Petković, Đorđe

Link to this page

Authority KeyName Variants
orcid::0000-0002-8815-8528
  • Petković, Đorđe (10)
Projects

Author's Bibliography

Proračun prelaznih režima rada gasnih turbina

Petković, Đorđe

(2023)

TY  - THES
AU  - Petković, Đorđe
PY  - 2023
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/7735
AB  - Promena udela obnovljivih izvora energije u proizvodnji elektricne energije dovodi do promene
uloge koje konvencionalna postrojenja imaju u elektroenergetskom sistemu jer se zahteva fleksibilan
rad i brzo startovanje. Menja se koncept razvoja novih postrojenja i, osim stacionarnih
režima, postaje bitno izucavanje prelaznih pojava kao što su startovanje, brze promene opterecenja,
normalno i prinudno zaustavljanje. Veliki deo razvoja obuhvata skupa eksperimentalna
ispitivanja pri kojima može doci do oštecenja mašine. Stoga se veliki trud ulaže u razvoj proracunskih
modela za predvi anje ovakvih režima što je i tema ove disertacije. U radu je opisan
dinamicki model za simuliranje razlicitih prelaznih režima rada gasnih turbina u celokupnom
radnom opsegu, od pokretanja do zaustavljanja. Radni režimi kompresora i turbine opisani su
pomocu stacionarnih karakteristika, dok je njihovo dinamicko ponašanje modelirano zakonima
održanja u obliku obicnih diferencijalnih jednacina. Pored osnovnih fenomena, akumulacije mase
i energije, kao i akumulacije toplote unutar konstruktivnih elemenata mašine, obuhvaceni su
i efekti promene radijalnih zazora na performanse. Primenjene radne karakteristike su izracunate
pomocu postojecih meridijanskih modela strujanja. Kako bi se obuhvatio uticaj promena
geometrije kompresora zbog zakretanja statorskih lopatica kao i promena radijalnih zazora,
implementiran je veliki broj karakteristika. Model je uparen sa osnovnim sistemom regulisanja
radi kontrole brzine/opterecenja i izlazne temperature gasova iz turbine.
Razvijeni model je primenjen za simulaciju rada jednovratilnih i dvovratilnih industrijskih
gasnih turbina i rezultati su upore eni sa eksperimentalnim podacima. Pore enje ukljucuje
veliki broj parametara za svaku komponentu postrojenja i startera koji se koristi pri startovanju.
Simulirane su sekvence startovanja iz hladnog stanja, nagle promene opterecenja, zaustavljanje
ali i rad mašine tokom više uzastopnih pokretanja radi analize uticaja termickog stanja na
performanse mašine. Sprovedene su i analize ponašanja gasne turbine pri razlicitim brzinama
promene i naglog gubitka opterecenja.
AB  - The change in the share of renewable energy sources in electricity production leads to a change
in the role conventional power plants have in the power system, as flexible operation and quick
start-up are required. The concept of new power plant development is changing and, apart from
stationary regimes, it becomes important to study transient phenomena such as starting, rapid
load changes, normal and emergency shutdown. Much of the development involves expensive
experimental tests that can damage the machine. Therefore, a lot of effort is invested in the
development of computational models for predicting such regimes, which is the subject of this
dissertation. It describes a dynamic model for simulation of the complete transient operation
of gas turbines, from start-up to shutdown. The performance of the compressor and the turbine
are described using steady-state characteristics, while component dynamics are modeled
with the conversation laws in the form of ordinary differential equations. In addition to basic
transient phenomena, volume packing, and heat soakage, the effects of the tip clearance change
on the performance are also included. The applied component characteristics are calculated
using through-flow solvers. A large number of compressor maps are implemented to include
adjustments of stator blades and changes in tip clearances. The model is paired with a control
system for the regulation of speed/load and turbine exit temperature.
The developed model was applied to simulate the operation of single-shaft and two-shaft industrial
gas turbines and the results were compared with experimental data. The comparison
includes a large number of parameters for each component of the power plant and the starter
used during start-up. Sequences of starting from a cold state, sudden load changes, shutdown,
but also the operation of the machine during several consecutive start-ups were simulated in
order to analyze the influence of the thermal state on the performance of the machine. Analyzes
of the behavior of the gas turbine at different loading rates and at load rejection were also
carried out.
T2  - Univerzitet u Beogradu, Mašinski fakultet
T1  - Proračun prelaznih režima rada gasnih turbina
T1  - Calculation of Transient Performance of Gas Turbines
EP  - 108
SP  - 1
UR  - https://hdl.handle.net/21.15107/rcub_machinery_7735
ER  - 
@phdthesis{
author = "Petković, Đorđe",
year = "2023",
abstract = "Promena udela obnovljivih izvora energije u proizvodnji elektricne energije dovodi do promene
