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Original scientific paper
The subject of this paper is the thermal-behavior of an elastic metallic plate 
influenced by several harmonic electromagnetic plane waves at the upper 
and lower surfaces. The direction of wave propagation is normal to the 
surfaces of the plate. As a result of a time-varying electromagnetic field 
conducting currents appear in the plate. Distributions of eddy-currents 
and hysterisis power losses across the plate thickness are obtained using 
complex analysis. It is of the exponential type and depends on the plate 
thickness, wave frequency, electric conductivity, magnetic permeability 
and magnetic intensity. By treating this power as a volume heat source, 
differential equations governing distribution of the temperature field are 
formulated. The temperature field across the plate thickness is assumed to 
be in nonlinear form and a system of three coupled differential equations 
governing the temperature field is formed. Equations are solved in analytical 
form using the integral-transformation technique (Double Fourier finite-
sine transformation and Laplace transformation). The influence of the 
skin depth, plate thickness, wave frequency and characteristic times of 
an impulse on the dynamic temperature field are considered. Nonlinear 
distribution of the temperature across the plate thickness is obtained. Strain 
and stress fields are obtained using the finite element method (FEM). 
Depending on the plate thickness thin shell finite elements (for a thin plate) 
or volume finite elements (for a thick plate) were applied.

Dinamičko nelinearno polje temperature u feromagnetskoj 
ploči induciranoj visokofrekventnim valovima

Izvornoznanstveni članak
Tema ovog rada je toplinsko ponašanje tanke feromagnetske elastične 
ploče inducirane većim brojem ravninskih harmonijskih elektromagnetskih 
valova na gornjoj i na donjoj površini. Pravac prostiranja valova je 
okomit na srednju ravninu ploče. Kao rezultat vremenski promjenljivog 
elektromagnetskog polja u ploči se pojavljuju inducirane struje. Raspodjela 
toplinskih gubitaka po debljini ploče uslijed induciranih struja i histereze 
određena je primjenom složenog proračuna. Ona je eksponencijalnog 
tipa i ovisi o debljini ploče, frekvenciji valova, električnoj vodljivosti 
materijala, magnetskoj permeabilnosti i magnetskoj indukciji. Tretiranjem 
snage toplinskih gubitaka kao volumnog izvora topline, formirane su 
diferencijalne jednadžbe koje opisuju raspodjelu polja temperature u ploči. 
Temperaturno polje po debljini ploče definirano je u nelinearnom obliku i 
dobivene su tri spregnute diferencijalne jednadžbe. Jednadžbe su riješene 
u analitičkom obliku primjenom tehnike integralnih transformacija 
(Dvostruka Fourierova konačna-sinus transformacija i Laplaceova 
transformacija). Razmatran je i vremenski utjecaj dubine prodiranja valova, 
debljine ploče, frekvencije valova i perioda impulsa na polje temperature. 
Određena je nelinearna raspodjela polja temperature po debljini ploče. 
Polja naprezanja i deformacija dobivene su primjenom metode konačnih 
elemenata. U ovisnosti o debljini ploče primjenjivani su konačni elementi 
tanke ljuske i volumni konačni elementi.
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Symbols/Oznake

B	 - magnetic induction, T  

	 - magnetska indukcija

D	 - electric induction, C/m2 
	 - električna indukcija

H	 - intensity of the magnetic field, A/m 
	 - intenzitet magnetnog polja

K	 - intensity of the electric field, V/m 
	 - intenzitet električnog polja

J	 - current density, A/m2 
	 - gustoća struje

P	 - density of the power of heat losses, W/m3 
	 - gustoća snage toplinskih gubitaka

W	 - heat source intensity, W/m3 
	 - intenzitet izvora topline

T0	 - temperature of the plate in its natural state, K  
	 - temperatura ploče u prirodnom stanju

θ	 - temperature field, θ = T-T0, K 
	 - temperaturno polje

μ	 - magnetic permeability, H/m 
	 - magnetska permeabilnost

σ	 - electric conductivity, S/m 
	 - električna provodljivost

ε0	 - dielectric constant of vacuum, F/m 
	 - dielektrična konstanta vakuuma

κ	 - coefficient of thermal intensity, m2/s 
	 - koeficijent termičke difuzije

λ0	 - heat conduction coefficient, W/(m∙K) 
	 - koeficijent toplinske vodljivosti

