitions over Tctrl_wfPick1 /
Tctrl_wfPick2 into place Pctrl_P&P1 / Pctrl_P&P2
where the corresponding actuation command is given to
the pick & place station (i.e., PP_Act=1 / PP_Act=2).
After completion of the pick & place operation, condition
P&P_Complete==1 is satisfied, allowing the LC2 to transi-
tion over Tctrl_P&Pcomplete / Tctrl_P&Pcomplete
to Pctrl_Ret where it commands the pick & place sta-
tion to return to home position (by PP_Act=-1). LC2

waits for completion of the pick & place station return
stroke (when Ret_Complete==1 evaluates to true); after it
transitions back into Pctrl_SendCMfin, where it signals
LC1 that the workcycle is complete. LC2 transitions over
Tctrl_RetInit back into the initial place Pctrl_Init.
Finally, conveyor monitor LC1 can also return to its initial
state (formally, the token is deposited back into Pbm_Init
over Tbm_RetInit1 / Tbm_RetInit2), as the condition
Complete==1 is satisfied. �

The CIPN-based control models from Example 1 assume
ideal communication (i.e., packet delivery), without unpre-
dictable channel behaviors. For instance, consider an adver-
sary with network access that mounts an impersonation (i.e.,
spoofing or masquerade [10]) attack when LC2 is waiting

1For model readability, we employ descriptive notation for places, transi-
tions, conditions, and actions; e.g., transition Tctrl_wfRet in controller
LC2 waits for the return cycle to finish, while place Pcm_TxCtrl_Pick1
on the conveyor monitor sends signal Pick==1 to the pick & place controller.

for a message from LC1 that a workpiece should be picked
up. By sending the corresponding message (e.g., by signaling
Send(Pick,1)), the attack will result in the pick & place
station being commanded pickup by LC2; hence, it may
collide with upcoming workpieces, potentially incurring me-
chanical damage, or just waste a workcycle. Similar holds
for message modification [10] (i.e., signal replacement [35])
attacks, when the right conveyor belt contains a workpiece
ready to be picked up (i.e., Pres_R==1), but the attacker
intercepts the corresponding message and maliciously signals
Send(Pick,2). Also, if an adversary delays or blocks
some transmissions or acknowledgements (ACKs) between
LCs (i.e., launching a Denial-of-Service (DoS) attack [10])
the system may experience excessive downtime.

These examples illustrate that distributing control and au-
tomation functionalities may introduce security vulnerabilities
as the system operation can be easily affected by an attacker
with network access. Hence, in this work, we focus on security
aspects of IIoT-enabled distributed automation systems; our
goal is to provide techniques to model and analyze system
behaviors in the presence of network-based attacks, while
enabling the use of analysis results to modify (i.e., update))
the system to achieve attack-resilient operation.

A. Overview of our Approach

We start from a functional description of N LCs expressed
by CIPNi, i = 1, ..., N . We consider an attacker with full
access to the network with M communication channels. The
attacker is not able to compromise LCs, but has full knowledge
of the state of each LC. We introduce a design-time methodol-
ogy illustrated in Fig. 1 that starts with automatic transforma-
tion of CIPN-based control models to Timed Petri Net (TPN)-
based models; such models allow for explicit capturing of
(i) the communication semantics, (ii) platform-based effects
using timed transitions to model real non-zero execution and
message propagation times, and most importantly (iii) non-
deterministic behaviors necessary to model adversarial actions.

We show how the remaining closed-loop system com-
ponents (i.e., the plant and communication channel in the
presence of attacks) can be modeled within the TPN formal-
ism. Furthermore, we demonstrate how composition of these
models enables system-wide analysis of control performance
in the presence of attacks. Finally, we show how design-time
formal verification results can be used during code generation
for smart IIoT-based controllers, which facilitates adaptation of
LCs’ firmware in order to address exposed security concerns.

Remark 1 (Petri nets vs. Automata/Finite-State Machines):
We employ Petri Net-based modeling formalisms since
CIPNs are the main formalism used to capture existing
(including distributed) automation systems. For example,
GRAFCET (IEC 60848) and SFC (IEC 61131-3) languages
for programming industrial control systems originate from
Petri Nets, with their behavioral equivalence discussed in [33],
[36], [37]. However, the proposed methodology, including
network and attack modeling, can be directly extended to other
discrete-event IoT systems whose behavior can be captured
with automata/finite-state machines due to the fact that formal

5

mappings between semantics of Petri nets and automata have
been defined (e.g., as in [38], [39]). �

IV. TPN-BASED AUTOMATION MODELING

TPNs extend PNs by introducing timed transitions; in
a TPN, every transition is characterised by an interval
(tf , tf), [tf , tf), (tf , tf], or [tf , tf], where tf and tf are the
lower/upper bound on the transition firing times, which may
be zero or infinity—time interval next to immediate transi-
tions (i.e., with zero firing time) is not specified. Also, the
firing times are defined relative to the moment of transition
enabling, without any assumptions on their distribution. This
enables modeling of timed properties of real-time control
software [40], [41], [42]. In addition, by supporting non-
determinism, TPNs facilitate attack modeling that cannot be
accurately done with deterministic or stochastic models.

Therefore, we transform formal distributed control spec-
ifications expressed by CIPNi, i = 1, ..., N , into TPN-
compatible models TPNctrl

i , i = 1, ..., N . We then compose
these models with plant models TPNplant

i , i = 1, ..., N , and
security-aware communication channel models TPNchannel

j ,
j = 1, ...,M ,2 which enables us to reason about system-level
safety and security properties under the modeled adversarial
influences. Since both CIPNs and TPNs originate from PNs,
the translation from CIPNi, i = 1, ..., N controller models to
TPNctrl

i , i = 1, ..., N is direct for all places and transitions
except where platform-implemented API is called, i.e.,

1) Places handling actuation, and transitions handling sens-
ing by issuing I/O API calls (actuator=value and
sensor==value, respectively),

2) Places handling transmissions over a shared channel, and
transitions handling receiving of communication signals
using API calls (Send(destination,signal) and
signal==value, respectively),

3) Places calling other platform-dependent API, such as
request for execution delays.

These CIPN constructs, which directly rely on the underlying
platform used to implement the controller , must be explicitly
modeled as nets that capture: 1) interaction between LCs
TPNctrl

i and the plant TPNplant
i , 2) interaction between LCs

TPNctrl
i and communication channel(s) TPNchannel

j , and
3) runtime environment changes based on issued commands
(e.g., variable updates, execution delays).

Thus, we introduce methods for automatic extraction of
TPN-based controller models from existing CIPN-based mod-
els that may be used to generate control code. We capture
interaction between the automation system and plant, as well
as the platforms’ runtime environment in Section IV-A, and
security-aware modeling of communication channels and their
interfaces with controllers in Section V. These methods enable
developing a complete closed-loop system model that can then
be used to reason about system resiliency to attacks.

2This captures the general case where time or frequency multiplexing may
be used to provide multiple communication channels over the same medium.

Tp&p_RetInit

(a) Pick&Place Station Model

Pp&p_Init Pp&p_P&P1

G:M(Pctrl_P&P1)==1
Tp&p_wfPick1

G:M(Pctrl_P&P2)==1
Tp&p_wfPick2

Tp&p_P&P1

Pp&p_wfRet

G:M(Pctrl_Ret)==1

Pp&p_P&P2

Tp&p_wfRet

Pp&p_Ret

[𝑡𝑝&𝑝
𝑝𝑟𝑜𝑐

, 𝑡𝑝&𝑝
𝑝𝑟𝑜𝑐

]

[𝑡𝑝&𝑝
𝑟𝑒𝑡 , 𝑡𝑝&𝑝

𝑟𝑒𝑡]

(b) Pick&Place Controller (LC2)

Pctrl_Init

Pctrl_P&P1

Pick==1
Tctrl_wfPick1

Pick==2
Tctrl_wfPick2

G:M(Pp&p_wfRet)==1
Pctrl_Ret

Pctrl_P&P2
Tctrl_wfRet

PP_Act=0

Pctrl_SendCMfin
Send(Complete,1)

Tctrl_RetInit

G:M(Pp&p_Init)==1

Tp&p_P&P2
[𝑡𝑝&𝑝

𝑝𝑟𝑜𝑐
, 𝑡𝑝&𝑝

𝑝𝑟𝑜𝑐
]

Tctrl_P&Pcomplete1
G:M(Pp&p_wfRet)==1

Tctrl_P&Pcomplete2

(c) Incoming packets process 𝑋 ∈ {1,2}

PprocX_idle [𝑡𝑚𝑖𝑛
𝑝𝑟𝑜𝑐

,∞) PprocX_pres

TprocX_Pres TprocX_ProcU:PresX=1 U:PresX=0

Fig. 3. Plant and plant-controller interaction modeling: (a) TPN model of
the pick & place station; (b) extended model of LC2 from Fig. 2(c) with
TPN-compatible sensing/actuation – the model is not a TPN as it still relies
on the communication API (in red) for interaction with other LCs; (c) model
of incoming workpieces with a lower bound on the workpiece interarrival.

