
  
© Faculty of Mechanical Engineering, Belgrade. All  rights reserved FME Transactions (2005) 33, 53-64              53 
 

Mihailo Lazarević 
Assistant Professor 

University of Belgrade 
Faculty of Mechanical Engineering 

 

 

Optimal  Control of Redundant Robots 
in Human-Like  Fashion  
 
This paper suggests a new optimal control of a redundant robotic system. 
It is achieved using suitable kinematic and dynamic criteria based on 
biological principles, i.e. in human-like fashion. Here, a dynamical model 
of robotic system is given in the form of Langrange`s equations of second 
kind in covariant form. Several criteria are introduced which are the  
function of generalized coordinates, velocities, accelerations and control 
vectors, respectively. Finally, the effectiveness of suggested optimal 
control in human-like fashion is demonstrated with a robot with four 
degrees of  freedom as the illustrative example. 
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1. INTRODUCTION 
 

Industrial robots perform various tasks improving 
the quality and efficiency of manufacturing. Some 
complex industrial – and especially nonindustrial tasks 
– recently induced a new approach to robot design and 
control in order to achieve very stable, fast, and accurate 
systems. For example, these are industrial assembly, 
high-speed manipulation, robotized surgery, etc. They 
also replace human workers in tasks that may jeopardize 
human safety and health. Such demanding tasks could 
efficiently be solved if a robot was configured as 
redundant. A robotic manipulator is called kinetically 
redundant if it has more degrees of freedom (DOF) than 
required for a realization of a prescribed task in a task 
space. The operation usually involves a prescribed 
motion task and it is clear that the level of redundancy 
depends on the task. So, with one task the system can be 
redundant, while with some other it is not. The 
kinematic redundancy in a manipulator structure yields 
increased dexterity and versatility and also allows 
avoiding collisions with obstacles by the choice of 
appropriate configurations. Also, the acceleration of 
massive segments in redundant mechanism leads to 
drive overload and required redundancy, [1],[2]. The 
main difficulty of redundant robots is that the task 
cannot define the joint motions uniquely. In other 
words, the main question is how to choose a suitable 
mechanism configuration from the infinite number of 
possible configurations called “self-motions”, which 
match each position of the manipulation object, for a 
prescribed point of the end-effector in a task space. 
There are two major approaches to solve this problem. 
One is to impose certain mathematical constraints on 
changes in kinematic parameters. For example, Bailleul 
[3] complemented the given set of equations by 

choosing additional set of constraints, and this method 
is referred to as the “extended Jacobian method”. The 
other approach is based on the possibility of optimizing 
manipulator motion, provided that the motion of the 
end-effector is prescribed. The standard methods to deal 
with this problem are divided into two groups, i.e. 
global and local methods, according to the criterion of 
what is needed to know in advance about the 
operational space trajectory in order to find an 
appropriate solution [4]. So, the optimization problem 
for redundant robots is stated as following: given a 
prescribed motion of the end-effector of the 
manipulation robot, find the motion of the robot so as to 
minimize either a scalar function of the state variables at 
each time instant (the local optimization),[5] or a 
functional that depends on the motion as a whole (the 
global optimization) [6]. Different kinematic or 
dynamic optimization criteria could be introduced to 
achieve the unique solution of the inverse kinematics, 
such as: the kinetic energy, the sum of squared 
generalized velocities, total driving power, potential 
energy, etc.. For the local schemes many researchers 
have traditionally used the generalized or pseudoinverse 
of the manipulator Jacobian matrix as a central tool in 
redundancy resolution.  

Most of these works are based on the local (i.e. at 
any given moment) optimization of certain objective 
functions. Whitney [7] has minimized the kinetic energy 
of the manipulator. Liegeois [5] used the appropriate 
vector from the null space to improve the pseudoinverse 
control i.e. presented a gradient projection method by 
using the homogeneous solution, a vector in the null 
space of the Jacobian. Hanafusa et al. [8] used the 
pseudoinverse of the Jacobian matrix to obtain optimal 
joint velocities while avoiding obstacles. Konstantinov 
et al. [9] used the concept of the generalized inverse to 
deal with inequality constraints on the joint values. 
Klein [10] investigated redundancy  as an effective tool 
to avoid obstacles while optimizing the joint rates and  
Kazerounian [11] used the local level of joint rates as a 
weight factor to minimize the power consumption. 
Utilization of redundancy for singularity avoidance has 
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also been attacked by several authors ([12],[13], 
[14]).Also, optimization of driving forces was also 
considered by Kazerounian and Nedungadi, [15]. A 
major disadvantage of the local method is its 
unpredictable behavior resulting from poor choices of 
cost which can lead to instability but, need only 
information about the instantaneous position of end-
effector.  