δ	 - skin depth, m 
	 - dubina prodiranja vala

a, b	 - plate dimensions, m  
	 - dimenzije ploče u srednjoj ravnini

h	 - plate thickness, m 
	 - debljina ploče

f	 - wave frequency, Hz 
	 - frekvencija vala

ω	 - wave angular frequency, rad/s 
	 - kutna frekvencija vala

kH	 - hysterisis factor 
	 - faktor histereze

t	 - time, s 
	 - vrijeme

toi	 - the moment of wave occurrence, s 
	 - vrijeme pojave vala

tIi	 - the moment of wave disappearance, s 
	 - vrijeme nestanka vala

∂t	 - time derivative 
	 - vremenska derivacija

H (t)	 - Heaviside function 
	 - Heavisideova funkcija

	 - two-dimension Laplace operator 
	 - dvodimenzijski Laplaceov operator

1.	 Introduction

The theory of electro-magneto-thermoelasticity 
investigates interactions between strain and the 
electromagnetic field in a solid elastic body. It has received 
considerable attention because of possible applications in 
the detection of flaws in ferrous metals, optical acoustics, 
levitation by superconductors, magnetic fusion. As a 
special scientific field, electro-magneto-thermoelasticity 
started developing at the end of the fifties and first 
applications were in geophysics and some branches of 
acoustics. 

Propagation of an elastic field in the presence of a 
magnetic field was considered by L. Knopoff (1955), 
J.W. Dunkin and A.C. Eringen (1963). F.W. Brown 
(1966) developed a rigorous phenomenological 
theory for ferromagnetic materials on the basis of the 

large deformation theory and the classical theory of 
ferromagnetism. H.F. Tiersten (1964) developed an 
analogous theory based on a microscopic model. Since 
the general nonlinear theory is complicated, Y.W. Pao and 
C.S. Yeh [1] derived a set of linear equations and boundary 
conditions for soft ferromagnetic elastic materials. They 
applied the linear theory to investigate magnetoelastic 
buckling of an isotropic plate. The same problem was 
treated in another way by F.C. Moon and Y.H. Pao [2]. 
This theory was applied by Y. Shindo [3] to define the 
intensification factors of cracks in ferromagnetic elastic 
solids. S.K. Roychoudhuri, L. Debnath, M. Banerjee 
[4, 5] considered the influence of magnetic fields in a 
rotating media. 

The basic general information about the theory of 
magneto-thermoelasticity was presented in the monograph 
by H. Parkus [6]. A great contribution to research in 
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this scientific field was given by W. Nowacki, S.A. 
Ambarcumian (1977), M. Krakowski [7]. In 1975 a set 
of experiments was done at the Michigan Technological 
University (N.S. Christopherson, M.O. Peach, J.M. 
Dalrymple, L.G. Viegelahn [8]), to reconsider theoretical 
results. Because of a disagreement in analytical and 
experimental results methods of numerical analyses 
were involved (K. Miya, T. Takagi, Y. Ando (1980), X. 
Tian and Y. Shen (2006)). A mathematical model for 
the temperature field developed during high frequency 
induction heating was established by Shen, Yao, Shi and 
Hu [9]. Sharma and Pal investigated propagation of the 
magnetic-thermoelastic plane wave in a homogeneous 
isotropic conducting plate under a uniform static magnetic 
field (2004). The two-dimensional problem of electro-
magneto-thermoelasticity for a perfectly conducting 
thick plate subjected to a time dependent heat source 
was studied by Allam, Elsibai and Abouelregal (2009). A 
model calculation of high temperature superconducting 
microstrip transmission lines was performed by V. A. 
Krakovskii [10].

2.	 Basic equations

The electro-magneto-thermoelastic problem 
considered in this paper shows one type of interaction 
between electromagnetic, temperature and strain fields 
in a solid plate. It is assumed that the plate material is 
elastic, isotropic, soft ferromagnetic, and has good 
electric conductivity. Many nickel-iron alloys used for 
building the magnetic circuits of motors, generators, 
inductors, transformers are of this type.

As a result of a time changing electromagnetic field 
conducting currents appear in electric conductors. This 
problem is mathematically described by a system of 
Maxwell’s equations with relations for slowly moving 
media and modified Ohm’s law [6]

	 (1)

where the following notation is applied: H – intensity 
of the magnetic field, K – intensity of the electric field, 
B – magnetic flux density (magnetic induction), D – 
electric induction, J – current density, u – deflection, µ 
– magnetic permeability, σ - electric conductivity, ε0 – 
dielectric constant of vacuum, t –time.