A. Modeling Plants and Controller-Plant Interaction

Nominal behavior of the controlled physical system is
typically known at control design time. Thus, since the formal-
ism of CIPNs is universally adopted for automation design,
we assume that a PN-based (i.e., CIPN or TPN) plant
model is available.3 On the running example, we describe
development of such TPN-based plant model, along with a
TPN-compliant controller-plant interface implemented through
marking-dependent guard functions.

Fig. 3(a) shows a TPN model of the pick & place sta-
tion from Fig. 2; Fig. 3(c) models the incoming work-
pieces arrivals, with a lower bound on the interarrival times.
Place Pp&p_Init represents the station’s initial state. To-
ken flow from this place is conditioned by the corre-
sponding commands of LC2 PP_Act==1 and PP_Act==2
from the controller model in Fig. 2(c). In the formal-
ism of TPN, marking-dependent guard functions can be
used to restrict state changes (i.e., token flow) in the
plant model, i.e., a marking-dependent function (denoted
with M(·)) assesses the state of the controller model
(i.e., token distribution) and returns the current number
of tokens inside the argument place. Hence, guard func-
tion G:M(Pctrl_P&P1)==1 (or G:M(Pctrl_P&P2)==1
for the other conveyer belt) is associated with transi-
tion Tp&p_wfPick1 (or Tp&p_wfPick2). Once the
pick & place process is triggered (i.e., LC2 initiates it from

3On the other hand, if an automata or other discrete-event system represen-
tation of the plant is available, existing tools and methodologies can be used
to translate such models into a PN-based representation (e.g., [38], [39]).

6

a specific conveyor belt) by the LC2’s model advancing
its token to Pctrl_P&P1 (or Pctrl_P&P2), the station’s
token transitions to place Pp&p_P&P1 (or Pp&p_P&P2) if
conveyor belt 1 (or 2) has a workpiece waiting to be processed.
Note that in order to capture realistic executions, the actual
times to complete the pick & place and return processes are
not deterministic; this is natively supported by TPN’s timed
transitions; transitions Tp&p_P&P1 / Tp&p_P&P2 have firing
times from the interval [tprocp&p , t

proc
p&p], as shown in Fig. 3(a).4

Now, the station dwells in place Pp&p_wfRet waiting
for the signal from LC2 to return to the home position, i.e.,
guard function G:M(Pctrl_Ret)==1 conditions transition
Tp&p_wfRet on the corresponding controller’s state (i.e.,
where the return action is issued). Once return is commanded,
the pick & place station takes non-deterministic time from
[tretp&p, t

ret
p&p] to return (i.e., transition over Tp&p_RetInit).

After this transition, the station model is back in the initial
state, waiting to process the next workpiece.

The actuation part of the plant-controller interface is man-
aged by guard functions assessing the controller’s marking;
therefore, explicit actuation input updates (e.g., PP_Act=1)
in the CIPN places are omitted in the transformation to the
TPN model as TPN places do not feature any attributes. This
interface can also be achieved alternatively, by utilizing update
functions which are triggered on the firing of controller’s
transitions and can update markings or variables. The choice of
the transformation semantics from CIPN to TPN can therefore
be adjusted to the specific platform implementation.

Dually to the actuation part of the interaction, sensing
is modeled by introducing plant-marking-dependent guard
functions on controller’s transitions. Specifically, transitions
conditioned by sensor values in the form sensor==value
in the CIPN controller model are replaced with immediate
transitions guarded by a Boolean function evaluating to true
if the plant model marking corresponds to the plant state where
sensor==value is satisfied, and to false otherwise.

For instance, once LC2 commands return of the
pick & place station, (i.e., controller model from Fig. 2(c)
has the token in Pctrl_Ret), it is blocked on the tran-
sition Tctrl_wfRet which is guarded by the condition
Ret_Complete==1. This transition in the CIPN model is
transformed into a transition in the TPN model in Fig. 3(b)
that is guarded by a function dependent on the marking of
the pick & place station model from Fig. 3(a) (i.e., controller
waits for the station to reach home position). Guard function
G:M(Pp&p_Init)==1 returns true when the token in the
plant model transitions from Pp&p_Ret to Pp&p_Init over
the timed transition Tp&p_RetInit (here, M(·) denotes a
function that returns the current number of tokens inside the
argument place) – hence, controller LC2 can transition over
Tctrl_wfRet. Therefore, this guard function is used for the
transition Tctrl_wfRet in the TPN model of LC2. This
models the controller side of the controller-plant interaction,
i.e., sensor sampling. More complex conditions based on

4These intervals may be obtained experimentally under nominal conditions
at runtime, or based on design constraints at design-time. Also, different
durations of the picking process from different conveyors are supported but
set equal in the above model/figure to simplify our presentation.

multiple sensors are implemented by forming an arbitrary plant
marking-dependent Boolean guard function.

Fig. 3(b) shows a controller model of the described
controller-plant interface. The model, obtained from the CIPN-
based model in Fig. 2(c), is intermediary, and not fully TPN-
compliant; the CIPN-based communication semantics (i.e.,
signal transmissions via Send(destination,signal),
and receptions through signal==value denoted in red in
Fig. 3(b)) is still present in the model. However, to allow
for verification of properties for systems where networking
is not a concern, this communication semantics can be easily
adapted to TPNs by applying the same guard/update functions
as described; this results in a model architecture from Fig. 4(a).

Additionally, note that the conveyor monitor model from
Fig. 2(b) can be directly transformed into a TPN, with guards
Pres1==1 and Pres2==1 conditioning progress based on
external inputs (i.e., the process) triggered by the process
model shown in Fig. 3(c). This process model abstracts away
the nature of the process of incoming workpieces on the
conveyors with a minimum inter-arrival time (i.e., time in the
interval [tprocmin ,∞]).

1) Controller Runtime Environment Modeling: Another
challenge for the automatic mapping of CIPN-based control
models into TPN-compliant models is mapping of places
issuing system calls from the runtime environment (e.g.,
execution delays, requests for timer interrupts, setting counter
events) or updating local controller state (e.g., manipulating
global variables). Requested execution delays can easily be
modeled as timed transitions with the exact firing times (i.e.,
where the lower and upper firing time bound are the same);
in general, however, event timings with different semantics
are available depending on the control implementation—i.e.,
GRAFCET or SFC. In [36], [37], authors provide detailed
translational semantics between CIPNs and TPNs in these
cases by introducing event sequencers as certain conditions
exist where transitions can be taken while time to some events
generated internally in places has still not elapsed.

Remark 2 (Modeling more Complex Execution Environ-
ments): While we consider single-threaded automation exam-
ples (as most sequential control implementations are), existing
techniques for modeling parallel systems can be applied given
the expressiveness of TPNs. For example, for multithreaded
applications where task preemption is allowed, the operating
system scheduler can be modeled as a separate component,
even in case of multi-processor platforms [43]. �

B. CIPN and TPN Controller Equivalence

An execution path in CIPNs can be defined as a sequence of
markings, where a change in the marking occurs due to firing
of a transition. Recall that places are associated with actions;
hence, each marking is associated with a set of actions, while
transitions are associated with guards—firing of each transition
is thus conditioned by a set of conditions.5 Therefore, an
execution path is a sequence M0, T1,M1, T2, ..., where Ti is
the transition taking the net from marking Mi to Mi+1. In the

5We employ the standard assumption that all inputs are re-evaluated after
firing of every transition (e.g., as done in [37]).

7

LCA LCB

XCVRA XCVRBCH

PLANTA PLANTB

LCA LCB

PLANTA PLANTB

(a)
(b)

Fig. 4. Model architecture: (a) Model captures local controllers LCi, plants
PLANTi and their interactions, (b) Model also captures the employed com-
munication transceivers XCV Ri, and the underlying communication channel
CHi. Note that local controller models LCi in schemes (a) and (b) are not
the same; i.e., in (b), controller places/transitions invoking communication
APIs are made compatible with the transceiver model.

TPN model, a path is characterized by a similar sequence with
the addition of transition timing.6 In our case, it is sufficient
to maintain the CIPN controller execution paths in the TPN
model, as our objective is operational equivalence of the source
(centralized), and the target (distributed) control models.

CIPN controller specifications are fully deterministic by
design, and have only immediate transitions.7 Thus, the cor-
responding target TPN-based controller models obtained by
directly constructing the same model in the TPN formalism
without additional constructs (i.e., as previously described in
Sec. IV-A), do not introduce behavior which is not covered
by the source CIPN-based models. Consequently, execution
paths of the composition of the TPN models match with that
of the CIPN, from the input-output (i.e., sensing-actuation)
perspective. In other words, no execution path is added when
we transform the CIPN-based controller into the TPN-based
representation [15]. Intuitively, the TPN models obtained by
direct mapping from CIPN (i.e., place-by-place, and transition-
by-transition), are still fully deterministic (isolated from the
intrinsically non-deterministic plant and channel); i.e., their
behavior is identical to their CIPN counterparts, and same
behavioral assumptions (e.g., 1-boundedness) hold [33].