uloge koje konvencionalna postrojenja imaju u elektroenergetskom sistemu jer se zahteva fleksibilan
rad i brzo startovanje. Menja se koncept razvoja novih postrojenja i, osim stacionarnih
režima, postaje bitno izucavanje prelaznih pojava kao što su startovanje, brze promene opterecenja,
normalno i prinudno zaustavljanje. Veliki deo razvoja obuhvata skupa eksperimentalna
ispitivanja pri kojima može doci do oštecenja mašine. Stoga se veliki trud ulaže u razvoj proracunskih
modela za predvi anje ovakvih režima što je i tema ove disertacije. U radu je opisan
dinamicki model za simuliranje razlicitih prelaznih režima rada gasnih turbina u celokupnom
radnom opsegu, od pokretanja do zaustavljanja. Radni režimi kompresora i turbine opisani su
pomocu stacionarnih karakteristika, dok je njihovo dinamicko ponašanje modelirano zakonima
održanja u obliku obicnih diferencijalnih jednacina. Pored osnovnih fenomena, akumulacije mase
i energije, kao i akumulacije toplote unutar konstruktivnih elemenata mašine, obuhvaceni su
i efekti promene radijalnih zazora na performanse. Primenjene radne karakteristike su izracunate
pomocu postojecih meridijanskih modela strujanja. Kako bi se obuhvatio uticaj promena
geometrije kompresora zbog zakretanja statorskih lopatica kao i promena radijalnih zazora,
implementiran je veliki broj karakteristika. Model je uparen sa osnovnim sistemom regulisanja
radi kontrole brzine/opterecenja i izlazne temperature gasova iz turbine.
Razvijeni model je primenjen za simulaciju rada jednovratilnih i dvovratilnih industrijskih
gasnih turbina i rezultati su upore eni sa eksperimentalnim podacima. Pore enje ukljucuje
veliki broj parametara za svaku komponentu postrojenja i startera koji se koristi pri startovanju.
Simulirane su sekvence startovanja iz hladnog stanja, nagle promene opterecenja, zaustavljanje
ali i rad mašine tokom više uzastopnih pokretanja radi analize uticaja termickog stanja na
performanse mašine. Sprovedene su i analize ponašanja gasne turbine pri razlicitim brzinama
promene i naglog gubitka opterecenja., The change in the share of renewable energy sources in electricity production leads to a change
in the role conventional power plants have in the power system, as flexible operation and quick
start-up are required. The concept of new power plant development is changing and, apart from
stationary regimes, it becomes important to study transient phenomena such as starting, rapid
load changes, normal and emergency shutdown. Much of the development involves expensive
experimental tests that can damage the machine. Therefore, a lot of effort is invested in the
development of computational models for predicting such regimes, which is the subject of this
dissertation. It describes a dynamic model for simulation of the complete transient operation
of gas turbines, from start-up to shutdown. The performance of the compressor and the turbine
are described using steady-state characteristics, while component dynamics are modeled
with the conversation laws in the form of ordinary differential equations. In addition to basic
transient phenomena, volume packing, and heat soakage, the effects of the tip clearance change
on the performance are also included. The applied component characteristics are calculated
using through-flow solvers. A large number of compressor maps are implemented to include
adjustments of stator blades and changes in tip clearances. The model is paired with a control
system for the regulation of speed/load and turbine exit temperature.
The developed model was applied to simulate the operation of single-shaft and two-shaft industrial
gas turbines and the results were compared with experimental data. The comparison
includes a large number of parameters for each component of the power plant and the starter
used during start-up. Sequences of starting from a cold state, sudden load changes, shutdown,
but also the operation of the machine during several consecutive start-ups were simulated in
order to analyze the influence of the thermal state on the performance of the machine. Analyzes
of the behavior of the gas turbine at different loading rates and at load rejection were also
carried out.",
journal = "Univerzitet u Beogradu, Mašinski fakultet",
title = "Proračun prelaznih režima rada gasnih turbina, Calculation of Transient Performance of Gas Turbines",
pages = "108-1",
url = "https://hdl.handle.net/21.15107/rcub_machinery_7735"
}
Petković, Đ.. (2023). Proračun prelaznih režima rada gasnih turbina. in Univerzitet u Beogradu, Mašinski fakultet, 1-108.
https://hdl.handle.net/21.15107/rcub_machinery_7735
Petković Đ. Proračun prelaznih režima rada gasnih turbina. in Univerzitet u Beogradu, Mašinski fakultet. 2023;:1-108.
https://hdl.handle.net/21.15107/rcub_machinery_7735 .
Petković, Đorđe, "Proračun prelaznih režima rada gasnih turbina" in Univerzitet u Beogradu, Mašinski fakultet (2023):1-108,
https://hdl.handle.net/21.15107/rcub_machinery_7735 .