Also, a few papers have been presented on global 
optimization concepts. Uchiyama et al. [16] optimized 
an integrant-type performance criterion on the 
determinant of the Jacobian  to increase the dexterity of 
the arm while executing the trajectory. Nakamura and 
Hafanusa [17] have developed solutions for global 
optimization of general objective function based on 
Pontryagin’s maximum principle and Suh and 
Hollerbach [18] offered a solution for global torque 
optimization by using the calculus of variations. 
Disadvantages of  global schemes are complex and 
currently applied to off-line programming,[11],[19]. 
Moreover, new classification of redundancy is 
suggested by Lazarević [20]. For the purpose of  
systematization and a clear insight in features and 
capabilities of redundant systems, a general overview of 
previous results is proposed, which are related to these 
systems.So, redundancy which is used in robotic 
systems can be considered from different points of 
view. For instance, redundancy can be treated from the 
kinematical point of view in following cases: higher 
degree of mobility-measure of manipulability, the 
avoidance of mechanical limits in robot joints and joint 
velocities, the avoidance of obstacles, the avoidance of 
kinematical singularities, etc.If it is taken in 
consideration of dynamics of redundant system, one can 
treat  the redundancy from the dynamical point of view 
which  can allow: minimizing  consumption of kinetic 
energy, minimizing of driving joint torques, increasing 
of dynamical capabilities, minimizing  time of 
prescribed motion etc. Besides these two approaches 
there are cases where it is not possible to clearly observe 
redundancy i.e. where a quality control of redundancy is 
important. In such cases redundancy can be studied 
from the control point of view. For example, there are 
cases where accuracy or precisely prescribed motions 
are important, tasks with degree of priority, applying 
distributed positioning [DP], appearance of algorithmic 
singularities etc. 

The other idea for obtaining unique solution of the 
inverse kinematics is to imitate human behavior.This is 
especially convenient  for tasks that are similar to those 
performed by humans (e.g., assembly in industry,  
health services and different jobs at home). From a 
mechanical point of view, any human or animal 
represents a redundant mechanism, [21]. The main role 
of redundancy is to provide the flexibility of 
maneuvering space.For instance, this property allows 
the arm to avoid obstacles while performing a 
manipulation task. In some tasks, the redundancy does 
not need, but it exists and should be compensated. In 
biological systems it is noticed that this problem is 
usually solved by using the concept of synergy, [22]. 
Such behaviors of organisms can be only explained by 
the existence of inherent optimization laws in self-

organized systems governing the acquisition of motor 
skills. In this paper, resolving redundancy and obtaining 
optimal control using kinematic and dynamic 
optimization criteria based on biological analog will be 
presented. In that way, proposed local kinematic and 
dynamic criteria will be suitable for on-line use in 
robotics. 

 
2. FUNDAMENTALS OF KINEMATICS AND 

DYNAMICS OF REDUNDANT ROBOTS 
 
 Here, a redundant robot arm is considered as an 
open linkage consisting of 1n +  rigid bodies 
interconnected by n  one-degree-of–freedom (DOF) 
joints (Fig.1). The joints are modeled as a kinematic 
pairs of V`s class and so the arm has n  degrees of 
freedom.  

  

Figure 1. Redundant robot as open linkage with n  one-
degree-of - freedom joints  

 Let, the position of the redundant robot be defined 
by the vector joint of (internal) generalized coordinates 

q  of dimension  n ,  { } ( )1 2, ,...,
Tnq q q q= . The vector 

of global (external) coordinates of dimension defines 
the position of the terminal device of redundant robot 

, 6m n m< ≤ , { } ( )1 2, ,...,
Tmq q q q= . The kinematic 

model of the presented redundant robot is given by the 
following expression: 

1 2( ) ( , ,..., ), 1, 2,...,i i nq t f q q q i m= =   (1) 

Moreover, equation (1) is well known as the direct 
kinematic problem (calculation of ( )iq t  for given ( )q t ) 
and has a unique solution. However, the inverse 
kinematics (calculation of ( )q t  for given ( )iq t ) has an 
infinite number of solutions since equation (1) 
represents a set of  m  equations with n  variables due to 
the redundancy.The dimension of redundancy is 

rn n m= − . Dynamical model of robotic system can be 
described in covariant form: 

,
1 1 1

( ) ( )

1,2,...,

n n n
a ua q q q q q Q Q

n

α α β
αγ αβ γ γ γ

α α β

γ
= = =

+ Γ = +

=

∑ ∑∑ ,   (2) 

where kinetic energy of robotic system is given by: 
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( ) { }
1 1

1 1 ,
2 2

, 1, 2,..., ,

.

n n

k

n n

E a q q q a q

n

a R

α β
αβ αβ

α β

αβ

α β
= =

×

= =   

=

 ∈ 

∑∑
 (3) 

Coefficients a aαβ βα=  of square form are covariant 

coordinates of basic metric tensor n na Rαβ
× ∈  : 

( ){ } ( ) { }( ) ( ) ( ) ( )
1 1

n n

i i i i Ci i
i i

a m T T Jαβ α β α β
= =

= + Ω Ω  ∑ ∑ (4) 

Also, , , , , , 1, 2,...,nαβ γ βα γ α β γΓ = Γ = present 
Christoffel symbols of first kind as:    

,
1
2

aa a

q q q
αγβγ αβ

αβ γ α β γ

∂∂ ∂ 
Γ = + −  ∂ ∂ ∂ 

,   (5) 

or  [23] 
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⋅
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1
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, 

(6) 
At last, uQγ   control part of generalized forces Q  and 

aQγ  non-control part of  Q  are given such as, [24]: 

( )( ) ( ) ( ) ( )
1

n
a

R i i CiR i iQ F T Mγ γ γ
γ =

= ⋅ + ⋅Ω∑ ,  (7) 

( ) , 1, 2,...,uQ M P e nγ γ γ γ γ γξ ξ γ= + ⋅ = .  (8) 

 In prismatic joints forces are acting, while in 
revolute joints torques are acting. For complete 
dynamics of redundant robot, taking into account 
dynamic actuators is also necessary.For example, here 
DC motors will be adopted as driving units. The 
dynamics of the motors, the motor that drives the joint 
( )α  satisfies the electrical and mechanical equilibrium 
equations, [25]: 