V. SECURITY-AWARE MODELING OF THE CHANNEL AND
CONTROLLER-CHANNEL INTERACTION

We now introduce a security-aware channel model, includ-
ing a TPN-compliant controller-channel interface that enables
model composition. Hence, we address modeling challenges
to enable the transition from the security-agnostic model struc-
ture from Fig. 4(a), to the security-aware model composition
shown in Fig. 4(b). We start by defining the attack model.

A. Attack Model

We assume a powerful network-based adversary that:
1) Has the full knowledge of the distributed system, in-

cluding the CIPN models, generated code and analysis

6Strictly speaking, two types of time intervals characterize each transition:
static intervals (i.e., design-time bounds) when they may fire, and dynamic
(i.e., runtime) intervals when they can fire at any given instant, conditioned by
all other enabled transitions. However, for purposes of showing marking-based
equivalence with CIPNs, time can be abstracted away.

7Immediate transitions become fireable immediately after enabling, i.e.,
without a time delay.

framework, as well as the current state of all LCs (and
their transceivers).

2) Has network access and full communication protocol
compliance, i.e., is able to transmit unsigned messages
as any of the LCs, or intercept messages or ACKs
exchanged by LCs,

3) Is able to precisely time actions and align transmissions
with legitimate network traffic, e.g., to interfere with
legitimate messages by transmitting the carrier signal or
a protocol-compliant message.

Thus, the adversary may mount the following attacks:

1) Interception or delaying of legitimate packets (DoS):
With these attacks, adversarial transmissions occupy the
channel (a) blocking transmissions from legitimate LCs
to prevent or delay their access to the network, or
(b) blocking ACKs on legitimate LC’s transmissions
to cause unnecessary retransmissions and slow down
progression of the targeted transmitter [10].

2) ACK spoofing: The attacker may impersonate an ACK
expected by a legitimate transmitter; e.g., following
by interception of the transmission, the attacker may
spoof the ACK misleading the legitimate transmitter into
believing that the transmitted signal was received by
the intended receiver [9], both for regular and ‘heart-
beat’/sync messages [44].

3) Impersonation/Masquerade: The adversary may transmit
false event signals on behalf of a legitimate LC (i.e.,
impersonating another controller), with the goal to in-
ject false commands [9] or sensor measurements; such
attacks could e.g., allow the targeted receiver to resume
execution while it is blocked waiting for an event signal,
before the event it is sent by the legitimate LC.

4) Signal replacing/Message modification: The adversary
may modify content of a legitimate message to deliver
false event information. While logically the same, the
attack procedure differs from intercepting a legitimate
transmission followed by a masquerading attack [11],
and thus is modeled differently.8

5) Replay attack: The attack characterizes an adversary
that records events signaled by the LCs and replays the
sequence of events on behalf of one or more LCs; thus,
maliciously emulating activity of LCs whose operation
(s)he is interfering with [11].

The above attack set, considered in this work, covers
all reported attacks that, from the standpoint of low-level
signaling of events, could have direct impact on Quality-of-
Control (QoC) of the underlying physical process [7], [45].
Other attacks, such as attacks on network routing policies, are
focused on higher-level information flows and are thus harder
to directly relate to automation QoC [11]. Consequently, our
goal is to model attacks by capturing their influence on the se-
quential control system and the resulting QoC, rather than the
employed attack vector for any specific attacks; i.e., the attack
model should be agnostic to the actual attack implementation.

8This type of attack is technically more challenging to perform compared
to other attacks, especially over a wireless medium.

8

TnXCVR_Rtry

[𝑡𝑇𝑥
𝐴𝑐𝑘𝑇𝑂 , 𝑡𝑇𝑥

𝐴𝑐𝑘𝑇𝑂]
TnXCVR_wfTxFin

PnXCVR_Listen

LCA (Tx)

Pa_Tx
Send(B,s=1)

LCB (Rx)

Tb_Rx
s==1

LCA (Tx)

Pa_wfTx

LCB (Rx)

Tb_wfRx

Pch_TxMsg

Tch_wfTx

Ta_wfTx

(a) CIPN (b) TPN Tx/Rx model (c) TPN Channel model

Tch_wfAck

Pch_TxAck

G:ChBusy==1
G:M(PaXCVR_Tx)==1
G:AXCVR_Txd==0

Tch_TxMsg

U:ChBusy=0
U:BXCVR_Rx=1
U:AXCVR_Txd=1
U:BXCVR_PRx=AXCVR_PTx

Pb_wfRx

Pb_wfRx
Ta_ackSucc
G:A_RxAck==1
U:A_RxAck=0Pa_wfAck

Ta_ackFail

G:ChBusy==0
G:M(PaXCVR_Listen)==1
U:AXCVR_PTx=1
U:AXCVR_Tx=1
U:AXCVR_Txd=0

[𝑡𝑇𝑥
𝑀𝑠𝑔

, 𝑡𝑇𝑥
𝑀𝑠𝑔

]

[𝑡𝑤𝑓𝐴𝑐𝑘, 𝑡𝑤𝑓𝐴𝑐𝑘]

Pa_TxFin
G:B_RxBuf==1
U:B_RxBuf=0

[𝑡𝑇𝑥
𝐴𝑐𝑘, 𝑡𝑇𝑥

𝐴𝑐𝑘]

G:ChBusy==1
G:BXCVR_TxAck==1

Tch_TxAck

U:ChBusy=0
U:AXCVR_RxAck=1
U:BXCVR_TxAck=0

Pch_IdleG:A_RxAck==0

PnXCVR_Tx

PnXCVR_wfAck

TnXCVR_wfTx

TnXCVR_AckRxd

G:ChBusy==0
G:NXCVR_TxCnt<3
U:ChBusy=1

G:ChBusy==0
U:NXCVR_RxAck=0
U:NXCVR_TxCnt++

G:NXCVR_RxAck==1
U:N_RxAck=1
U:NXCVR_Tx=0
U:NXCVR_TxCnt=0

G:NXCVR_Rx==1
G:NXCVR_Tx==0
U:N_RxBuf=NXCVR_PRx

TnXCVR_Rx

PnXCVR_TxAck

TnXCVR_TxAck

[𝑡𝑇𝑥
𝐵𝑜𝑓𝑓

, 𝑡𝑇𝑥
𝐵𝑜𝑓𝑓

]

TnXCVR_ooRtry
G:NXCVR_TxCnt==3
U:NXCVR_TxCnt=0
U:NXCVR_Tx=0
U:NXCVR_Rx=0

(d) TPN RF state machine model, 𝑁 ∈ {𝐴, 𝐵}

U:ChBusy=1
U:NXCVR_TxAck=1 PnXCVR_wfAckTxd

G:ChBusy==0
U:NXCVR_Rx=0

TnXCVR_AckTxd

TnXCVR_TxInit

G:NXCVR_RxAck==0
U:NXCVR_Txd=0

TnXCVR_CCAfail

G:ChBusy==1
G:NXCVR_TxCnt<3
U:NXCVR_TxCnt++

PnXCVR_tryTx
G:NXCVR_TxCnt<3
G:NXCVR_Tx==1

Fig. 5. Transformation between CIPN-based and TPN-compatible communication models; (a) a Tx/Rx place/transition pair in the CIPN formalism; (b) the
same Tx/Rx place/transition pair modeled with as a TPN adjusted to the half-duplex, acknowledge-required unicast CSMA-CA-based channel, whose model
is shown in (c); (d) model of the employed radio transceiver (i.e., the governing RF state machine TPN model). Note that each Tx/Rx net pair in (a) (from
the model in Fig. 4(a)) is extended into a corresponding pair in (b), while only a single model from (c) and (d) are added to obtain the model from Fig. 4(b).

B. TPN-Based Modeling of Attack Impact
Recall that CIPN models rely on platform-provided com-

munication APIs for passing events between LCs; e.g., as
in Fig. 5(a), Send(destination,signal=value) com-
mand within a place sends the updated value of signal to
the destination LC, while condition signal==value
on a transition within the model blocks execution until the
signal corresponding to the desired value is received over
the network. To enable formal analysis of the attack impact
on QoC of distributed automation, it is necessary to develop
a TPN-compliant model of the interface (i.e., transceiver)
between the controller and security-aware channel model; such
model can be then composed with the TPN-based models
described in Section IV-A, resulting in Fig. 4(b) architecture.