Praćenje glavnih radnih karakteristka parnog turbopostrojenja TE Nikola Tesla B1 u toku dugogodišnjeg rada

Milić, Srđan; Petrović, Milan; Petković, Đorđe; Đukanović, Dejan; Ilić, Aleksandar; Damnjanac, Igor; Popović, Miloš; Pelemiš, Slobodan

(Društvo termičara Srbije, 2023)

TY  - CONF
AU  - Milić, Srđan
AU  - Petrović, Milan
AU  - Petković, Đorđe
AU  - Đukanović, Dejan
AU  - Ilić, Aleksandar
AU  - Damnjanac, Igor
AU  - Popović, Miloš
AU  - Pelemiš, Slobodan
PY  - 2023
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/7365
AB  - Termoelektrana Nikola Tesla (TENT), blok B1 je pušten u pogon 1983. godine sa instalisanih 620 MW. Od prve sinhronizacije na mrežu do kapitalnog remonta 2012. blok je imao 212 hiljada radnih sati. Tokom kapitalnog remonta 2012., snaga bloka je povećana na 664.9 MW i dodatno je izmenjena postojeća toplotna šema parnog bloka. Poslednji kapitalni remont bloka B1 je sproveden 2021. godine nakon 277,898 radnih sati. Garancijska ispitivanja turbopostrojenja bloka B1, sprovedena su 1984. godine od strane proizvođača opreme. Laboratorija za toplotne turbomašine Mašinskog fakulteta u Beogradu sprovela je pogonska ispitivanja bloka B1 nakon oba kapitalna remonta 2012. i 2022. godine. Tokom kapitalnog remonta 2012. godine izvršena je zamena rotorskih lopatica na turbini srednjeg pritiska (TSP), kao i na turbini niskog pritiska (TNP), promenjena je toplotna šema prema kojoj radi blok B1. Remont 2007. godine obuhvatao je zamenu turbine visokog pritiska (TVP), kako bi se omogućilo povećanje protoka sveže pare u iznosu od 9%. Kapitalni remont 2021. godine podrazumevao je zamenu zaptivki na lopaticama pretkola i radnog kola, kao i zaptivki rotora TVP, TSP i TNP, takođe zamenjene su lopatice VI reda TNP, remontovani stop i regulacioni ventili, zamenjeno je kućište turbonapojne pumpe. U ovom radu uporedno su prikazani i poređeni rezultati garancijskih i pogonskih ispitivanja na različitim režimima rada s posebnim osvrtom na radne karakteristike turbopostrojenja nakon 40 godina rada i sprovedena dva kapitalna remonta.
PB  - Društvo termičara Srbije
C3  - Međunarodna konferencija PowerPlants 2023, Zlatibor 08-10.11.2023.
T1  - Praćenje glavnih radnih karakteristka parnog turbopostrojenja TE Nikola Tesla B1 u toku dugogodišnjeg rada
T1  - MONITORING THE MAIN CHARACTERISTICS OF THE NIKOLA TESLA B1 STEAM TURBINE SET DURING LONG-TERM OPERATION
UR  - https://hdl.handle.net/21.15107/rcub_machinery_7365
ER  - 
@conference{
author = "Milić, Srđan and Petrović, Milan and Petković, Đorđe and Đukanović, Dejan and Ilić, Aleksandar and Damnjanac, Igor and Popović, Miloš and Pelemiš, Slobodan",
year = "2023",
abstract = "Termoelektrana Nikola Tesla (TENT), blok B1 je pušten u pogon 1983. godine sa instalisanih 620 MW. Od prve sinhronizacije na mrežu do kapitalnog remonta 2012. blok je imao 212 hiljada radnih sati. Tokom kapitalnog remonta 2012., snaga bloka je povećana na 664.9 MW i dodatno je izmenjena postojeća toplotna šema parnog bloka. Poslednji kapitalni remont bloka B1 je sproveden 2021. godine nakon 277,898 radnih sati. Garancijska ispitivanja turbopostrojenja bloka B1, sprovedena su 1984. godine od strane proizvođača opreme. Laboratorija za toplotne turbomašine Mašinskog fakulteta u Beogradu sprovela je pogonska ispitivanja bloka B1 nakon oba kapitalna remonta 2012. i 2022. godine. Tokom kapitalnog remonta 2012. godine izvršena je zamena rotorskih lopatica na turbini srednjeg pritiska (TSP), kao i na turbini niskog pritiska (TNP), promenjena je toplotna šema prema kojoj radi blok B1. Remont 2007. godine obuhvatao je zamenu turbine visokog pritiska (TVP), kako bi se omogućilo povećanje protoka sveže pare u iznosu od 9%. Kapitalni remont 2021. godine podrazumevao je zamenu zaptivki na lopaticama pretkola i radnog kola, kao i zaptivki rotora TVP, TSP i TNP, takođe zamenjene su lopatice VI reda TNP, remontovani stop i regulacioni ventili, zamenjeno je kućište turbonapojne pumpe. U ovom radu uporedno su prikazani i poređeni rezultati garancijskih i pogonskih ispitivanja na različitim režimima rada s posebnim osvrtom na radne karakteristike turbopostrojenja nakon 40 godina rada i sprovedena dva kapitalna remonta.",
publisher = "Društvo termičara Srbije",
journal = "Međunarodna konferencija PowerPlants 2023, Zlatibor 08-10.11.2023.",
title = "Praćenje glavnih radnih karakteristka parnog turbopostrojenja TE Nikola Tesla B1 u toku dugogodišnjeg rada, MONITORING THE MAIN CHARACTERISTICS OF THE NIKOLA TESLA B1 STEAM TURBINE SET DURING LONG-TERM OPERATION",
url = "https://hdl.handle.net/21.15107/rcub_machinery_7365"
}
Milić, S., Petrović, M., Petković, Đ., Đukanović, D., Ilić, A., Damnjanac, I., Popović, M.,& Pelemiš, S.. (2023). Praćenje glavnih radnih karakteristka parnog turbopostrojenja TE Nikola Tesla B1 u toku dugogodišnjeg rada. in Međunarodna konferencija PowerPlants 2023, Zlatibor 08-10.11.2023.
Društvo termičara Srbije..
https://hdl.handle.net/21.15107/rcub_machinery_7365
Milić S, Petrović M, Petković Đ, Đukanović D, Ilić A, Damnjanac I, Popović M, Pelemiš S. Praćenje glavnih radnih karakteristka parnog turbopostrojenja TE Nikola Tesla B1 u toku dugogodišnjeg rada. in Međunarodna konferencija PowerPlants 2023, Zlatibor 08-10.11.2023.. 2023;.
https://hdl.handle.net/21.15107/rcub_machinery_7365 .
Milić, Srđan, Petrović, Milan, Petković, Đorđe, Đukanović, Dejan, Ilić, Aleksandar, Damnjanac, Igor, Popović, Miloš, Pelemiš, Slobodan, "Praćenje glavnih radnih karakteristka parnog turbopostrojenja TE Nikola Tesla B1 u toku dugogodišnjeg rada" in Međunarodna konferencija PowerPlants 2023, Zlatibor 08-10.11.2023. (2023),
https://hdl.handle.net/21.15107/rcub_machinery_7365 .