( ) ,Eu R i L di dt Kα α α α α α αϕ= + +   (9) 

,MK i I B Mα α α α α α αϕ ϕ= + +    (10) 

where uα  is the input control voltage, iα  is the current 
in the motor winding, , ,R Lα α  are resistance and 
inductivity, respectively, αϕ  is the angle of the motor 
shaft, ,   E MK Kα α  are the back e.m.f and torque 
constants, Iα  is the motor moment of inertia, Bα  is the 
viscous friction coefficient, and Mα  is the motor output 
torque. Between the motor shaft and the joint shaft, 
there usually exists some transmission, which can be 
modeled as a linear relation between the motor variables 
and joint variables: 

, / ,N q M Q Nα α α α α αϕ = =    (11) 

 In addition, robot is completely controllable if 
(necessary and sufficient conditions) the following 
inequalities are satisfied, [26]: 

sup , 1,2,...,a
ig Q h nγ γ γ= < = .   (12) 

 

3.  RESOLVING REDUNDANCY USING LOCAL 
OPTIMIZATION OF A KINEMATIC CRITERION  

 
3.1  Resolving redundancy using local optimization 

of a  geometrical-based kinematic criterion  
 
 Generally, there are two approaches to solve inverse 
kinematical problem. One is to impose l n m= −  
additional set of constraints, i.e:  

1 2( , ,..., ) 0, 1,2,...,v nf q q q v l n m= = = − . (13) 

Now, one can have a system of algebraic equations 

1 2( ) ( , ,..., ), 1,2,...,nq t f q q q mλ λ λ= = ,  (14) 

1 20 ( , ,..., ), 1, 2,...,nf q q q m m nλ λ= = + + , (15) 

which is closed and it is possible to solve a given 
system of equations.One of the possible ways of solving 
previous problem is linearization around working point 
i.e 

{ } { } { }
1,2,..,
1,2,...,

( ) ( ) ( ) ( )
v

OS
v m

n

fq t q t J q q t
qα

α
=
=

 ∂= =     
∂  

 (16) 

Differentiation equation (13) in respect to time yields 

{ } { } { }
1,2,...,
1,2,...,

0
v

DOP
v l

n

f q J q
qα

α
=
=

 ∂= =     
∂  

  (17) 

Combining equations (16) and (17) one can form 
extended system as follows:  

{ } { } [ ]{ }( )( )
( ) ( ) ( ) ( )

0 ( )
OS

EXT
DOP

J qq t
q t q t J q q t

J q
•   

= = =   
   

 

(18) 

If [ ]det ( ) 0EXTJ q ≠  then exists [ ] 1
EXTJ −  and one 

determine  

{ } [ ] { }1( ) ( ) ( )EXTq t J q q t−=    (19) 

Moreover, also in time instant t t+ ∆ , it follows: 

{ } { } { }( ) ( ) ( )q t t q t q t t+ ∆ = + ∆    (20) 

 The other approach is based on possibility of using a 
biological concept-sinergy. This notation introduces 
some relationships between the motions of different 
DOFs [1], [27], [28], [29]. From the standpoint of 
mechanism operation, synergy means that a group of 
DOFs operates together behaving as one-DOF 
subsystem. A representative example is the human 
finger that has four DOFs where each joint can move 
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separately. But, in practical operation the tip joints (3 
and 4) work together forming one-DOF subsystem (Fig. 
2). 

  
Figure 2. Human fingers motions using synergy   

 
 In fact, such behavior implies that is obeys the 
optimization at the coordination level where the goal is 
to minimize efforts in terms of synergy patterns. 
Speaking mathematically, the synergy imposes specific 
constraints on the control variables of joints, [30],[31]. 
As a result, one can suppose that an additional set of 
constraints can be realized using optimization procedure 
with applying suitable quadratic criterion as: 

( )21 2

1
( , ,..., ) min

l
n

q
I f q q q Iν

ν =
= →∑ .   (21) 

It is assumed that functions vf  define in area Ω  where 
first partial derivatives are continuous in respect to 

( )1 2 3, , ,..., nq q q q . Also, an assumption that only one 

solution exists is introduced. Applying the theory of 
optimization one can obtain necessary conditions of 
optimality in this case 

1 2

1
2 ( , ,..., ) 0

1,2,...,

l v
v n

v

I ff q q q
q q

n

α α

α
=

∂ ∂= =
∂ ∂
=

∑ .   (22) 

Taking into account  previous assumption as 

0, 1,2,..., 1, 2,...,
vf v l n

qα
α∂ ≠ ∀ = =

∂
 . (23) 

From equation (11), it yields: 

1 2( , ,..., ) 0, 1, 2,...,v nf q q q v l n m= = = −      (24) 

Sufficient conditions of optimality to achieve a 
minimum  are  

                                 ( ) 02

2
≥

∂

∂
αq

I                                (25) 

and in  proposed case it yields 

                    
( )

22

2
1

0
l v

v

I f
qq
αα =

 ∂ ∂= ≥  ∂ ∂
∑                  (26) 

For practical use, one can introduce a q∆  based local 
kinematic criterion in form weighted minimum norm 
least-squares: 

1 1

1 min,
2 j

n n

q
I w q qα β

αβ
α β ∆= =

= ∆ ∆ →∑∑    (27) 

and constraints, which is linearized of equation (13) as: 

           
1

, 1, 2,...,
n i

i fq q i m
q

α
α

α=

∂∆ = ∆ =
∂∑             (28) 

Optimal solution can be obtained using optimimization 
method with unknown Langrange multipliers. The 
augmented objective function aI  is defined as: 