The power of the conducting currents is represented 
by one type of volume heat source in the plate. So, the 

system of equations describing the temperature field in 
a plate is [11]

	

(2)

where κ is the coefficient of thermal intensity, η is the 
coupling between the temperature and the deformation 
fields, λ0 is the heat conduction coefficient, ∇2 is the 
Laplace operator and ∂t is the time derivative. The 
temperature field is presented as θ [°C, K] = T-T0 where 
T0 is the temperature of the plate in its natural state. 

The quantity of heat generated in a unite volume and 
unit time (heat source intensity) W (x1, x2, x3, t) consists of 
three parts: intensity of external heat source WE, hysterisis 
losses WH and Joule’s heat (eddy-current losses).

We can make the assumption that the temperature 
changes are nonlinear across the thickness of the plate. 
Using the Cartesian coordinate system presented on 
Figure 1, the temperature field θ (x1, x2, x3, t) can be 
described using three values, τ0, τ1 and τ2 as

	
(3)

If we multiply equation (2) with x3
k (k=0,1,2) and make 

an integration from the plate thickness, we obtain three 
partial differential equations describing the temperature 
field in a plate [12]

	  

(4)

where h is the plate thickness and  is the two-dimension 

Laplace operator: .  
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Of course, the presented system of equations has to 
be completed with an appropriate set of boundary and 
initial conditions. 

In taking into account plate vibrations, we shall involve 
finite element analysis together with the analytically 
obtained solutions.

3.	 Conducting currents. Joule’s heat. 
Hysterisis losses
An electromagnetic wave with complex time-varying 

fields can be represented as a sum of simple plane waves. 
So, first we have to determine the analytical expression 
for the power of one harmonic plane wave with K0 and 
H0 components on the upper surface of the plate. It is 
assumed that all field components vary in time t as 
exp(jωt), where ω is the appropriate angular frequency.

Figure 1. Coordinate system (middle surface of the plate)
Slika 1. Koordinatni sustav (srednja ravnina ploče)

In the case of high plate conductivity, the dielectric 
current can be neglected in comparison with the 
conducting current. So, for a homogeneous, isotropic 
and linear magnetic medium the system of Maxwell’s 
equations (1) can be presented in the form [13]

	

(5)

Using the symbolic-complex method ( ) we 
obtain the following equations

	
(6)

If the direction of wave propagation is x3-axe 
(negative) and if the field components are independent 
of x1 and x2, from the equations of divergence we can 
conclude that the components H3 and K3 are zero. In the 
case of a plane wave, only normal components of the 
electric and magnetic field depend on each other [11]. 
So, we will conduct the analysis only for one wave with 
components K1 and H2. Let them have the following 
values in plane  x3=h/2

	(7)
Maxwell’s equations (6) have the following form

	
or

	
(8)

where	

γ2= jσμω, γ=α+jβ, 

The basic solution of equation (8) can be represented 
as

	
(9)

Using the boundary condition for x3 =h/2 we have

	
(10)

The obtained result for the field components has the 
form

	 (11)

or

The electromagnetic wave (11) is followed with the 
conducting currents, density

	 (12)

The distribution of Joule’s heat Pv(x3) can be obtained 
in the following way

	

(13)

Distribution of the power of eddy-currents across the 
plate thickness is  

	
(14)

,
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In the case of a nonlinear magnetic material the factor 
which involves heat losses of the hysterisis loop needs 
to be added to the presented calculation. For most soft 
ferromagnetic materials the basic curve of magnetization 
is nearly linear. This fact proves that the middle value 
for permeability can be used in the calculation. Hysterisis 
losses are proportional to the square of field amplitude 
and frequency  

which proves that their distribution is the same as the 
distribution of eddy-current losses. Coefficient kH is the 
hysterisis factor (material characteristic obtained in a 
laboratory).

The density of the power of heat losses is 
approximately

	
(15)

The previous expression shows that the heat source 
intensity increases in an exponential way through the plate 
thickness. The gradient of the exponential curve increases 
with the increase of wave frequency, permeability and 
electric conductivity of the material. 

The phenomenon of the conducting current 
concentration on the surface, valid for conductors with 
very high electric conductivity and magnetic permeability 
is known as the skin effect.

