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Ivan D. Arandelović1 and Dragoljub J. Kečkić2
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In the paper by Khojasteh et al. (2010), the authors tried to generalize Branciari’s theorem,
introducing the new integral type contraction mappings. In this note we give a counterexample
on their main statement (Theorem 2.9). Also we give a comment explaining what the mistake
in the proof is, and suggesting what conditions might be appropriate in generalizing fixed point
results to cone spaces, where the cone is taken from the infinite dimensional space.

1. Introduction

In the paper [1], Branciari proved the following fixed point theorem with integral-type
contraction condition.

Theorem 1.1. Let (X, d) be a complete metric space, α ∈ (0, 1), and f : X → X is a mapping such
that for all x, y ∈ X,

∫d(f(x),f(y))

0
φ(t)dt ≤ α

∫d(x,y)

0
φ(t)dt, (1.1)

where φ : [0,+∞) → [0,+∞) is nonnegative measurable mapping, having finite integral on each
compact subset of [0,+∞) such that for each ε > 0,

∫ε
0 φ(t)dt > 0. Then f has a unique fixed point

a ∈ X, such that for each x ∈ X, limn→∞fnx = a.

There are many generalizations of fixed point results to the so-called cone metric
spaces, introduced by several Russian authors in mid-20th. These spaces are re-introduced
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by Huang and Zhang [2]. In the same paper, the notion of convergent and Cauchy sequences
are given.

Definition 1.2. Let E be a Banach space. By Θ we denote the zero element of E. A subset P of
E is called a cone if

(1) P is closed, nonempty, and P /= {Θ};

(2) a, b ∈ R, a, b > 0, and x, y ∈ P imply ax + by ∈ P ;

(3) P ∩ (−P) = {Θ}.

Given a cone P ⊆ E, we define partial ordering ≤ on E with respect to P by x ≤ y if
and only if y −x ∈ P . We will write x < y to indicate that x ≤ y and x /=y, whereas x � y will
stand for y − x ∈ intP (interior of P).

We say that P is a solid cone if and only if intP /= ∅.
Let P be a solid cone in E and let ≤ be the corresponding partial ordering on E with

respect to P . We say that P is a normal cone if and only if there exists a real number K > 0
such that Θ ≤ x ≤ y implies

‖x‖ ≤ K
∥∥y∥∥ (1.2)

for each x, y ∈ P . The least positive K satisfying (1.2) is called the normal constant of P .

Definition 1.3. Let X be a nonempty set. Suppose that a mapping d : X ×X → E satisfies:

(1) Θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = Θ if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then, d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.4. Let (X, d) be a solid cone metric space, let x ∈ X, and let (xn) be a sequence in
X. Then

(1) (xn) converges to x if for every c ∈ intP there exists a positive integer N such that
for all n ≥ Nd(xn, x) � c. We denote this by limxn = x or xn → x;

(2) (xn) is a cone Cauchy sequences if for every c ∈ intP there exists a positive integer
N such that for all m,n ≥ Nd(xm, xn) � c;

(3) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

In the paper [3] Khojasteh et al. tried to generalize Branciari fixed point result to the
cone metric spaces. They introduce the concept of integration along the interval [a, b] = {ta+
(1 − t)b | 0 ≤ t ≤ 1} ⊆ P as a limit of Cauchy sums.
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Definition 1.5 (see [3]). Let P be a normal solid cone, and let φ : P → P . We say that φ is
integrable on [a, b] if and only if the following sums:

L =
n−1∑
i=0

φ(xi)‖xi − xi+1‖,

U =
n−1∑
i=0

φ(xi+1)‖xi − xi+1‖
(1.3)

converge to the same element of P , where [xk, xk+1) form a partition of [a, b). Clearly, [a, b)
stands for [a, b] \ {b}. This element is denoted by

∫b

a

φdp. (1.4)

We say that φ is subadditive if and only if for any a, b ∈ P there holds

∫a+b

Θ
φdp ≤

∫a

Θ
φdp +

∫b

Θ
φdp. (1.5)

Using this concept, they stated the following statement (Theorem 2.9 in [3]).

Theorem 1.6 (see [3]). Let (X, d) be a complete cone metric space and let P be a normal cone.
Suppose that φ : P → P is a nonvanishing map which is subadditive cone integrable on each [a, b] ⊆
P and such that for each ε � 0,

∫ε
0 φdp � 0. If f : X → X is a map such that for all x, y ∈ X,

∫d(f(x),f(y))

Θ
φdp ≤ α

∫d(x,y)

Θ
φdp, (1.6)

for some α ∈ (0, 1), then f has a unique fixed point in X.

However, the last statement is not true. This will be proved in the next section.

2. Constructing the Counterexample

Consider the Banach space

E = CR[0, 1] = {x : [0, 1] −→ R | x is continuous}, (2.1)

with the norm ‖x‖ = sup0≤t≤1|x(t)|, and the cone

P = {x ∈ E | ∀t ∈ [0, 1] x(t) ≥ 0}. (2.2)

It is obvious that P is a normal solid cone with normal constant equals to 1.
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Consider the set

X = {x ∈ E | x(0) = 1, x(1) = 0}, (2.3)

and the mapping d : X ×X → P given by

d
(
x, y

)|t = d
(
x, y

)
(t) =

∣∣x(t) − y(t)
∣∣, ∀t ∈ [0, 1] or more simply d

(
x, y

)
=
∣∣x − y

∣∣. (2.4)

Proposition 2.1. (a) intP = {x ∈ P | ∃δ > 0 for all t ∈ [0, 1] x(t) ≥ δ}.
(b) (X, d) is a cone metric space.
(c) A sequence xn ∈ X is convergent (in (X, d)) to x if and only if ‖xn − x‖ → 0. Also xn is

Cauchy sequence (in (X, d)) if and only if xn is a Cauchy sequence with respect to norm in X ⊆ E.
(d) (X, d) is a complete cone metric space.