  
1 1

1
2

n n

aI w q qα β
αβ

α β= =

= ∆ ∆ +∑∑  

,
1 1

min
j

m n i
i

i q
i

fq q
q

α
α λ

α
λ

∆
= =

 ∂+ ∆ − ∆ →  ∂ 
∑ ∑     (29) 

Necessary conditions for optimality are: 

0, 1,2,...,

0 , 1, 2,..,

a
j

a

i

I
j n

q
I

i m

∂
∂
∂
∂λ

= =
∆

= =
                      (30) 

or, 

           1 1

1

, 1,2,...,

, 1, 2,...,

n m i

i
i

n i
i

fw q n
q

fq q i m
q

α
αγ γ

α

α
α

α

λ γ
= =

=

∂∆ = =
∂

∂∆ = ∆ =
∂

∑ ∑

∑
       (31) 

After solving first of these equations in respect to qα∆  
one can obtain:  

          
1 1

, 1,2,...,
n m i

i
i

fq w n
q

α
αγ γ

α
λ γ•

= =

∂∆ = =
∂∑ ∑        (32) 

where is 
1

, , 1,2,...,w w nαγ αγ α γ
− •   = =    and  

 
1 1 1

, 1, 2,...,
m n n i i

i
i

i

f fq w n
q q

αγ α β
α β

λ γ•

= = =

∂ ∂∆ = =
∂ ∂∑ ∑ ∑   (33) 

Previous equations (31) can be presented in condensed 
form: 

           { } [ ] [ ] { }
{ } [ ]{ }qJq

JWq T

∆=∆
λ=∆ −1

,                   (34) 

after solving  in respect to  q∆,λ  it yields:  

{ } [ ][ ] [ ]( ) { }
11 T

opt J W J qλ
−−= ∆  
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{ } [ ] [ ] [ ][ ] [ ]( ) { }
11 1T T

optq W J J W J q
−− −∆ = ∆ =  

{ }PI
WJ q = ∆             (35) 

where PI
WJ 

   denotes a generalized pseudoinverse 

Jacobean matrix  [ ]J   and it is presented as follows: 

        [ ] [ ] [ ][ ] [ ]( ) 11 1T TPI
WJ W J J W J

−− −  =  .           (36) 

Vectors of joint velocities and joint accelerations can be 
calculated applying, for instance, method of finite 
differences as: 

( ) ( ) ( )
( ) opt opt opt

opt
q t q t t q t

q t
t t

− −∆ ∆
= =

∆ ∆
, 

( ) ( )
( ) opt opt

opt
q t q t t

q t
t

− − ∆
=

∆
.    (37) 

At last, optimal control part u
optQ  of generalized forces 

Q  directly follows from dynamical model of robotic 
system in covariant form (2) where are previously 
calculated 

,( ), ( ), 1,2,...,opt opta q q nαγ αβ γ γΓ = , 

1, 2,..., , 1, 2,..., ,n nα β= =     (38) 

 
3.2 Resolving redundancy by using local 

optimization of a velocity-based kinematic 
criterion  

 
 Also, the most commonly used optimization 
criterion is given in the form of scalar quadratic 
function: 

   
1 1

1 min,
2 j

n n

q
I w q qα β

αβ
α β= =

= →∑∑               (39) 

or in a condensed form 

        ( )[ ]{ }1 min
2 q

I q W q= →                     (40) 

where [ ]W  is a symmetric positive-definite weighting 
matrix. Justification of introducing this criterion can be 
observed by the fact that if one replaces matrix [ ]W  

with basic metric tensor n na Rαβ
× ∈  , a criterion that 

presents a kinetic energy of redundant robot such as: 

       
( ) { }

1 1

1 1 ,
2 2

, 1, 2,...,

n n

kE a q q q a q

n

α β
αβ αβ

α β

α β
= =

 = =  

=

∑∑  (41) 

 is obtained, where matrix aαβ    is also positive-

definite. As a result, solution with minimal consumption 

of kinetic energy is obtained. Also, in the paper [32] it is 
shown that a joint angle synergy in control of arm 
movements exits. 

    

Figure 3. Human arm motions using synergy between 
shoulder and elbow  

 A simplified strategy for control of an 
anthropomorphic manipulator with two DOFs was 
analyzed. It is found that a synergy exists between joint 
angles in analyzed movements, given as a linear scaling 
parameter between the elbow and the shoulder angular 
velocities (see Fig.3). As a consequence, a biological 
velocity-based quadratic kinematic criterion is proposed 
here. Moreover, criterion is given by the following 
expression, [33]: 

          ( )[ ]{ }
2

1

1 ,
2 j

n

q
I w q q S q extα

α
α=

   = + →      
∑     (42) 

where are wα , 1, 2,...,nα =  presents weighted 

coefficients and matrix [ ] ,const
diag ,

q
S aαβ α β=

 = =   

1,2,..., n=  appropriate dimensions. Introducing into 
account constraints (1) which can be written in the 
Jacobian form of first order:  

                  { } [ ]{ }
1

n i
i fq q q J q

q
α

α
α=

∂= ⇒ =
∂∑            (43) 

optimal trajectories can be obtained using the same 
procedure as in part 3.1. The augmented criterion is 
now:  

           
2

1 1 1

1 1
2 2

n n n

aI w q s q qα α β
α αβ

α α β= = =

 
= + +  

 
∑ ∑∑  

,
1 1

min
m n i

i
i q

i

fq q
q

α
α λ

α
λ

= =

 ∂+ − →  ∂ 
∑ ∑     (44) 