Let us analyze the case when we have j different 
waves on the upper and l waves on the lower side of 
the plate. Using (15) the power of one wave (i) can be 
expressed as a function of time as follows

	

(16)

where for the upper waves we have sign (+) and for the 
lover waves sign (-).		

So, the power of the eddy-current and the hysterisis 
losses can be presented as a function of x3 and t

 	

(17)

where toi is the moment of wave occurrence. Wave 
occurrence is defined using the Heaviside function. In 
the case when waves occur at toi and disappear at t1i the 
Heaviside function is replaced with a pulse function  

	

(18)

4.	 Temperature field in the plate

Let the rectangular plate dimensions a×b×h (Figure 
2) be isolated on the upper and the lower surface and the 
temperature along the lateral sides is equal to the initial 
temperature T0 (θ=T-T0=0). The initial and the boundary 
conditions have the form

	  

(19)

Figure 2. Rectangular plate a×b×h
Slika 2. Pravokutna ploča a×b×h

Subjected to the presented boundary conditions and 
relations (17), equation (4) can be represented in the 
following form 

	

(20)

where according to (4) we have
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Equations (20) can be solved by using the integral- transformation technique. 
Using notation

and applying the double Fourier finite-sine transformation (signed as nm) and the Laplace transformation (signed as 
*, t→p) we arrive to the transformation functions of the temperature field as 

(21)

(22)

(23)

where

The inverse Laplace transformation and the inverse double Fourier finite-sine transformation give the final solution 
for the temperature field in the form 
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5.	 Numerical example 

Field amplitudes and current amplitudes decrease 
according to an exponential law eαx3along the trajectory 
of wave propagation. The penetration constant is in 
accordance with the decay of one Neper (0.368) and its 
value is 

	
(25)

The skin depth δ decreases with the increase of 
frequency, conductivity and permeability. 

Figure 3. Skin depth as a function of wave frequency
Slika 3. Dubina prodiranja u funkciji frekvencije valova

Figure 3 shows variation of the skin depth as a function 
of wave frequency and relative magnetic permeability 
for a soft magnetic material. Electric conductivity of the 
material was 7.7 × 106  S/m. 

For each ferromagnetic material mechanical, thermal 
and magnetic properties were obtained in a laboratory. 

As shown in [14], the magnetic and electrical properties 
of steel depends on a great number of factors such as the 
silicon and phosphorus content, ferrite grain diameter, 
sheet rolling method etc. The dependence of hysteresis 
losses on the ferrite grain diameter is shown in Figure 4 
[14].

Figure 4. Hysterisis losses as a function of a ferrite-grain 
diameter
Slika 4. Gubici histereze u funkciji srednjeg promjera feritnog 
zrna

The temperature field shown in equations (3) and 
(24) corresponding to boundary conditions (19) is in the 
general case nonlinear along the plate thickness. 

But in the case of very thin plates the temperature 
along the plate thickness is almost constant and can be 
approximated by the temperature in its middle plane  

θ (x1, x2, t) ≈ τ0(x1, x2, t).
The first numerical example is given for a thin 

steel rectangular plate with dimensions: a=500mm, 
b=300mm and h=5mm. The plate was subjected to one 

(24)
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electromagnetic wave at the upper side with a magnetic 
intensity of H0=5kA/m. The material properties regarding 
steel were: λo=50 W/mK, κ=1,4 10-3 m2/s, µrel=500. 

The diagram on Figure 5 represents the temperature 
in the middle point of the plate as a function of time and 
wave frequency. Under the influence of waves the plate 
heats up slowly and after about 40 minutes achieves the 
maximal temperature and moves to a stationary state. 

Figure 6 shows the dynamic variation of the 
temperature in the middle point of the plate as a function 
of the plate thickness.

Figure 5. Temperature in the middle point as a function of 
time and wave frequency
Slika 5. Temperatura srednje točke ploče u funkciji vremena i 
frekvencije valova 

Figure 6. Temperature in the middle point as a function of 
time and plate thickness
Slika 6. Temperatura srednje točke ploče u funkciji vremena i 
debljine ploče

As a high frequency electromagnetic wave has a low 
skin depth, eddy-currents and hysterisis power losses act 
as a thermal load on the surface of the plate so increased 
plate thickness significantly lowers its temperature. 