New Method for Cycle Performance Prediction Based on Detailed Compressor аnd Gas Turbine Flow Calculations

Petrović, Milan; Wiedermann, Alexander; Banjac, Milan; Milić, Srđan; Petković, Đorđe; Madžar, Teodora

(2022)

TY  - CONF
AU  - Petrović, Milan
AU  - Wiedermann, Alexander
AU  - Banjac, Milan
AU  - Milić, Srđan
AU  - Petković, Đorđe
AU  - Madžar, Teodora
PY  - 2022
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/7891
AB  - Gas turbines have made significant progress in recent
years. The efficiencies of the compressor and turbine were
improved based on achievements in aerodynamics, i.e., on the
introduction of numerical flow simulation. The introduction of
massive cooling and thermal barrier coating permitted a
considerable increase in the turbine inlet temperature. These
developments led to a significant increase in the thermal
efficiency of gas turbines. However, most of the existing tools
for predicting cycle performance are based on 0D compressor
and turbine maps for the efficiency and pressure ratio as a
function of the mass flow. Such tools cannot simulate all new
trends in gas turbines in the most efficient way. The new method
proposed here is a 2D method based on detailed flow
calculations in the compressor and the gas turbine. Previously
developed through-flow tools for compressor/turbine flow
simulation and performance prediction were applied for this
purpose. The processes in the compressor and the turbine are
connected by calculation of the processes in the combustion
chamber and the secondary and cooling air system. The turbine
inlet temperature is determined by an iterative procedure. The
method allows the accurate prediction of performance at every
operating point. Air cooling bleeds in the compressor and its
injections in the turbine blades can be simulated precisely. Also,
adjustments of the inlet guide and stator vanes and their
influence on compressor behavior can be accurately taken into
account at every operating point. Finally, calculation of the
combustion and the flow in the compressor and the turbine
allows a simulation with correct gas composition and humidity
of the air. The method is demonstrated on a case of an industrial
gas turbine. The numerical results were compared with
experimental data and showed very good agreement. The
procedure is rapid and robust and permits optimization of the
different solutions during the design phase.
C3  - Proceedings of the ASME Turbo Expo, 2022
T1  - New Method for Cycle Performance Prediction Based on Detailed Compressor аnd Gas Turbine Flow Calculations
DO  - 10.1115/GT2022-82229
ER  - 
@conference{
author = "Petrović, Milan and Wiedermann, Alexander and Banjac, Milan and Milić, Srđan and Petković, Đorđe and Madžar, Teodora",
year = "2022",
abstract = "Gas turbines have made significant progress in recent
years. The efficiencies of the compressor and turbine were
improved based on achievements in aerodynamics, i.e., on the
introduction of numerical flow simulation. The introduction of
massive cooling and thermal barrier coating permitted a
considerable increase in the turbine inlet temperature. These
developments led to a significant increase in the thermal
efficiency of gas turbines. However, most of the existing tools
for predicting cycle performance are based on 0D compressor
and turbine maps for the efficiency and pressure ratio as a
function of the mass flow. Such tools cannot simulate all new
trends in gas turbines in the most efficient way. The new method
proposed here is a 2D method based on detailed flow
calculations in the compressor and the gas turbine. Previously
developed through-flow tools for compressor/turbine flow
simulation and performance prediction were applied for this
purpose. The processes in the compressor and the turbine are
connected by calculation of the processes in the combustion
chamber and the secondary and cooling air system. The turbine
inlet temperature is determined by an iterative procedure. The
method allows the accurate prediction of performance at every
operating point. Air cooling bleeds in the compressor and its
injections in the turbine blades can be simulated precisely. Also,
adjustments of the inlet guide and stator vanes and their
influence on compressor behavior can be accurately taken into
account at every operating point. Finally, calculation of the
combustion and the flow in the compressor and the turbine
allows a simulation with correct gas composition and humidity
of the air. The method is demonstrated on a case of an industrial
gas turbine. The numerical results were compared with
experimental data and showed very good agreement. The
procedure is rapid and robust and permits optimization of the
different solutions during the design phase.",
journal = "Proceedings of the ASME Turbo Expo, 2022",
title = "New Method for Cycle Performance Prediction Based on Detailed Compressor аnd Gas Turbine Flow Calculations",
doi = "10.1115/GT2022-82229"
}
Petrović, M., Wiedermann, A., Banjac, M., Milić, S., Petković, Đ.,& Madžar, T.. (2022). New Method for Cycle Performance Prediction Based on Detailed Compressor аnd Gas Turbine Flow Calculations. in Proceedings of the ASME Turbo Expo, 2022.
https://doi.org/10.1115/GT2022-82229
Petrović M, Wiedermann A, Banjac M, Milić S, Petković Đ, Madžar T. New Method for Cycle Performance Prediction Based on Detailed Compressor аnd Gas Turbine Flow Calculations. in Proceedings of the ASME Turbo Expo, 2022. 2022;.
doi:10.1115/GT2022-82229 .
Petrović, Milan, Wiedermann, Alexander, Banjac, Milan, Milić, Srđan, Petković, Đorđe, Madžar, Teodora, "New Method for Cycle Performance Prediction Based on Detailed Compressor аnd Gas Turbine Flow Calculations" in Proceedings of the ASME Turbo Expo, 2022 (2022),
https://doi.org/10.1115/GT2022-82229 . .