Also, one can use a similar form of necessary 
conditions: 

             
0, 1, 2,...,

0, 1, 2,..,

a
j

a

i

I
j n

q
I

i m

∂
∂
∂
∂λ

= =

= =
             (45) 

or   

        
1 1

0,

1, 2,...,

n m i
j

jj j ij
i

fa q w w q
q

j n

α
α

α
λ

= =

  ∂ + + =
  ∂ 

=

∑ ∑      (46) 
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1

, 1,2,...
n i

i fq q i m
q

α
α

α=

∂= =
∂∑             (47) 

Taking into account , , 1,2,...j jw w w j nα α α•= = ,  one 
can introduce in condensed form equation (46) as: 

      [ ]( ){ } [ ]{ } [ ] { }TW S q W q J λ•  + = =         (48) 

and 

        { } [ ]{ }q J q=                  (49) 

Solving previous set of equations (48),(49) in respect to 
λ , q  one can get: 

{ } [ ][ ] [ ]( ) { }
11 T

opt J W J qλ
−−=  

{ } [ ] [ ] [ ][ ] [ ]( ) { }
11 1T T

optq W J J W J q
−− −= =  

{ },PI
WJ q =   

         (50) 

where PI
WJ 

   is weighted generalized pseudoinverse of 

the Jacobian matrix. Vector of joint motion ( )optq t can 
be solved by numerical integration and vector of joint 
acceleration is determined after differentiating vector 

( )optq t   with respect to time i.e 

          { } { }( )
( ) opt PI PI

opt W W
dq t

q t J q J q
dt

   = = +       (51) 

or, taking into account (see Appendix A), one can write 

        PI PI PI
opt W opt W Wq J q Jq J I JJ q  = − + −          (52) 

So, using the dynamic model of the redundant  robot 
one can obtain vector of generalized forces (control)  

uoptQ  such as:  

,
1 1 1

( ) ( ) ,
n n n

a u
opt opt opt opt opt opta q q q q q Q Qα α β

αγ αβ γ γ
α α β= = =

+ Γ = +∑ ∑∑
1, 2,...,nγ =                                            (53) 

 
3.3  Resolving redundancy by using local 

optimization of a  acceleration-based kinematic 
criterion  

 
 Now, resolving redundancy using local optimization 
of the kinematic criterion in respect to internal 
acceleration is proposed here. Also, [34],[35]  
justifiableness  introducing of  criterion in following 
way is shown: 

                    1 ext (min)
2

T
l

q
I q Wq= →                   (54) 

Suitable choice can be realized for matrix W . The 
weighting matrix W can be chosen to be the identity 
matrix nIW =  or basic metric tensor n na Rαβ

× ∈   

from dynamical model of redundant robot. Authors in 
paper [4] show that local minimum of criterion in 
respect to internal acceleration is equal to weak global 
optimum of integral criterion in respect to internal 
velocity. Let an acceleration-based  kinematic criterion 
be introduced, i.e. it is proposed in the form of weighted 
minimum norm least-squares   

( )[ ]{ }
2

1

1 ,
2 j

n

q
I w q q S q extα

α
α=

   = + →      
∑  (55) 

where wα , 1, 2,...,nα =  presents weighted coefficients 

and matrix [ ] ,diag , 1,2,...,S a nαβ α β = =  . Taking into 

account constraints (1) which can be written in the 
Jacobian form of second order:  

       

{ } [ ]{ } { }

2

1 1 1

( , )

n n ni i
i f fq q q q

q q q

q J q A q q

α β α
α α β

α α β= = =

∂ ∂= + ⇒
∂ ∂ ∂

= +

∑ ∑∑
  (56) 

In the same manner, optimal trajectories can be obtained 
using optimization method with unknown Langrange 
multipliers.The augmented objective function aI  is 
defined as: 

2

1 1 1

2

,
1 1 1 1

1 1
2 2

min

n n n

a

m n n ni i
i

i q
i

I w q s q q

f fq q q q
q q q

α α β
α αβ

α α β

α β α
α α β λ

α α β
λ

= = =

= = = =

 
= + +  

 

 ∂ ∂ + − − →
 ∂ ∂ ∂ 

∑ ∑∑

∑ ∑ ∑∑
      (57) 

Necessary conditions for optimality are: 

0, 1,2,...,

0 , 1,2,...,

a
j

a
i

I
j n

q
I

i m

∂
∂
∂
∂λ

= =

= =
.               (58)  

In the same manner as in part 3.2 one can obtain  

   
1 1

0,

1, 2,...,

n m i
j

jj j ij
i

fa q w w q
q

j n

α
α

α
λ

= =

  ∂ + + =
  ∂ 

=

∑ ∑      (59) 

   

2

1 1 1

1, 2,...,

n n ni i
i f fq q q q

q q q

i m

α β α
α α β

α α β= = =

∂ ∂= +
∂ ∂ ∂

=

∑ ∑∑       (60) 

Alternatively, in matrix form such as: 

                 [ ]{ } [ ] { }TW q J λ=                     (61) 

and  

           { } [ ]{ } { }( , )q J q A q q= +                 (62) 
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where is also, (see eq. (48)) [ ]( ) [ ]W S W•  + =  . 