Proof. (a) and (b) obvious.
(c) Let xn → x (in (X, d)), and let ε > 0. Then, the function ε(t) ≡ ε ∈ intP , and we

have that for all n ≥ n0 and for all t ∈ [0, 1] there holds

|xn(t) − x(t)| = d(xn, x) ≤ ε(t) ≡ ε. (2.5)

Let ‖xn − x‖ → 0, and let c(t) ∈ intP . Then there exists δ > 0 such that for all t ∈ [0, 1],
c(t) ≥ δ. Also for all n ≥ n0 there holds

d(xn, x) = |xn(t) − x(t)| ≤ δ

2
. (2.6)

Hence, c(t) − d(xn(t), x(t)) ≥ δ/2 implying d(xn, x) � c.
The similar argument proves the second part of the statement concerning Cauchy

sequences.
(d) The set X can be represented as X = Λ−1

0 ({1}) ∩ Λ−1
1 ({0}), where Λt : E → R is

the bounded linear functional given by Λt(x) = x(t). Therefore, X is a closed subset of E and
hence complete in the norm. By part (c) of this proposition, it implies that X is a complete
cone metric space.

Let e : [0, 1] → R denote the function identically equal to 1. Consider the mapping
φ : P → P given by

φ(x) =
1

‖x‖
∫1

0
x(t)dt · e, (2.7)

for x /=Θ and φ(Θ) = Θ.
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Proposition 2.2. (a)φ is integrable on every segment [a, b] ⊆ P and
∫x
Θ φdp =

∫1
0 x(t)dt · e.

(b)φ is a nonvanishing subadditive function such that for all ε � 0 there holds
∫ε
0 φdp � 0.

Proof. (a) The integrability of φ on [a, b]/�Θ follows immediately from its continuity. Further,
let xk be a partition of [Θ, x]. Then xj = tjx for some partition tj of [0, 1], and we have

limL = lim
n−1∑
j=0

φ
(
tjx

)‖x‖(tj+1 − tj
)

= lim
n−1∑
j=0

(∫1

0
x(t)dt · e

)(
tj+1 − tj

)
=
∫1

0
x(t)dt · e,

(2.8)

and similarly limU =
∫1
0 x(t)dt · e.

(b) Follows from the part (a).

Proposition 2.3. Let the space (X, d) be defined by (2.1) and (2.3). Let F : E → E be given by
(Fx)(t) = x(2t) for 0 ≤ t ≤ 1/2, and (Fx)(t) = x(1), otherwise, and let f = F|X .

The space (X, d) together with the mappings f and φ satisfies all assumptions of Theorem 1.6.
On the other hand, f has no fixed point.

Proof. We only have to check the inequality (1.6). Note that for all z ∈ X and all t ≥ 1/2
we have (F(z))(t) = 0. Also, note that F is a linear mapping, and F(|x|) = |F(x)|. Therefore
d(F(x), F(y)) = |F(x) − F(y)| = |F(x − y)| = F(|x − y|) = F(d(x, y)). Thus (1.6) becomes

∫F(d(x,y))

Θ
φdp ≤ α

∫d(x,y)

Θ
φdp. (2.9)

Taking into account Proposition 2.2, part (a), we have for all z ∈ P

∫F(z)

Θ
φdp =

∫1

0
(F(z))(t)dt · e =

∫1/2

0
z(2t)dt · e

=
1
2

∫1

0
z(s)ds · e =

1
2

∫z

Θ
φdp.

(2.10)

Putting z = d(x, y), we obtain

∫F(d(x,y))

Θ
φdp =

1
2

∫d(x,y)

Θ
φdp, (2.11)

which completes the proof of the first statement.
On the other hand, f has no fixed point. Namely, if we suppose that x is a fixed point

for f , it means that x(t) ≡ 0 for all t > 1/2, and moreover x(t) ≡ 0 for all t > 1/4, and also for
all t > 1/2n, by induction. By continuity of x, it follows that x(0) = 0 implying x /∈X!
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3. A Comment

The mistake in the proof of Theorem 1.6 given in [3] is in the following. The authors from∫d(xn+1,xn)
0 φdp → 0 conclude that d(xn+1, xn) → 0 also, which is unjustifiable. The original
Branciari’s proof [1] deals with one-dimensional integral, and such conclusion is valid due to
the implication

ε > 0 =⇒
∫ ε

0
φ(t)dt > 0 (3.1)

and the existence of the total ordering on R. However, in infinite dimensional case, such
conclusion invokes continuity of the function inverse to x �→ ∫x

0 φdp. Even for the linear
mappings this is not always true, but only under additional assumption that initial mapping
is bijective. This asserts the well known Banach open mapping theorem. In the absence of
some generalization of the openmapping theorem to nonlinear case, it is necessary to include
continuity of the inverse function in the assumptions, as it was done in [4].
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