Simulation of the Overall Transient Operation of Gas Turbines

Petković, Đorđe; Banjac, Milan; Milić, Srđan; Madžar, Teodora; Petrović, Milan; Wiedermann, Alexander

(2022)

TY  - CONF
AU  - Petković, Đorđe
AU  - Banjac, Milan
AU  - Milić, Srđan
AU  - Madžar, Teodora
AU  - Petrović, Milan
AU  - Wiedermann, Alexander
PY  - 2022
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/7890
AB  - Reduction of the start-up time and flexible operation require
comprehensive testing and modification of a gas turbine. The
cost of this testing can be significantly reduced by using
reliable dynamic models to simulate critical regimes without
the possibility of damage. This paper describes a dynamic
model, called GTDyn, for simulation of the complete transient
operation of gas turbines, from start-up to shutdown. In
addition to basic transient phenomena, volume packing, and
heat soakage, the effects of the tip clearance change on the
performance are also included. The performance of the
compressor and the turbine are described using steady-state
characteristics, while component dynamics are modeled with
the conversation laws in the form of ordinary differential
equations. The applied component characteristics are
calculated using through-flow solvers. A large number of
compressor maps are implemented to include adjustments of
stator blades and changes in tip clearances. The model is
paired with a control system for the regulation of speed/load
and turbine exit temperature. For the start-up sequence, a
mode with starter assistance is implemented. The developed
model was applied for simulating multiple start-ups to analyze
the influence of thermal states on machine performance. The
numerical results are compared with experimental data for an
industrial single-shaft, air-cooled gas turbine. The comparison
includes temperatures and pressures at inlet and outlet stations
of each component, inlet mass flow, IGV adjustment, fuel mass
flow, gas turbine speed, and power. The numerical results for
starter power and compressor tip clearance are also presented.
C3  - Proceedings of the ASME Turbo Expo
T1  - Simulation of the Overall Transient Operation of Gas Turbines
DO  - 10.1115/GT2022-82250
ER  - 
@conference{
author = "Petković, Đorđe and Banjac, Milan and Milić, Srđan and Madžar, Teodora and Petrović, Milan and Wiedermann, Alexander",
year = "2022",
abstract = "Reduction of the start-up time and flexible operation require
comprehensive testing and modification of a gas turbine. The
cost of this testing can be significantly reduced by using
reliable dynamic models to simulate critical regimes without
the possibility of damage. This paper describes a dynamic
model, called GTDyn, for simulation of the complete transient
operation of gas turbines, from start-up to shutdown. In
addition to basic transient phenomena, volume packing, and
heat soakage, the effects of the tip clearance change on the
performance are also included. The performance of the
compressor and the turbine are described using steady-state
characteristics, while component dynamics are modeled with
the conversation laws in the form of ordinary differential
equations. The applied component characteristics are
calculated using through-flow solvers. A large number of
compressor maps are implemented to include adjustments of
stator blades and changes in tip clearances. The model is
paired with a control system for the regulation of speed/load
and turbine exit temperature. For the start-up sequence, a
mode with starter assistance is implemented. The developed
model was applied for simulating multiple start-ups to analyze
the influence of thermal states on machine performance. The
numerical results are compared with experimental data for an
industrial single-shaft, air-cooled gas turbine. The comparison
includes temperatures and pressures at inlet and outlet stations
of each component, inlet mass flow, IGV adjustment, fuel mass
flow, gas turbine speed, and power. The numerical results for
starter power and compressor tip clearance are also presented.",
journal = "Proceedings of the ASME Turbo Expo",
title = "Simulation of the Overall Transient Operation of Gas Turbines",
doi = "10.1115/GT2022-82250"
}
Petković, Đ., Banjac, M., Milić, S., Madžar, T., Petrović, M.,& Wiedermann, A.. (2022). Simulation of the Overall Transient Operation of Gas Turbines. in Proceedings of the ASME Turbo Expo.
https://doi.org/10.1115/GT2022-82250
Petković Đ, Banjac M, Milić S, Madžar T, Petrović M, Wiedermann A. Simulation of the Overall Transient Operation of Gas Turbines. in Proceedings of the ASME Turbo Expo. 2022;.
doi:10.1115/GT2022-82250 .
Petković, Đorđe, Banjac, Milan, Milić, Srđan, Madžar, Teodora, Petrović, Milan, Wiedermann, Alexander, "Simulation of the Overall Transient Operation of Gas Turbines" in Proceedings of the ASME Turbo Expo (2022),
https://doi.org/10.1115/GT2022-82250 . .