Such security-aware formal model has to capture:
(1) application-level (i.e., controller side) communication stack
behavior, directly affected by (2) the channel-side (i.e., com-
munication medium) attack model, and (3) the controller-
channel interface. Specifically, application-level (i.e., control-
related) communication stack behavior, such as delays or
blocking on communication peripheral resources, is of interest
for security analysis, as this presents the main reflection of
the communication-level attacks onto the control functionality.
Therefore, when translating the CIPN communication model
from Fig. 5(a) into a TPN-compliant model, it is necessary to
capture application software states that directly affect progress
of the control functionality, conditioned by data dependencies
resolved via communication. Such models can be obtained
from the actual application firmware running on the embedded
LCs (i.e., source code). For example, when IEEE 802.15.4
protocol is used, as in the case study presented in Sec VII,
the state-machine/TPN representation can be directly extracted

from the radio driver (as done in Fig. 5(b)). On the other hand,
if more complex communication stack is considered (i.e.,
implementing higher communication layers), exiting state-
machine extraction techniques (e.g., [20]) can be employed.

Second, the channel model has to explicitly capture the
channel states essential for supporting the attack models pre-
sented in Section V-A—channel states that are not observable
(or alterable) need not be modeled (e.g., bit-level signaling, or
carrier-level modulation). Finally, a TPN-compliant interface
between the controller and security-aware channel models is
needed to allow for their formal composition, enabling system-
level analysis of adversarial influence on the entire system.
Therein, specific data link layer (OSI model layer 2) fea-
tures are crucial for understanding retransmissions and ACK
mechanics which, as we will show, affects design of attack
detectors. Therefore, while controller models should capture
application-level communication semantics, it is also necessary
to include protocol-level details within the transceiver (XCVR)
models, which act as the interface between the controllers
and the medium (as shown in Fig. 4(b)). XCVR specifics are
commonly available for the specific employed radio commu-
nication chip as RF circuitry control is usually state-machine
based (e.g., referred to as the internal RF state machine [46]
in the case of radios used in our implementation).

On the other hand, explicit security-aware channel mod-
eling is medium-, protocol-, and attack-dependent. Fig. 5(c)
and Fig. 6 show a security-aware model of a half-duplex,
acknowledge-required unicast CSMA-CA-based communica-
tion channel with respect to the previously defined attack
model. While other medium/protocol variants can be easily
modeled due to the expressiveness of TPNs, we consider this
specific model as it applies to our physical setup described

9

Symbol Description SW
acc.

ChBusy Indicator whether the channel is currently busy
with a packet or ACK

YES

N_RxBuf Local Rx buffer YES
N_RxAck Local flag indicating successful transmission,

i.e., ACK reception
YES

NXCVR_PTx Transceiver Tx payload buffer YES
NXCVR_PRx Transceiver Rx payload buffer YES
NXCVR_Tx Signal to XCVR initiating transmission YES
NXCVR_Txd Signal to XCVR indicating transmission NO
NXCVR_Rx Signal from XCVR indicating reception YES
NXCVR_TxAck XCVR signal initiating ACK transmission NO
NXCVR_RxAck XCVR signal indicating ACK reception NO
NXCVR_TxCnt XCVR retry counter NO
tMsg
Tx , t

Msg
Tx Message transmission time (bounds) —

tAck
Tx , t

Ack
Tx ACK transmission time (bounds) —

tBoff
Tx , t

Boff
Tx Back-off time (bounds) —

tAckTO
Tx Data link layer ACK timeout —
twfAck Application-level ACK timeout —
tDoS
Ch , t

DoS
Ch Contention time due to DoS (bounds) —

TABLE I
SYMBOLS USED IN FIG. 5 AND FIG. 6; THIRD COLUMN (WHERE

APPLICABLE) INDICATES ACCESSIBILITY TO APPLICATION SOFTWARE (OR
ONLY TO THE TRANSCEIVER’S INTERNAL RF STATE MACHINE).

later in Section VII. In the remaining of this section, we
describe the transformation from the CIPN-based LC com-
munication model to a TPN-compliant model assuming the
aforementioned channel, while aiming to balance between the
model expressiveness and capturing security-aware behavior
required for analysis of QoC under attack.

C. Security-Aware Modeling of the Channel and Controller-
Channel Interaction

Fig. 5(b) shows the TPN transmitter/receiver models that
replace the platform-independent CIPN transmitter/receiver
model in Fig. 5(a). Fig. 5(c) shows the nominal channel
model (i.e., without adversarial influences), while Fig. 5(d)
shows the transceiver (XCVR) model. Notice that both LCA

and LCB have identical transceivers; thus, N ∈ {A,B}
in place/transition names. Table I enumerates symbols (local
flags, variables, and transition timing parameters) used in the
models in Fig. 5, 6. The internal RF state machine can be in the
listening, transmitting a packet, waiting for acknowledgement,
or transmitting an acknowledgement states. The transceiver
employed in our case study (in Sec. VII), performs up to three
retransmissions before signaling a transmission failure to the
application. On the application level, an unbounded number of
retransmissions are performed in case the transceiver returns
failure. The TPN model in Fig. 5(b-d) models this interaction.

In the remaining of this section, we show how the attacks
described in Section V can be modeled as TPNs. Specifically,
we describe additional places, transition, and arcs to be added
to the nominal channel model shown in Fig. 5(c) to capture
the attacks. To enhance model readability, Fig. 6 depicts only
additional places and transitions in red color required to model
a specific attack, while the nominal places and transitions are
depicted in black (all parts of the nominal model not relevant
for the specific attack are omitted therein).

a) DoS attack submodel: Fig. 6(a) shows the DoS attack
submodel. When the channel is idle, the attacker may decide to
occupy the channel to prevent legitimate transmissions. He/she
may do so at any time (non-deterministic choice) when the
channel is not busy, and keep the channel busy arbitrarily
long. In the model, the channel is kept busy for some non-
deterministic time in the range [tDoS

Ch , t
DoS
Ch], after which it is

released by the attacker.
b) ACK interception/spoofing submodel: Fig. 6(b) shows

the ACK intercept/spoof submodel. To model ACK intercep-
tion, an additional transition is needed allowing the channel
to return to idle state following ACK transmission, without
the transmitter (LCA) receiving the ACK sent by the receiver
(LCB); i.e., transition Tch_TxAckInt is added as shown
in Fig. 6(b), and is not associated with the update function
U:BXCVR_RxAck=1. However, when ACK spoofing is con-
sidered, the attacker may transmit an ACK when the targeted
receiver is not in the process of acknowledging, while the
targeted transmitter is in the process of waiting an ACK.

Additionally, malicious ACK spoofing may be performed
when the signal to which the ACK is intended to correspond is
transmitted already, but the ACK has not yet been received by
the sender (e.g., due to an intercepted ACK from the legitimate
receiver). This is enabled with the additional net branch in
Fig. 6(b) starting with transition Tch_wfAckImp. As a result
of firing of this transition, the channel is declared busy and the
spoofed ACK is assumed to take the same time as transmitting
legitimate ACKs; thus, the transition Tch_TxAckImp has
the same attributes as Tch_TxAck, with the exception of the
signal to the targeted transmitter signalling ACK transmission
is done (i.e., update U:AXCVR_RxAck=1 is omitted).

c) Message intercept/modify submodel: Fig. 6(c) shows
the message intercept/modify submodel, where an additional
transition Tch_TxMsgMod (Tch_TxMsgInt), represented
as one transition for conciseness, is added. In the case of the
modification attack, this transition in the model allows the
attacker to deliver a signal different form the one originally
transmitted (i.e., U:BXCVR_PRx=Pmod where Pmod is the
payload modified by the attacker). In the case of packet
interception, no update to the receiver’s XCVR receiver buffer
is made, and consequently the XCVR is not notified of a
received packet (i.e., update functions are omitted and denoted
as (.) in Fig. 6(c)).

d) Message impersonation submodel: Fig. 6(d) presents
the masquerade submodel. The additional transitions and
places allow the attacker to make a non-deterministic choice to
impersonate transmission of the expected transmitter whenever
the channel is not busy, the targeted receiver is waiting for the
corresponding signal, and the original transmitter is not in the
process of sending this signal. Then, similarly to the nominal
(legitimate) transmission model (shown in Fig. 5(c)), the
transmission takes a non-deterministic time in the same range
as legitimate transmissions. Note that the received payload on
LCB is in this case the value Pinj crafted by the attacker,
rather than AXCVR_PTx, normally transmitted by LCA in the
adversary-free case.