Solving previous set of equations (50),(51) in respect to 
λ , q , one can get: 

{ } [ ][ ] [ ]( ) { }
11 ( , )T

opt J W J q A q qλ
−−= − , 

{ } [ ] [ ] [ ][ ] [ ]( ) { }
11 1 ( , )T T

optq W J J W J q A q q
−− −= − = , 

{ }( , )PI
WJ q A q q = −  

.                                    (63) 

 Vectors of joint motion ( )optq t and joint velocity 

( )optq t can be solved by numerical integration using 

second relation of (63). Substituting  ( )optq t , ( )optq t , 

( )optq t  in dynamical model (2) it is obtained  

expression for ( )opt
uQ t . 

 
3.4  Resolving redundancy by using local 

optimization of  the energy-based  dynamic 
criterion  

 
 Here, the following criterion appropriate for on-line 
use in robotics is suggested. 

1 1 1

1 min
2

n n n

u u u
u

I w Q Q w q Q
Q

α β α α
αβ α

α β α= = =
= + →∑∑ ∑ . (64) 

 Minimizing criterion of optimality which is a 
function of , uq Q  in respect to uQ , one can optimize 
involving uQ . In that way, one can realize tendency to 
obtain control vector and energy consumption with less 
possible participation in proposed motions. The second 
term in criterion corresponds to the demand of 
minimizing energy consumption and improving stability 
of trajectories. Also, equality constraints (1), (55) are 
given as: 

              { } [ ]{ } { }( , )q J q A q q= +                       (65) 

          { } { } { } { }( , ) ,a ua q q q Q Qαβ  + Γ = +            (66)
 

where equation (66) can be written as follows: 

[ ]{ } [ ] { } { } { }( )1
( , )u aJ q J a Q Q q qαβ

−
 = + − Γ =   

[ ] { } { }( )1
uJ a Q Dαβ

−
 = −                        (67) 

Now,one can obtain augmented objective cost function 
as: 

( ) [ ]{ } ( ){ }1
2a u u uI Q W Q q Q= ⋅ + +

( ) [ ] { } { }( ){ }1
( , ) min

u
u

Q
q A q q J a Q Dαβλ

−
 + − − − →   

(68) 
Necessary conditions for optimality are: 

 [ ]{ } { }0 ) ( , )aI
q J q A q q

∂
∂λ

= ⇒ = +       (69) 

[ ] { } { }0 sgn( )sgn( )Tl
u u

u

I
W Q q Q q

Q
∂
∂

= ⇒ + −  

[ ] { }1
0Ta Jαβ λ

−
 − =                  (70) 

Solving (70) it yields expression for : 

{ } [ ] [ ] [ ]
11 1 T TJ a W a Jαβ αβλ

−− −−    =      
 

{ } { } [ ] { }

[ ] [ ] { }

1

1 1

( , )

sgn( )sgn( )u

q A q q J a D

J a W q q Q

αβ

αβ

−

− −

  − + +  
 
  +   

   (71) 

Also, one can obtain expression for  uQ , after 
substituting  (71) in previous equation (70), as:     

                    { } [ ] { }sgn( )sgn( )T
u uQ W q q Q−+ −   

[ ]{ }{ }( , ) 0PI
aW aJ q A q q J D − − + =         (72) 

where is [ ] 1
aJ J aαβ

−
 =     and pseudoinverse of aJ    

is: 

            [ ] [ ] 11
T

PI
aWJ W J aαβ

−−     = ⋅     
 

[ ] [ ] [ ]
11 1 T TJ a W a Jαβ αβ
−− −−         

             (73) 

Solving previous equation (72) in respect to uQ   one 
can get  uoptQ .  Now, vector  q   is obtained as follows : 

 { } { } { }( )1
uoptq a Q Dαβ

−
 = −          (74) 

At last, using (73) it is possible to obtain optimal vector 
of joint velocities )t(qopt  and the joint motions )t(qopt  
by suitable numerical integration.  
 
4. EXAMPLE 
 
 The effectiveness of suggested optimal control in 
human-like fashion is demonstrated with a robot with 
three segments and  four degrees of  freedom as the 
illustrative example (Fig.4). 

 
Figure 4.  Robot with three segments and four DOFs 
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i  iiρ  iρ  ie  
1 ( )0 0 0 T, ,  ( )0 0 0 T, ,  ( )0 0 1 T, ,  
2 ( )0 1 0 T, ,  ( )0 0 5 0 T, . ,−  ( )0 1 0 T, ,  
3 ( )0 0 1 T, ,  ( )0 0 0 5 T, , .−  ( )1 0 0 T, ,  
4 ( )1 0 0 T, ,  ( )0 5 0 0 T. , ,−  ( )0 0 1 T, ,  

 Table 1. Quantities which define geometry of  robot 

 Moreover, robot contains one cinematic pair of 
fourth class and two cinematic pair of fifth class. Two 
segments connected with cinematic pair of fourth class 
can be presented as open loop chain with three segments 
(one fictional and two real) and cinematic pairs of fifth 
class (see Fig 4). Also, in this case, appropriate 
Rodrigo’s matrices of transformation are [24]: 

[ ] ( ) ( )21 11 1
0 1 1 11 cos sind( ) d( )

,A I e q e q     = + − +     
 

(75) 

where are 

       { } ( )1 1
1 1

0 1 0
0 0 1 1 0 0

0 0 0

T( ) d( )e , , , e
− 

  = =   
  

,      (76) 

One can obtain 

         

1 1

1 1
0 1

cos sin 0

sin cos 0
0 0 1

,

q q

A q q

 −
 
   =   
 
 

,     (77) 

In the same manner, it yields 

[ ] ( ) ( )22 22 2
1 2 2 21 cos sind( ) d( )
,A I e q e q     = + − +     

 
(78) 