РЕШЕЊЕ МОДЕРНИЗАЦИЈЕ ПАРНОГ ТУРБОПОСТРОЈЕЊА СНАГЕ 300 МW

Petrović, Milan; Milić, Srđan; Banjac, Milan; Petković, Đorđe; Savanović, Teodora; Petrović, Luka; Vujičić, Borivoje; Novaković, Žarko

(Društvo termičara Srbije, 2021)

TY  - CONF
AU  - Petrović, Milan
AU  - Milić, Srđan
AU  - Banjac, Milan
AU  - Petković, Đorđe
AU  - Savanović, Teodora
AU  - Petrović, Luka
AU  - Vujičić, Borivoje
AU  - Novaković, Žarko
PY  - 2021
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/7397
AB  - The Ugljevik thermal power plant (ТPP), with a capacity of 300 MW, has been in operation since 1985. The TPP now works with significant problems, especially with the boiler, which has a reduced degree of efficiency and an increased flue gas temperature at the outlet. Therefore, high-pressure heaters must be switched off in the plant, which reduces the efficiency of the turbo plant, and the power (to about 275 MW) that can be achieved is significantly lower than the nominal one. After 200,000 operating hours, the turbo plant works with deteriorating operating characteristics and, to a significant extent, the spent useful operating life of vital turbine components due to a large number of operating hours and starts. To continue safe operation, a capital overhaul with an extension of the operating life for the next 150,000 hours is planned. In this paper, the feasibility of additional investments in the modernization of the turbine plant is considered. The modernization implies the improvement of the degree of efficiency and the increase of the electric power of the unit.
PB  - Društvo termičara Srbije
C3  - Full Papers Proceedings of International Conference "Power Plants 2021"
T1  - РЕШЕЊЕ МОДЕРНИЗАЦИЈЕ ПАРНОГ ТУРБОПОСТРОЈЕЊА СНАГЕ 300 МW
SP  - 56/E2021-007
UR  - https://hdl.handle.net/21.15107/rcub_machinery_7397
ER  - 
@conference{
author = "Petrović, Milan and Milić, Srđan and Banjac, Milan and Petković, Đorđe and Savanović, Teodora and Petrović, Luka and Vujičić, Borivoje and Novaković, Žarko",
year = "2021",
abstract = "The Ugljevik thermal power plant (ТPP), with a capacity of 300 MW, has been in operation since 1985. The TPP now works with significant problems, especially with the boiler, which has a reduced degree of efficiency and an increased flue gas temperature at the outlet. Therefore, high-pressure heaters must be switched off in the plant, which reduces the efficiency of the turbo plant, and the power (to about 275 MW) that can be achieved is significantly lower than the nominal one. After 200,000 operating hours, the turbo plant works with deteriorating operating characteristics and, to a significant extent, the spent useful operating life of vital turbine components due to a large number of operating hours and starts. To continue safe operation, a capital overhaul with an extension of the operating life for the next 150,000 hours is planned. In this paper, the feasibility of additional investments in the modernization of the turbine plant is considered. The modernization implies the improvement of the degree of efficiency and the increase of the electric power of the unit.",
publisher = "Društvo termičara Srbije",
journal = "Full Papers Proceedings of International Conference "Power Plants 2021"",
title = "РЕШЕЊЕ МОДЕРНИЗАЦИЈЕ ПАРНОГ ТУРБОПОСТРОЈЕЊА СНАГЕ 300 МW",
pages = "56/E2021-007",
url = "https://hdl.handle.net/21.15107/rcub_machinery_7397"
}
Petrović, M., Milić, S., Banjac, M., Petković, Đ., Savanović, T., Petrović, L., Vujičić, B.,& Novaković, Ž.. (2021). РЕШЕЊЕ МОДЕРНИЗАЦИЈЕ ПАРНОГ ТУРБОПОСТРОЈЕЊА СНАГЕ 300 МW. in Full Papers Proceedings of International Conference "Power Plants 2021"
Društvo termičara Srbije., 56/E2021-007.
https://hdl.handle.net/21.15107/rcub_machinery_7397
Petrović M, Milić S, Banjac M, Petković Đ, Savanović T, Petrović L, Vujičić B, Novaković Ž. РЕШЕЊЕ МОДЕРНИЗАЦИЈЕ ПАРНОГ ТУРБОПОСТРОЈЕЊА СНАГЕ 300 МW. in Full Papers Proceedings of International Conference "Power Plants 2021". 2021;:56/E2021-007.
https://hdl.handle.net/21.15107/rcub_machinery_7397 .
Petrović, Milan, Milić, Srđan, Banjac, Milan, Petković, Đorđe, Savanović, Teodora, Petrović, Luka, Vujičić, Borivoje, Novaković, Žarko, "РЕШЕЊЕ МОДЕРНИЗАЦИЈЕ ПАРНОГ ТУРБОПОСТРОЈЕЊА СНАГЕ 300 МW" in Full Papers Proceedings of International Conference "Power Plants 2021" (2021):56/E2021-007,
https://hdl.handle.net/21.15107/rcub_machinery_7397 .