Remark 3 (Replay attacks): Due to the introduced non-
determinism, any specific sequence of attack actions are con-

10

Tch_wfImp

(a) TPN DoS submodel

Tch_wfDoS

Pch_DoS

Tch_RetIdleDoS

G:ChBusy==0
G:AXCVR_Tx==0
U:ChBusy=1

U:ChBusy=0

[𝑡𝐶ℎ
𝐷𝑜𝑆, 𝑡𝐶ℎ

𝐷𝑜𝑆]

G:AXCVR_Tx==0
G:AXCVR_Txd==0

Pch_MsgImp

G:M(Pb_wfRx)==1
U:ChBusy=1

Tch_MsgImpFin

Pch_Idle

Pch_TxMsg

Tch_wfTx
(c) TPN intercept/(modify) submodel

G:ChBusy==1
G:M(PaXCVR_Tx)==1
G:AXCVR_Txd==0

Tch_TxMsg

U:ChBusy=0
U:AXCVR_Txd=1
U:BXCVR_Rx=1
U:BXCVR_PRx=AXCVR_PTx

[𝑡𝑇𝑥
𝑀𝑠𝑔

, 𝑡𝑇𝑥
𝑀𝑠𝑔

]
Tch_TxMsgMod(Int)

U:ChBusy=0
U:AXCVR_Txd=1
(U:BXCVR_Rx=1)
(U:BXCVR_PRx=Pmod)

[𝑡𝑇𝑥
𝑀𝑠𝑔

, 𝑡𝑇𝑥
𝑀𝑠𝑔

]

Pch_Idle

(b) TPN ACK intercept/spoof submodel

Tch_wfAck

Pch_TxAck

[𝑡𝑇𝑥
𝐴𝑐𝑘, 𝑡𝑇𝑥

𝐴𝑐𝑘]

G:ChBusy==1
G:BXCVR_TxAck==1

Tch_TxAck

U:AXCVR_RxAck=1
U:BXCVR_TxAck=0
U:ChBusy=0

Pch_Idle

[𝑡𝑇𝑥
𝐴𝑐𝑘, 𝑡𝑇𝑥

𝐴𝑐𝑘]
Tch_TxAckInt

U:BXCVR_TxAck=0
U:ChBusy=0

Tch_wfAckImp
G:BXCVR_Rx==0
G:AXCVR_Txd==1
G:AXCVR_RxAck==0
U:ChBusy=1

U:BXCVR_RxAck=1
U:ChBusy=0

[𝑡𝑇𝑥
𝐴𝑐𝑘, 𝑡𝑇𝑥

𝐴𝑐𝑘]
Tch_TxAckImp

Pch_TxAckImp

(d) TPN Spoofing submodel

Pch_Idle
U:ChBusy=0
U:BXCVR_Rx=1
U:BXCVR_PRx=Pinj[𝑡𝑇𝑥

𝑀𝑠𝑔
, 𝑡𝑇𝑥
𝑀𝑠𝑔

]

Fig. 6. Additional places, transitions, and arcs required to obtain a security-aware channel model for different attack types: (a) DoS, (b) ACK intercept/spoof,
(c) message modification, and (d) masquerade. All attack-related components of the model are depicted in red color, while nominal components are shown
partially for completeness in black (where relevant).

tained within the presented model (as long as the individual
actions correspond to the attack model from Section V). Thus,
replay attacks are covered by the presented model as they
are only specific executions of the presented security-aware
channel model. On the other hand, using a similar approach,
finite memory replay attacks can be captured by a model
that restricts inserted attack signals only to the previously
transmitted messages, as done in [7]. �

Remark 4 (Controller-plant VS. controller-channel interface
modeling fidelity): Control interface to the channel is modeled
in far more detail than the interface to the plant, by abstracting
away locally-connected actuator drives, relays, analog ampli-
fiers, etc. The reason is that, in this work, we do not consider
physical plant-level attacks. Hence, modeling the controller-
plant interaction at a lower level of abstraction would unnec-
essarily increase model complexity. However, the presented
techniques can be easily extended and the framework fully
adapted to also cover physical attacks on the plant. �

VI. RESILIENCY ANALYSIS AND SECURITY PATCHING

A security-aware closed-loop system model obtained by
composing the developed security-aware TPN models can
be used to verify system-level safety and QoC properties
in the presence of attacks. TPN analysis tools (e.g., [16],
[47]) allow for verification of formal properties specified
as Linear Temporal Logic (LTL), Computational Tree Logic
(CTL), or Timed CTL (TCTL) formulas [48]. In this work,
we employ the tool Romeo [16] that enables verification of
TCTL-based formal queries, such as traditional safety (e.g.,
1-boundedness [33]) and liveness properties (e.g., absence of
deadlock). In addition, as plant models are included, we can
specify relevant domain-related plant-state-bound properties
that are crucial for functional safety and QoC assessment. For
our running example, the considered properties include:

Property 1: A workpiece on conveyor 1 never trig-
gers a pick-up from conveyor 2; this can be for-
mally captured as: AG(not(M(Pp&p_P&P2)==1 and

activeConveyor==1)).9, where A and G are quantifiers
signifying formula satisfaction along all paths and always (i.e.,
along all subsequent paths), respectively.

Property 2: A workpiece detected on any of the conveyors is
eventually picked-up: (M(Pcm_TxCtrl_Pick1)==1 or
M(Pcm_TxCtrl_Pick2)==1)-->(M(Pp&p_wfRet)==1),
where --> denotes the ”leads to” property; i.e., p-->q
means that for all executions, continuous satisfaction of
property p implies always eventual satisfaction of property
q, or formally AG(p => AF(q)).

Property 3: The pick & place station does not commence
cycle (i.e., it is neither in Pp&p_P&P1 nor Pp&p_P&P2),
while the conveyor monitor is waiting for incoming
workpieces (i.e., in the place Pcm_Init). Formally,
AG(M(Pcm_Init)+M(Pp&p_P&P1)+M(Pp&p_P&P2)<=1).

Using the Romeo tool, we verified that these as well as
other QoC- and safety-critical properties are not satisfied
in the presence of attacks, as the attacker is capable of
significantly altering the intended interaction between LCs,
at arbitrary moments in time. For example, Property 1 is
violated under message modification attacks, Property 2 under
possible infinite DoS, while Property 3 fails under spoofing.
The aforementioned properties are violated regardless of the
values of timing parameters used in the model. Note that
bounds on time-to-transmit and time-to-acknowledge can be
obtained from experimental measurements, or directly from
network specifications. Also, transceiver-related timings (e.g.,
back-off time during clear channel assessment) can be obtained
from the employed transceivers’ specifications.

Regarding verification scalability—in the system model, one
nominal pick & place cycle, with all attacks disabled, contains
around 35 transitions, which is on the order of the number
of states in the model. Model complexity increases with the
addition of non-deterministic attack choices, besides the time-
induced non-determinism (in the plant model).10 Yet, in all
cases, the tool takes less than 1 s to find an execution path

9Variable activeConveyor is set when a workpiece presence is detected
(i.e., on transitions Tcm_Pres1 or Tcm_Pres2 of the conveyor monitor,
shown as CIPN in Fig. 2) and reset when conveyor monitor returns to initial
state (i.e., over Tcm_RetInit)

10Romeo does not output statistics of the state space underlying the model.

11

(a) DoS Tx-timeout model

Ta_ackSucc
G:RxAck==1

Pa_wfAck

Ta_ackFail
[𝑡𝑤𝑓𝐴𝑐𝑘, 𝑡𝑤𝑓𝐴𝑐𝑘]

Pa_DoSdetect

G:TxRtryCnt==5
Ta_DoSdetectG:A_RxAck==0

U:TxRtryCnt++

Tb_wfRx

Pb_wfRx

G:B_RxBuf==SigVal
G:B_RxMAC==MAC
U:B_RxBuf=0

(b) Spoofing Rx-check model

Pb_IntrusionDetect

G:B_RxMAC!=MAC
Tb_ IntrusionDetect

Fig. 7. Model adaptation to addition of security services; (a) for DoS
detection, and (b) against spoofing. Additional places and transitions are
shown in blue color.

Fig. 8. Tx-to-Rx and Rx-to-Ack times measured on our IEEE 802.15.4-
enabled LC platform described in Section VI.

violating the properties, on a workstation with an Intel i7-
8086K CPU (4 GHz clock) and 64 GB memory.

A. Addressing the Discovered Vulnerabilities

As our previous analysis have shown, attack actions may
significantly affect performance of distributed IoT-based in-
dustrial automation systems; to address them, it is necessary
to add certain security mechanisms. In this section, we discuss
how such security mechanisms affect system models and
verifiability of the relevant properties.

1) Detecting Denial-of-Service Attacks: Packet and ac-
knowledgement (ACK) dropouts are common in wireless com-
munication, and hence ACK and retransmission mechanisms
are commonly used in such setups. For instance, in our
experimental setup described in Sectio VII, ACK request
can be disabled in transceiver settings, in which case no
retransmissions are attempted on the data link layer. For
two isolated transceivers, this amounts to the one-way packet
success rate of approximately 99 % (see histograms in Fig. 8
that exclude unsuccessful transmissions). Thus, when ACK
requests are enabled, up to three data-link layer retransmis-
sions are performed,11 and we experimentally observed that
no application-level retries are required beyond the three low-
level protocol-provided retransmissions, in the case when a
single industrial machine operates in isolation.