{ } ( )2 2
2 2

0 0 1
0 1 0 0 0 0

1 0 0

T( ) d( )e , , , e
 
  = =   
 − 

        (79) 

       

2 2

1 2
2 2

cos 0 sin
0 1 0

sin 0 cos
,

q q
A

q q

 
 

  =   
 
−  

  (80) 

and  

[ ] ( ) ( )23 33 3
2 3 3 31 cos sind( ) d( )

,A I e q e q     = + − +     
, 

(81) 

       { } ( )3 3
3 3

0 0 0
1 0 0 0 0 1

0 1 0

T( ) d( )e , , , e
 
  = = −  
  

,     (82) 

          3 3
2 3

3 3

1 0 0

0 cos sin

0 sin cos
,A q q

q q

 
 

  = −  
 
  

.  (83) 

[ ] ( ) ( )24 44 4
3 4 4 41 cos sind( ) d( )

,A I e q e q     = + − +     
 

(84) 

       { } ( )4 4
4 4

0 1 0
0 0 1 1 0 0

0 0 0

T( ) d( )e , , , e
− 

  = =   
  

,       (85) 

          

4 4

4 3
3 4

cos sin 0

sin cos 0
0 0 1

,

q nq

A q q

 −
 
   = −   
 
 

.   (86) 

Also, one can obtain the following expressions: 

        

0 2 0 1 1 2

0 3 0 2 2 3

0 4 0 3 3 4

, , ,

, , ,

, , ,

A A A ,

A A A ,

A A A .

     = ⋅     
     = ⋅     
     = ⋅     

                (87) 

Therefore, direct kinematics is given: 

{ } { }( )
1

4
( ) ( )2

0,
13

H n
j jj

H j jjj j
jH

q x
q y A q e

zq

ρ ξ
=

=

         = = + =     
   

   

∑  

{ } { } { } { }(1) (2) (3) (4)
0,1 0,2 0,3 0,411 22 33 44A A A Aρ ρ ρ ρ       = + + +       

0,1 0,2 0,3 0,4

0 0 0 1
0 1 0 0
0 0 1 0

A A A A
       
              = + + +              
       
       

      (88) 

Using eqs.(77-88) follows: 

1 1 3 1 3 2

1 4 2 4 1 2 3

4 1 3

sin sin sin cos cos sin

cos cos cos sin cos sin sin

sin sin cos ,

Hx q q q q q q

q q q q q q q

q q q

= − + + +

+ + +

−

 

1 1 3 1 2 3

1 2 4 4 1 3

4 1 2 3

cos cos sin sin sin cos

sin cos cos sin cos cos

sin sin sin sin ,

Hy q q q q q q

q q q q q q

q q q q

= − + +

+ + +

+

      (89) 

2 3 2 4 3 2 4cos cos cos sin sin sin cos .Hz q q q q q q q= + −  

 The end-off effector is required to move along a 
trajectory (Fig.5 )defined as: 

       
( )

( )
( )

0 0

0 0

0 0

2
H k

H k

kH

x ( t ) x ( t ) x x
y ( t ) y ( t ) y y ( t )

z ( t ) z z ( t )z ( t )

α
α β
α β

 + − 
   = + − +   

   + − −   

,  (90) 

where ( ) [ ]0 0 01 1 1x , y , z m= = =  is an a initial point, 

( ) [ ]1 2 0 6 1 1k k kx . , y . , z . m= = =  is a final point and 
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( t ), ( t )α β are the specified time dependent parameters 
given as: 

       
[ ]

2 3 4

2 3 4

2

6 8 3 0 1

1

t t t( t ) , ( t ) ,
T T T

t t( t )
T T

α α

β

= − + ∈

 = − 
 

,  (91) 

Moreover, 0 0 1 skt , t T= = = is a time of execution of 
movement of proposed robotic mechanism. These forms 

( t ), ( t )α β  allow the anthropomorphic trajectories 
which imply that in 1 skt =  velocity ( ) 0kv t .=  
Differentiating eq. (89) in respect to time, one can get: 

       [ ]

1

2

3 4 3

4

( )
( )
( )

H

H

H

q
x t

q
y t J

qz t
q

×

 
       =   

   
   

  

                (92) 

where are 

 
Figure 5.  Proposed trajectory of  end-off effector 

 

   

( )1 3 1 2 3
11

1 1 2 1 2 3 4

4 1 3

1 2 3 1 4 2
12

4 1 2 3

1 3 1 3 2
13

1 4 3 2

cos sin 1 sin sin cos

sin cos cos sin sin sin sin

sin cos cos

cos cos cos cos cos sin

sin cos cos sin

sin cos cos sin sin

sin sin sin sin s

j q q q q q

q q q q q q q

q q q ,

j q q q q q q

q q q q ,

j q q q q q

q q q q

= − − −

− − −

−

= − +

+

= − +

+ + 4 3 1

1 2 4 1 3 4
14

in cos cos

cos cos sin sin cos cos

q q q ,

j q q q q q q ,= − −

 (93) 

( )

( )
( )

1 3 1 4 3
21

2 3 2 4
1

2 3 4

2 3 2 4
1

22 2 3

1 3 3 4
23

1 2 3 3

1 2
24

sin sin 1 sin sin cos

sin cos cos cos
cos

sin sin sin

cos cos sin cos
sin

cos sin

cos cos sin sin

sin sin cos sin

sin cos s

j q q q q q

q q q q
q ,

q q q

q q q q
j q ,

q q

j q q q q

q q q q ,

j q q

= − − +

 +
 +
 + 

 −
 =
 + 

= − +

+ −

= − 4 4 1 3

4 1 2 3

in cos cos cos

cos sin sin sin

q q q q

q q q q

+ +

+

(94) 

( )

( )

31

2 3 4 3
32

2 4

2 4 3 3
33

2 3 4 2 4
34

0

sin cos sin sin

cos cos

cos sin cos sin

cos sin cos sin sin

j ,

j q q q q

q q ,

j q q q q ,

j q q q q q .