Figure 7 shows the temperature in the middle point 
subjected to an impulse electromagnetic wave. The wave 
is 5 kA/m strong and has a frequency of 500 Hz, while the 
impulse lasts 50 s, and the time between two neighboring 
impulses (relaxation time) is 100 s. 

Mechanical behaviour of the plate was obtained 
according to Finite element analysis. Based on the 

analytical solution (24), a program for obtaining 
temperature in the nodes was made to be adjustable to the 
FEM Program package KOMIPS [15]. The temperature 
field obtained using analytical solution for t =100 s is 
presented on Figure 8a.

Figure 8b represents stress fields in the plate for two 
types of boundary conditions: supports on two subtended 
edges and supports on the entire edge. The equivalent 
stress was obtained using the Huber-Hencky-Mises 
hypothesis.  

Figure 7. Temperature in the middle point subjected to an 
impulse electromagnetic wave
Slika 7. Temperatura srednje točke ploče pod djelovanjem 
impulsnog elektromagnetskog vala 

Figure 8a. Temperature in the middle surface after 100 s
Slika 8a. Temperatura srednje ravnine poslije 100 s

Figure 8b. Stress fields in the middle surface after 100 s for 
two types of boundary conditions
Slika 8b. Polje naprezanja u srednjoj ravnini ploče poslije 100 s 
za dvije vrste rubnih uvjeta 

Appropriate results for the stationary state (after about 
half an hour) are presented on Figure 9.
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Figure 9a. Temperature in the middle surface after 2000 s
Slika 9a. Temperatura  srednje ravnine poslije 2000 s

Figure 9b. Stress fields in the middle surface after 2000 s for 
two types of boundary conditions
Slika 9b. Polje naprezanja u srednjoj ravnini ploče poslije 
2000 s za dvije vrste graničnih uvjeta 

Figure 10. Temperature distribution across the plate thickness 
after 500 s
Slika 10. Raspodjela temperature po debljini ploče poslije 500 s

In the case of thick plates the temperature must be 
approximated using all three components - τo, τ1 and τ2

The following example presents the behaviour of a 
thick steel rectangular plate with dimensions a=300 mm, 
b=150 mm and h=30 mm. The material properties are 
the same as in the previous example. 

As the plate has symmetry properties, the temperature 
distribution across the plate thickness was calculated for 
one quarter of the plate and for five positions on the axis 
x3 (according to Figure 10): Pos.1 x3 = -15 mm, Pos. 2 x3 
= -7.5 mm, Pos. 3 x3  = 0 mm, Pos. 4 x3  = +7.5 mm and 
Pos. 5 x3  = +15 mm. 

Appropriate results for four different values of the 
coordinates x1 and x2 are presented in Figure 10. 

According to the previous conclusion, a 3D volume 
finite element model was formed and the thick plate was 
loaded with the analytically calculated temperature field 
presented in Figure 11a.

Deformation and stress were calculated using FEM 
analysis for the case of supports on two longer subtended 
edges (Figure 11b and 11c).

Figure 11a. Temperature in the plate after 500 s
Slika 11a. Temperatura ploče poslije 500 s

Figure 11b. Deformation of the plate after 500 s
Slika 11b. Deformacija ploče poslije 500 s
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Figure 11c. Equivalent stress after 500 s
Slika 11c. Ekvivalentno naprezanje poslije 500 s

6.	 Conclusions
The problem of a metallic plate subjected transversally 

to the line of propagation of simple harmonic 
electromagnetic waves can be described through three 
systems of differential equations: Maxwell’s equations, 
equations governing the temperature field and equations 
describing deformation and stress fields. In the case of 
high frequency waves the temperature increase has the 
greatest influence on the stress field. That is the result of 
a time changing field (appearance of eddy-current losses 
and hysterisis losses). The intensity of the losses is of 
an exponential type across the thickness of the plate, so 
distribution of the temperature across the plate thickness 
has to be obtained in a nonlinear form. The temperature 
field increases with the increase of wave frequency, 
hysterisis factor and decrease of the plate thickness. 

A very suitable method for solving the presented 
problem in an analytical form, as shown in this paper, 
is the integral transform technique. For dynamic 
and geometrically complicated problems with non 
homogeneous boundary conditions it is very difficult 
to find vibrations and stress in an analytical form. So, 
involving the finite element method in calculation 
is preferable. Depending on the skin depth and plate 
thickness a suitable approximation level of the analytical 
solution is adopted. In accordance with this the problem 
is modeled using surface or volume finite elements.. 
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