On the other hand, to increase network utilization, we
emulated a number of additional machines communicating
over the same wireless channel in physical vicinity (described
in more detail in Section VII); we experimentally observed
the one-way packet success rate of approximately 98 %. Thus,
two application-level retries were sufficient to enable reliable
exchange of events, ensuring correct operation. Intuitively,
protocol-provided retries are issued in short bursts while
application-level retransmissions incur significant delay; the

11The XCVR model in Fig. 5(d) is compatible with these specifications.

channel is more likely to be continuously busy for a short pe-
riod of time (e.g., occupied by other legitimate transmissions).
Yet, an adversary may repeatedly deny network access to
legitimate controllers preventing the system from progressing.
Consequently, the modeled system does not satisfy Property 2,
despite application-level retransmissions, unless DoS attacks
can be detected and system halted (or other precautionary
actions taken), using e.g., a separate secure channel.

From the operational perspective, every LC may implement
a limited number of successive application-level retransmis-
sions before declaring that it is under attack. For instance,
if in our setup from Section VII, we limited the number
of retransmissions to five, amounting to a theoretical one-
way packet success rate of eight nines (if application-level
retransmissions are assumed to be independent). To address
this from the modeling perspective, we add an additional place
where the transmitter’s model transitions to, when application-
level retries are exhausted (see Fig. 7(a)). Hence, we can verify
that if infinite blocking of medium access is allowed, LCs
may end up in the place Pa_DoSdetect. Conversely, if DoS
attacks are limited to four consecutive channel access denials,
Property 2 is satisfied. Note that immediate emergency halt of
the machinery may not be possible if a secure communication
channel is not available or the DoS attacks cannot be isolated
from the network (e.g., using bus guardians).

2) Authenticating network flows: Traditional cryptographic
techniques for ensuring integrity of network flows rely on sign-
ing packets with Message Authentication Codes (MAC) [9],
and can be used to defend against spoofing attacks. In this
setting, every transmission between LCs is signed by the
transmitter using a secret key, and the signature is verified
by the receiver; therefore, the attacker cannot tamper with the
message payload, or else he/she will be detected.

From the modeling perspective, introducing authentication
can be modeled as an additional condition on the receiving
transitions (in the controller models) where the received pay-
load is compared to desired values; i.e., the MAC portion
of the payload is compared to a secret value that cannot
be altered (in the case of modification) or generated (in the
case of spoofing attacks) by the attacker. Specifically, the
transition Tb_wfRx in the LCB model in Fig. 5(b) would
feature an additional guard function on the B_RxMAC variable.
Optionally, if the signature verification fails, a transition to a
place modeling intrusion detection reaction can be added as
shown in Fig. 7(b); this is left to the application designer as
reacting to detected intrusions is highly application-specific.

Using the developed framework, we verified that if non-
authenticated transmissions are not allowed (i.e., authentica-
tion implemented), Properties 1 and 3 can be verified over
our running example, under the condition that infinite denial of
network access to LCs is not allowed, as previously discussed.

3) Acknowledgement Spoofing: Authenticating transmis-
sion does not affect ACKs as the data-link layer is responsible
for ACK packets while MACs are added to the packet pay-
load. In addition, non-encrypted sequence numbers, which are
part of the packet frame, can be overheard by the attacker.
Thus, valid ACKs can be generated on behalf of inactive
(failed) LCs. Also, undelivered (i.e., intercepted) transmissions

12

3.5”

(2) LC

(1) 3-DOF manipulator

(c) Physical setup for configuration (b) and an LC

Cylinder A

Cylinder B

Gripper D

Pick and return
position

Controller A

Controller B Controller C

Cylinder C

Controller D

Immerse
position

(b) Pick-immerse-shake-return configuration

(a) Pick and place
configuration

Cylinder A
Cylinder B

Gripper C Pick and place positions

Controller A

Controller B

Controller C

Fig. 9. Pneumatic manipulator in multiple configurations: (a) 2-DOF pick
& place configuration; (b) 3-DOF pick-immerse-shake-return configuration;
(c,1) upper portion of the physical setup of the configuration (b) shows
cylinders; (c,2) low-cost ARM Cortex-M3-based networked controller; each
physical component (cylinders and the gripper) are equipped with one LC.

can be falsely acknowledged, even when authentication is
used. This is a well-known shortcoming of data link layer
ACKs [11], [49], and could be alleviated by application-level
ACKs. Enforcing consensus over event-propagation in discrete
event systems spans beyond the scope of this paper; yet,
the presented modeling techniques can be utilized to model
additional implemented protocols.

While this section introduced the general security-aware
modeling aspects, with occasional focus on specific medium
access techniques to avoid overly general discussions, in the
following section we demonstrate the use of the presented
framework on real-world industrial case studies.

VII. CASE STUDIES: INDUSTRIAL MANIPULATORS

We consider a full physical implementation of a recon-
figurable industrial pneumatic manipulator with a variable
number of modules/degrees of freedom (DOF) controlled in a
distributed fashion; i.e., one local controller per module/DOF.
We demonstrate effectiveness of our framework on multiple
module configurations (i.e., 2-DOF, 3-DOF).

A. 2-DOF Industrial Pneumatic Manipulator

The pneumatic industrial manipulator in the 2-DOF config-
uration is depicted in Fig. 9(a); two double-acting cylinders
(denoted A and B) provide translational degrees of freedom,
while the pneumatic gripper (denoted C) provides means of
handling the workpiece. All actuation commands are issued by
updating electrical signals xp, x ∈ {a,b,c} which activate
monostable dual control pneumatic valves.12 Notice that sig-
nals are denoted with x while cylinders are denoted with X .

12A control valve is the interface between the controller and the pneumatic
cylinder; it converts the actuation signal from the controller into mechanical
movement that controls flow of pressured air towards pneumatic cylinders.

PcCTRL_cGRIP_Release

(c) Controller C

PcCTRL_Init

TcCTRL_wfRxB_bEnd1
b1==1

TcCTRL_wfRxB_bEnd2

PcCTRL_cGRIP_Grip

b1==1

cp=1

cp=0

cp=0

TaCTRL_wfRxB_bHome2
b0==1

(a) Controller APaCTRL_Init

PaCTRL_aCYL_Extend

TaCTRL_aCYL_Extended

TaCTRL_wfRxB_bHome1
b0==1

PaCTRL_TxB_aEnd

PaCTRL_aCYL_Retract

TaCTRL_aCYL_Retracted
a0==1

ap=1

a1==1

Send(B,a1)

ap=0

PaCTRL_TxB_aHome
Send(B,a0)

(b) Controller B PbCTRL_Init

TbCTRL_Start

PbCTRL_bCYL_Extend1

TbCTRL_bCYL_Extended1
b1==1

PbCTRL_TxC_bEnd1_bCYL_Retract1

TbCTRL_bCYL_Retracted1

PbCTRL_TxA_bHome1

TbCTRL_wfAextended

PbCTRL_TxC_bEnd1_bCYL_Retract2

a1==1

b0==1

TbCTRL_bCYL_Retracted2
b0==1

st==1

bp=1

Send(C,b1),wait(500ms),bp=0

Send(A,b0)

PbCTRL_bCYL_Extend2
bp=1

b1==1
TbCTRL_bCYL_Extended2

Send(C,b1),wait(500ms),bp=0

PbCTRL_TxA_bHome2
Send(A,b0)

TbCTRL_wfAretracted
a0==1

PaCTRL_wfRxB_bHome1

TaCTRL_Start

TaCTRL_RetInit

PcCTRL_wfRxB_bEnd1

TcCTRL_Start

TcCTRL_RetInit

Fig. 10. CIPN-based distributed controller of a 2-DOF pneumatic manipulator.

Cylinders A an B are equipped with two proximity switches
which allow position (i.e., fully retracted, fully extended) sens-
ing. Signals corresponding to fully retracted (home) position
are denoted x0, while fully extended (end) position signals are
denoted x1. Additionally, the system contains a start switch
whose corresponding signal is denoted by st.

CIPN-based models of three LCs are shown in Fig. 10.
Initially, cylinders A and B are fully retracted, and gripper
C released—in this state the manipulator is ready to begin
its work cycle. The initial work cycle of the manipulator
is started by pressing the start switch (st==1), after which
operation is fully automated. First, cylinder B extends towards
the workpiece picking position (due to actuation command
bp=1). Once cylinder B reaches its end position (b1==1),
gripper C is commanded gripping (cp=1). Controller B waits
for 500 ms for the part to be gripped.13 Then, cylinder
B retracts (due to command bp=0), and once it reaches
home position (b0==1), cylinder A extends (due to command
ap=1). After reaching its end position (a1==1), cylinder
B extends towards the placing position (due to command
bp=1). Once it reaches its end position (b1==1), gripper C
is commanded release of the workpiece (command cp=0).
500 ms later, cylinder B retracts (bp=0 followed by b0==1),
after which cylinder A retracts (ap=0 followed by a0==1).
The manipulator returnees into its initial state, after which
the next cycle is automatically executed. Signals (i.e., sensors
outputs and actuator inputs) are allocated to LCs according

13The gripper C does not have end position sensing due to size constraints;
thus a timed delay is used to permit secure gripping/releasing of the workpiece.