=

= − + −

−

= −

= +

           (95) 

In this example, weighted coefficients are 
1, 1,2,...,w nα α• = =  and matrix [ ]S =   

,0, 1,2,3,4
diag , 1,2,..., 4

iq i
aαβ α β= =
 = =    is given as:  

[ ] { } 1,2,3,4
(0) 0

8 / 3 0 0 0
0 49 /12 0 0

diag
0 0 4 / 3 0
0 0 0 1/ 3

qi
S a ααα =

=

 
 
 = =
 
 
  

 

(96) 

and finally, matrix [ ]W  is: 

        [ ]

11/ 3 1 1 1
1 61/12 1 1
1 1 7 / 3 1
1 1 1 4 / 3

W

 
 
 =
 
 
  

,  (97) 

Solving set of equations (48),(49) in respect to ,qλ   
one can get: 

[ ] [ ] [ ][ ] [ ]( ) { } { }
11 1T T PI

opt Wq W J J W J q J q
−− −  = =   

, 

(98) 
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At last, vector of joint motion ( )optq t  is obtained by 
numerical integration (method of finite differences), 
(Fig.6):  

 
Figure 6  Optimal trajectories ( ), 1, 2,3, 4iq t i =  

5. CONCLUSION 
 
 In this paper, a new approach of control of 
redundant system is presented using suitable biological 
analogous, which appear in human control strategies. It 
suggests  joint geometrical, velocity, acceleration and 
control vector based on criterion which is established by 
optimization law. Also, the dynamical model of robotic 
system is given in covariant form of Langrange`s 
equations of second kind which is now suitable to 
obtain vector of control applying (numerical)-symbolic 
programming. The effectiveness of the proposed 
optimal control is illustrated by simulation results of a 
redundant robot with 4 DOFs (Fig.6). 
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Appendix A 
 
In this appendix, for simplicity, a matrix notation is 
omitted. Here, weighted generalized pseudoinverse of 
the Jacobian matrix is presented as: 

        1 1 1( )PI T T
WJ W J JW J− − −=                    (A0) 

 Using  (A0) and after differentiating it yields  

1( ) ( )PI PI PI T T PI
W W W WJ J JJ J WJ J W I JJ−= − + −     (A1) 

Multiplying  both sides  with  PI
WJJ   it follows 

( )
( ) ( )
( ) ( )
( )

( ) ( )

1

1 1

1 1

1

1 1

PI PI T T PI
W W W

T T PI T T PI
W W

T T T T

T T PI
W

PI T T T T PI
W W

J JJ J WJ J WJJ

J WJ J WJJ J WJ J WJJ

J WJ J W J WJ J W

J WJ J WJJ

J J WJ J W J WJ J WJJ

−

− −

− −

−

− −

= +

+ +

= + +

+ =

= − +

     (A2) 

or          
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   ( ) 1PI T T PI PI PI
W W W WJ J WJ J W I JJ J JJ

−
 = − +        (A3)   

Also,   
     0 /PI PI PI PI

W W W WJ J I J J J J J= ⇒ + = ⋅           
PI PI PI PI
W W W WJ JJ J JJ⇒ = −           (A4)   

 
After substituting (A4) in (A3) one  obtains expression  
which will be  used  in the following  i.e. 

1( ) ( )PI PI PI T T PI
W W W WJ J JJ J WJ J W I JJ−= − + −       (A5)  

Now, relationship for  optq  is : ) 
PI PI

opt W Wq J q J q= + =  

( ) ( )1PI PI PI T T PI
W W W WJ q J JJ J WJ J W I JJ q

− = − + − 
 

 

(A6) 
taking in to account 
 

( ) 1PI T T PI PI PI
W W W WJ J WJ J W I JJ J JJ

−
 = − +      (A7) 

Taking the relationship (A7),and (A6) gives: 

[ ]PI
opt W optq J q Jq= − +  

{ }1( ) ( )PI PI T T PI
W W WJ JJ J WJ J W I JJ q−+ − + −  (A8) 

or,   
PI PI PI

opt W opt W Wq J q Jq J I JJ q  = − + −            (A9) 

 

 
 

ОПТИМАЛНО УПРАВЉАЊЕ 
РЕДУНДАНТНИМ РОБОТИМА НА НАЧИН 

СЛИЧАН ЧОВЕКУ 
 

Михаило Лазаревић 
 
У овом раду је предложен један нови вид 
управљања редундантним роботским системом. То 
је остварено применом погодног кинематичког и 
динамичког критеријума заснованим на биолошким 
принципима тј. на начину који је сличан и својствен 
човеку. Овде је динамички модел роботског система 
дат у форми Лангранжевих једначина друге врсте у 
коваријатном облику.Неколико критеријума је 
уведено који су функција генералисаних 
координата, брзина, вектора убрзања као и вектора 
управљања респективно.Коначно, ефикасност 
предложеног оптималног управљања на начин 
сличан човеку је демонстрирана на роботу са четири 
степена слободе. 

 