Testing and Analysis of Operation of a 210 MW Steam Turbine

Milić, Srđan; Petrović, Milan; Banjac, Milan; Petković, Đorđe; Đukanović, Dejan; Jankov, Nenad; Despotović, Vladimir

(Društvo termičara Srbije, 2021)

TY  - CONF
AU  - Milić, Srđan
AU  - Petrović, Milan
AU  - Banjac, Milan
AU  - Petković, Đorđe
AU  - Đukanović, Dejan
AU  - Jankov, Nenad
AU  - Despotović, Vladimir
PY  - 2021
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/7329
AB  - Термоелектрана Костолац А2 у је у погону од 1980. а до 2019. је имала више од 200,000 радних сати. Електропривреда Србије (ЕПС) се припрема за значајније захвате на турбопостројењу у циљу продужења радног века и повећања снаге блока. Циљ спроведених испитивања је био да се утврди тренутно стање постројења и његових појединих најважнијих компонената и да се добију подаци за будуће вођење и одржавање блока као подлоге за планирану будућу модернизацију. У раду су приказани примењене мерне технике, начин обраде података мерења и главни резултати испитивања. Одређена је специфична потрошња топлоте и степен корисности турбопостројења као и радне каракетристике свих компоненти турбопостројења. Урађени су биланси масе и енергије за више режима рада. На основу резултата израчунат је утицај одступања појединих параметара и рада компонети на снагу блока и специфичну потрошњу турбопостројења. Дате су смернице за погон термоелектране.
PB  - Društvo termičara Srbije
C3  - Proceedings of International Conference "Power Plants 2021"
T1  - Testing and Analysis of Operation of a 210 MW Steam Turbine
SP  - 67/ E2021-008
UR  - https://hdl.handle.net/21.15107/rcub_machinery_7329
ER  - 
@conference{
author = "Milić, Srđan and Petrović, Milan and Banjac, Milan and Petković, Đorđe and Đukanović, Dejan and Jankov, Nenad and Despotović, Vladimir",
year = "2021",
abstract = "Термоелектрана Костолац А2 у је у погону од 1980. а до 2019. је имала више од 200,000 радних сати. Електропривреда Србије (ЕПС) се припрема за значајније захвате на турбопостројењу у циљу продужења радног века и повећања снаге блока. Циљ спроведених испитивања је био да се утврди тренутно стање постројења и његових појединих најважнијих компонената и да се добију подаци за будуће вођење и одржавање блока као подлоге за планирану будућу модернизацију. У раду су приказани примењене мерне технике, начин обраде података мерења и главни резултати испитивања. Одређена је специфична потрошња топлоте и степен корисности турбопостројења као и радне каракетристике свих компоненти турбопостројења. Урађени су биланси масе и енергије за више режима рада. На основу резултата израчунат је утицај одступања појединих параметара и рада компонети на снагу блока и специфичну потрошњу турбопостројења. Дате су смернице за погон термоелектране.",
publisher = "Društvo termičara Srbije",
journal = "Proceedings of International Conference "Power Plants 2021"",
title = "Testing and Analysis of Operation of a 210 MW Steam Turbine",
pages = "67/ E2021-008",
url = "https://hdl.handle.net/21.15107/rcub_machinery_7329"
}
Milić, S., Petrović, M., Banjac, M., Petković, Đ., Đukanović, D., Jankov, N.,& Despotović, V.. (2021). Testing and Analysis of Operation of a 210 MW Steam Turbine. in Proceedings of International Conference "Power Plants 2021"
Društvo termičara Srbije., 67/ E2021-008.
https://hdl.handle.net/21.15107/rcub_machinery_7329
Milić S, Petrović M, Banjac M, Petković Đ, Đukanović D, Jankov N, Despotović V. Testing and Analysis of Operation of a 210 MW Steam Turbine. in Proceedings of International Conference "Power Plants 2021". 2021;:67/ E2021-008.
https://hdl.handle.net/21.15107/rcub_machinery_7329 .
Milić, Srđan, Petrović, Milan, Banjac, Milan, Petković, Đorđe, Đukanović, Dejan, Jankov, Nenad, Despotović, Vladimir, "Testing and Analysis of Operation of a 210 MW Steam Turbine" in Proceedings of International Conference "Power Plants 2021" (2021):67/ E2021-008,
https://hdl.handle.net/21.15107/rcub_machinery_7329 .