13

(a) Nominal work cycle
HOME

END

HOME

END

HOME

END

CTRL C EXT/RET

CTRL D GRIP

Messages

CYL A

CYL B

CYL C

CTRL A EXT/RET

CTRL B EXT/RET

B→D B→A A→B B→C C→A A→B B→D

(b) Impersonation of Controller B
HOME

END

HOME

END

HOME

END

CTRL D GRIP

Messages

CYL A

CYL B

CYL C

CTRL A EXT/RET

CTRL B EXT/RET

CTRL C EXT/RET

B→D B→A A→B B→C C→A A→B B→D

workpiece
dropped

message injected

(c) Interception of B→C messages
HOME

END

HOME

END

HOME

END

CTRL D GRIP

Messages

CYL A

CYL B

CYL C

CTRL A EXT/RET

CTRL B EXT/RET

CTRL C EXT/RET

B→D B→A A→B B→C

work cycle is inhibited
due to network DoS

message intercepted

Fig. 11. Sensing/actuation signal timings for a nominal pick & place run (a),
a run where a signal injection is performed resulting in a dropped workpiece
(b), and a run where progress is inhibited due to a DoS attack (c). Messages
exchanged by LCs are marked with blue arrows. X axis is unlabeled as the
speed of the workcycle can be controlled by regulating air pressure in the
system and is thus not crucial.

to their physical proximity: {ap,a0,a1} are mapped to
controller A (i.e., LCA), {bp,b0,b1,st} to controller B
(LCB), and {cp} to controller C (LCC).

TPN models are obtained from these specifications as de-
scribed in Section IV, but are omitted here due to their size. On
the other hand, pneumatic cylinders are modeled as two-state
plants with bounded, non-deterministic extending/retracting
times obtained from experimental measurements. We ex-
tract timing parameters (i.e., bounds on time-to-transmit,
time-to-acknowledge, and back-off timing) from experimental
measurements—histograms for 10, 000 messages are shown in
Fig. 8, for the employed low-cost ARM Cortex-M3-based con-
trollers equipped with an IEEE 802.15.4-compliant transceiver.
On the other hand, we obtain transceiver-related timings (e.g.,
back-off time during clear channel assessment) from the radio
specifications [46]. While we verified a large number of safety
and liveness properties for this setup, we illustrate verification
and security patching on a more complex 3-DOF setup.

B. 3-DOF Industrial Pneumatic Manipulator
A 3-DOF configuration of the described manipulator is

shown in Fig. 9(b). The additional rotational DOF, provided
by cylinder C, introduces an additional LC and increases the
complexity of the LC coordination. This configuration may be
used to prepare workpieces for painting by immersing them
into a pool with cleaning solution, and returning them to the
pick-up position for further processing by another machine.

Fig. 9(c,1) shows the physical setup for this configuration;
the upper portion of the manipulator is shown such that
cylinders are visible. Fig. 9(c,2) shows the low-cost ARM
Cortex-M3-based LC with the corresponding IEEE 802.15.4
transceiver. While the models are more complex than in the
2-DOF case, they are semantically similar and thus omitted.
Fig. 11(a) shows event timing—i.e., states of all sensing and
actuation signals, for one sample pick-immerse-shake-return
run; messages exchanged by LCs are denoted with blue arrows
originating at the source event and terminating at the triggered
event. Among the many safety liveness and QoC properties,
we illustrate verification on the following examples.

Property 4: Gripper D is always gripped before
cylinder B picks the workpiece; formally captured as,
AG(M(PdGRIP_Gripped)==1 and
M(PbCTRL_bCYL_Retract1)==1).

Property 5: A workpiece is eventually pro-
cessed, once the work cycle is started. Formally,
M(PbCTRL_bCyl_Extend1)==1-->
(M(PcCTRL_cGRIP_Release)==1.

When no security mechanisms are employed, we verified
violation of these properties. Property 4 is violated due to
a possible impersonation attack at the gripper controller; an
attacker may send the command to release the workpiece
before it was returned to the return position. Fig. 11(b) shows
signal timings acquired on a sample cycle run in which the
workpiece is dropped due to a maliciously injected command
to release the gripper (potentially causing mechanical damage
to the workpiece and/or the manipulator).

However, if transmissions are authenticated, and the model
adjusted correspondingly as described in Section VI-A2, this
vulnerability is alleviated. We applied a software security
patch by including the mbed TLS (Secure Sockets Layer)
library that our IIoT controllers are fully compatible with.
Signing a 128 bit message authentication code over one
transmitted signal incurs computational overhead of ∼ 100 µs
on the employed low-cost ARM Cortex-M3-based LCs; this
practically negligibly slows down manipulator’s work cycle,
while providing security guarantees. Hence, Property 4 is
satisfied following this security patch.

Property 5 is violated due to the possibility of a DoS attack
that infinitely delays progress. From the model’s perspective,
this attack does not cause a deadlock—while the physical
process is stalled, the cyber process is in fact livelocked
reattempting to access the channel (i.e., same places are
revisited and same transitions fire infinitely often). Fig. 11(c)
shows signal timings acquired on a sample run where a
DoS attack is launched by enabling carrier transmission on
the attacker’s transceiver, in order to jam messages after
the workpiece was picked up from the immersion pool. As

14

described in Section VI-A1, wireless control nodes can keep
track of unsuccessful medium access attempts, and promptly
halt operation when a DoS attack is detected. In such cases,
distributing the information about DoS detection requires a
secure channel, which we do not consider in this work.

VIII. CONCLUSION

In this paper, we have developed a framework for security
analysis of distributed sequential control systems captured
as widely-adopted CIPN-based models. As CIPNs do not
support verification of formal safety properties in the pres-
ence of attacks, we transform controller models into TPNs
that inherently enable this verification by supporting non-
deterministic timed transition as well as non-deterministic
choice among transitions; this is crucial as it imposes minimal
assumptions on adversarial actions. We have shown how a
model of a network-based attacker can be integrated into the
non-deterministic communication channel model, and have
verified violation of safety properties in presence of attacks.

Additionally, we have shown how results of verification
can be used to pinpoint vulnerabilities in the control software
implementation, and suggest security patches to alleviate im-
pact of these vulnerabilities on control performance; we have
also provided the loop back to the modeling stage enabling
verification of the same safety properties that are now satisfied
due to the use of appropriate security mechanisms. Finally, we
have evaluated our framework on an industrial case study of
a realistic scale and complexity.

ACKNOWLEDGMENT

This work is sponsored in part by the ONR under agree-
ments N00014-17-1-2012 and N00014-17-1-2504, as well as
the NSF CNS-1652544 grant. It was also partially supported
by Serbian Ministry of Education, Science and Technological
Development, research grants TR35004 and TR35020.

REFERENCES

[1] Z. Jakovljevic, V. Majstorovic, S. Stojadinovic, S. Zivkovic, N. Gligori-
jevic, and M. Pajic, “Cyber-Physical Manufacturing Systems (CPMS),”
in Proc. of 5th Int. Conf. on Advanced Manufacturing Engineering and
Technologies. Springer International, 2017, pp. 199–214.

[2] H. Kagermann, J. Helbig, A. Hellinger, and W. Wahlster, Recom-
mendations for implementing the strategic initiative INDUSTRIE 4.0.
Forschungsunion, 2013.

[3] H. ElMaraghy, G. Schuh, W. ElMaraghy, F. Piller, P. Schnsleben,
M. Tseng, and A. Bernard, “Product variety management,” CIRP Annals
- Manufacturing Technology, vol. 62, no. 2, pp. 629 – 652, 2013.

[4] Y. Koren, X. Gu, and W. Guo, “Reconfigurable manufacturing systems:
Principles, design, and future trends,” Frontiers of Mechanical Engineer-
ing, vol. 13, no. 2, pp. 121–136, 2018.

[5] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial
internet of things (iiot): An analysis framework,” Computers in Industry,
vol. 101, pp. 1–12, 2018.

[6] Industrial Internet Consortium, “Industrial internet reference
architecture,” 2015. [Online]. Available: https://www.iiconsortium.
org/IIRA-1-7-ajs.pdf

[7] Y. Wang, A. K. Bozkurt, and M. Pajic, “Attack-resilient supervisory
control of discrete-event systems,” rXiv:1904.03264 [cs.FL], Apr. 2019.

[8] M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and I. Lee,
“Design and implementation of attack-resilient cyberphysical systems:
With a focus on attack-resilient state estimators,” IEEE Control Systems,
vol. 37, no. 2, pp. 66–81, April 2017.

[9] Y. Xiao, H.-H. Chen, B. Sun, R. Wang, and S. Sethi, “Mac security
and security overhead analysis in the ieee 802.15. 4 wireless sensor
networks,” EURASIP J. on Wireless Communications and Networking,
no. 2, pp. 81–81, 2006.

[10] H. Song, S. Zhu, and G. Cao, “Attack-resilient time synchronization for
wireless sensor networks,” Ad Hoc Networks, vol. 5, no. 1, pp. 112–125,
2007.

[11] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
Attacks and countermeasures,” in Proc. of the First IEEE Int. Workshop
on Sensor Network Protocols and Applications, 2003, pp. 113–127.

[12] M. Mohsin, Z. Anwar, G. Husari, E. Al-Shaer, and M. A. Rahman,
“IoTSAT: A formal framework for security analysis of the internet of
things (IoT),” 2016 IEEE Conference on Communications and Network
Security (CNS), pp. 180–188, Oct 2016.

[13] S. Zahra, M. Alam, Q. Javaid, A. Wahid, N. Javaid, S. U. R. Malik, and
M. Khurram Khan, “Fog computing over iot: A secure deployment and
formal verification,” IEEE Access, vol. 5, pp. 27 132–27 144, 2017.

[14] M. Houimli, L. Kahloul, and S. Benaoun, “Formal specification, verifica-
tion and evaluation of the mqtt protocol in the internet of things,” in 2017
International Conference on Mathematics and Information Technology
(ICMIT), 2017, pp. 214–221.

[15] Z. Jakovljevic, V. Lesi, S. Mitrovic, and M. Pajic, “Distributing sequen-
tial control for manufacturing automation systems,” IEEE Transactions
on Control Systems and Technology, 2019.

[16] G. Gardey, D. Lime, M. Magnin et al., “Romeo: A tool for analyz-
ing time petri nets,” in International Conference on Computer Aided
Verification. Springer, 2005, pp. 418–423.

[17] N. Rashid, J. Wan, G. Quiros, A. Canedo, and M. A. A. Faruque,
“Modeling and simulation of cyberattacks for resilient cyber-physical
systems,” in 2017 13th IEEE Conference on Automation Science and
Engineering (CASE), Aug 2017, pp. 988–993.

[18] N. Rashid, G. Quirs, and M. A. A. Faruque, “A survivability-aware
cyber-physical systems design methodology,” in 2019 IEEE 15th Inter-
national Conference on Automation Science and Engineering (CASE),
Aug 2019, pp. 848–853.

[19] Y. Zhang, Y. Shen, H. Wang, J. Yong, and X. Jiang, “On secure
wireless communications for iot under eavesdropper collusion,” IEEE
Transactions on Automation Science and Engineering, vol. 13, no. 3,
pp. 1281–1293, July 2016.

[20] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety
and security analysis,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018, pp. 147–158.

[21] Z. B. Celik, G. Tan, and P. D. McDaniel, “IoTGuard: Dynamic Enforce-
ment of Security and Safety Policy in Commodity IoT,” in Network and
Distributed System Security Symposium (NDSS), 2019.

[22] J. P. McDermott, “Attack net penetration testing,” in New Security
Paradigms Workshop (NSPW), 2000, pp. 15–21.

[23] Dalton, Mills, Colombi, and Raines, “Analyzing attack trees using
generalized stochastic petri nets,” in 2006 IEEE Information Assurance
Workshop, June 2006, pp. 116–123.

[24] T. M. Chen, J. C. Sanchez-Aarnoutse, and J. Buford, “Petri net modeling
of cyber-physical attacks on smart grid,” IEEE Transactions on Smart
Grid, vol. 2, no. 4, pp. 741–749, Dec 2011.

[25] J. Steffan and M. Schumacher, “Collaborative attack modeling,” in
Proceedings of the 2002 ACM Symposium on Applied Computing, ser.
SAC ’02. ACM, 2002, pp. 253–259.

[26] R. Mitchell and I. Chen, “Effect of intrusion detection and response on
reliability of cyber physical systems,” IEEE Transactions on Reliability,
vol. 62, no. 1, pp. 199–210, March 2013.

[27] A. Ashok, A. Hahn, and M. Govindarasu, “Cyber-physical security of
wide-area monitoring, protection and control in a smart grid environ-
ment,” Journal of Advanced Research, vol. 5, no. 4, pp. 481–489, 2014.

[28] V. Lesi, Z. Jakovljevic, and M. Pajic, “Reliable industrial iot-based
distributed automation,” in Proceedings of the International Conference
on Internet of Things Design and Implementation, ser. IoTDI ’19. ACM,
2019, pp. 94–105.

[29] M. P. Fanti, A. M. Mangini, and W. Ukovich, “Fault detection by labeled
petri nets in centralized and distributed approaches,” IEEE Transactions
on Automation Science and Engineering, vol. 10, no. 2, pp. 392–404,
April 2013.

[30] A. Zimmermann and G. Hommel, “Towards modeling and evaluation of
etcs real-time communication and operation,” Journal of Systems and
Software, vol. 77, no. 1, pp. 47 – 54, 2005.

[31] M. Diaz, “Modeling and analysis of communication and cooperation
protocols using petri net based models,” Computer Networks, vol. 6,
no. 6, pp. 419 – 441, 1982.

https://www.iiconsortium.org/IIRA-1-7-ajs.pdf
https://www.iiconsortium.org/IIRA-1-7-ajs.pdf

15

[32] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[33] R. David and H. Alla, Discrete, continuous, and hybrid petri nets (2nd
edition), 2010.

[34] ——, “Petri nets for modeling of dynamic systems: A survey,” Auto-
matica, vol. 30, no. 2, pp. 175–202, 1994.

[35] M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory Control of
Discrete-event Systems under Attacks,” arXiv:1701.00881, Jan. 2017.

[36] M. Sogbohossou and A. Vianou, “Formal modeling of grafcets with time
petri nets,” IEEE Transactions on Control Systems Technology, vol. 23,
no. 5, pp. 1978–1985, Sep. 2015.

[37] N. Wightkin, U. Buy, and H. Darabi, “Formal modeling of sequential
function charts with time petri nets,” IEEE Transactions on Control
Systems Technology, vol. 19, no. 2, pp. 455–464, 2011.

[38] F. Cassez and O. H. Roux, “Structural translation from time petri nets
to timed automata,” Journal of Systems and Software, vol. 79, no. 10,
pp. 1456–1468, 2006.

[39] S. Donatelli, “Superposed stochastic automata: a class of stochastic petri
nets with parallel solution and distributed state space,” Performance
Evaluation, vol. 18, no. 1, pp. 21 – 36, 1993.

[40] J. Wang, Y. Deng, and G. Xu, “Reachability analysis of real-time
systems using time petri nets,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 30, no. 5, pp. 725–736, 2000.

[41] M. dos Santos Soares, S. Julia, and J. Vrancken, “Real-time scheduling
of batch systems using petri nets and linear logic,” Journal of Systems
and Software, vol. 81, no. 11, pp. 1983 – 1996, 2008.

[42] D. Lime and O. H. Roux, “A translation based method for the timed
analysis of scheduling extended time petri nets,” in 25th IEEE Interna-
tional Real-Time Systems Symposium, Dec 2004, pp. 187–196.

[43] O. H. Roux and A.-M. Déplanche, “A t-time petri net extension for
real time-task scheduling modeling,” European Journal of Automation,
vol. 36, no. 7, pp. 973–987, 2002.

[44] S. Hong and S. Lim, “Analysis of attack models via unified modeling
language in wireless sensor networks: A survey study,” in 2010 IEEE
International Conference on Wireless Communications, Networking and
Information Security, 2010, pp. 692–696.

[45] A. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy
challenges in industrial internet of things,” in 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2015, pp. 1–6.

[46] Microchip Technology Inc., “MRF24J40MA 2.4 GHz IEEE Std.
802.15.4TMRF Transceiver Module,” 2008.

[47] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool tina–construction
of abstract state spaces for petri nets and time petri nets,” International
journal of production research, vol. 42, no. 14, pp. 2741–2756, 2004.

[48] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[49] N. Sastry and D. Wagner, “Security considerations for IEEE 802.15.
4 networks,” in Proceedings of the 3rd ACM workshop on Wireless
security, 2004, pp. 32–42.

	I Introduction
	II Related Work
	III Motivating Example and Problem Description
	III-A Overview of our Approach

	IV TPN-Based Automation Modeling
	IV-A Modeling Plants and Controller-Plant Interaction
	IV-A1 Controller Runtime Environment Modeling

	IV-B CIPN and TPN Controller Equivalence

	V Security-Aware Modeling of the Channel and Controller-Channel Interaction
	V-A Attack Model
	V-B TPN-Based Modeling of Attack Impact
	V-C Security-Aware Modeling of the Channel and Controller-Channel Interaction

	VI Resiliency Analysis and Security Patching
	VI-A Addressing the Discovered Vulnerabilities
	VI-A1 Detecting Denial-of-Service Attacks
	VI-A2 Authenticating network flows
	VI-A3 Acknowledgement Spoofing

	VII Case Studies: Industrial Manipulators
	VII-A 2-DOF Industrial Pneumatic Manipulator
	VII-B 3-DOF Industrial Pneumatic Manipulator

	VIII Conclusion
	References