A Comprehensive Analytical Shock Loss Model for Axial Compressor Cascades

Banjac, Milan; Savanović, Teodora; Petković, Đorđe; Petrović, Milan

(American Society of Mechanical Engineers (ASME), 2021)

TY  - CONF
AU  - Banjac, Milan
AU  - Savanović, Teodora
AU  - Petković, Đorđe
AU  - Petrović, Milan
PY  - 2021
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/3637
AB  - The approach applied in various research papers that model compressor shock losses is valid only for certain types of airfoil cascades operating in a narrow range of working conditions. Lately, more general shock loss models have been established that cover a wider variety of airfoils and operating regimes. However, owing to the complexity of the studied matter, the majority of such models are, to a certain extent, presented only in a descriptive manner. The lack of specific details can affect the end results when such a model is utilized since improvisation cannot be avoided. Some models also apply complex numerical procedures that can slow the calculations and be a source of computational instability. In this research, an attempt has been made to produce an analytical shock loss model that is simple enough to be described in detail while being universal and robust enough to find wide application in the fields of design and performance analysis of transonic compressors and fans. The flexible description of airfoil geometry encompasses a variety of blade shapes. Both unchoked and choked operating regimes are covered, including a precise prediction of choke occurrence. The model was validated using a number of numerical test cases.
PB  - American Society of Mechanical Engineers (ASME)
C3  - Proceedings of the ASME Turbo Expo
T1  - A Comprehensive Analytical Shock Loss Model for Axial Compressor Cascades
VL  - 2A-2021
DO  - 10.1115/GT2021-58580
ER  - 
@conference{
author = "Banjac, Milan and Savanović, Teodora and Petković, Đorđe and Petrović, Milan",
year = "2021",
abstract = "The approach applied in various research papers that model compressor shock losses is valid only for certain types of airfoil cascades operating in a narrow range of working conditions. Lately, more general shock loss models have been established that cover a wider variety of airfoils and operating regimes. However, owing to the complexity of the studied matter, the majority of such models are, to a certain extent, presented only in a descriptive manner. The lack of specific details can affect the end results when such a model is utilized since improvisation cannot be avoided. Some models also apply complex numerical procedures that can slow the calculations and be a source of computational instability. In this research, an attempt has been made to produce an analytical shock loss model that is simple enough to be described in detail while being universal and robust enough to find wide application in the fields of design and performance analysis of transonic compressors and fans. The flexible description of airfoil geometry encompasses a variety of blade shapes. Both unchoked and choked operating regimes are covered, including a precise prediction of choke occurrence. The model was validated using a number of numerical test cases.",
publisher = "American Society of Mechanical Engineers (ASME)",
journal = "Proceedings of the ASME Turbo Expo",
title = "A Comprehensive Analytical Shock Loss Model for Axial Compressor Cascades",
volume = "2A-2021",
doi = "10.1115/GT2021-58580"
}
Banjac, M., Savanović, T., Petković, Đ.,& Petrović, M.. (2021). A Comprehensive Analytical Shock Loss Model for Axial Compressor Cascades. in Proceedings of the ASME Turbo Expo
American Society of Mechanical Engineers (ASME)., 2A-2021.
https://doi.org/10.1115/GT2021-58580
Banjac M, Savanović T, Petković Đ, Petrović M. A Comprehensive Analytical Shock Loss Model for Axial Compressor Cascades. in Proceedings of the ASME Turbo Expo. 2021;2A-2021.
doi:10.1115/GT2021-58580 .
Banjac, Milan, Savanović, Teodora, Petković, Đorđe, Petrović, Milan, "A Comprehensive Analytical Shock Loss Model for Axial Compressor Cascades" in Proceedings of the ASME Turbo Expo, 2A-2021 (2021),
https://doi.org/10.1115/GT2021-58580 . .

Modeling the Transient Behavior of Gas Turbines

Petković, Đorđe; Banjac, Milan; Milić, Srđan; Petrović, Milan; Wiedermann, Alexander

(ASME, New York, 2020)

TY  - JOUR
AU  - Petković, Đorđe
AU  - Banjac, Milan
AU  - Milić, Srđan
AU  - Petrović, Milan
AU  - Wiedermann, Alexander
PY  - 2020
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/3332
AB  - As a consequence of the increasing share of volatile renewable energy sources such as wind and solar in present-day electrical grid systems, time variations of the power demand for fossil fuel plants can become more sudden. Therefore, an ability to respond to sudden load changes becomes an important issue for power generation gas turbines. This paper describes a real-time model for predicting the transient performance of gas turbines. The method includes basic transient phenomena, such as volume packing and the heat transfer between the working fluid and the structural elements. The dynamics of components are quantified by solving ordinary differential equations with appropriate initial and boundary conditions. Compressor and turbine operating points are determined from corresponding performance maps previously calculated using sophisticated aerodynamic, through-flow codes. This includes a sufficient number of such characteristics to account for the variations in speed and machine geometry. The developed dynamic model was verified by comparison of simulation results with experimentally recorded operating parameters for a real engine. This includes the start-up sequence and the load changes. Additional simulation covers the system response to a step increase in fuel flow. The simulation is carried out faster than the real process.
PB  - ASME, New York
T2  - Journal of Turbomachinery-Transactions of The Asme
T1  - Modeling the Transient Behavior of Gas Turbines
IS  - 8
VL  - 142
DO  - 10.1115/1.4046451
ER  - 
@article{
author = "Petković, Đorđe and Banjac, Milan and Milić, Srđan and Petrović, Milan and Wiedermann, Alexander",
year = "2020",
abstract = "As a consequence of the increasing share of volatile renewable energy sources such as wind and solar in present-day electrical grid systems, time variations of the power demand for fossil fuel plants can become more sudden. Therefore, an ability to respond to sudden load changes becomes an important issue for power generation gas turbines. This paper describes a real-time model for predicting the transient performance of gas turbines. The method includes basic transient phenomena, such as volume packing and the heat transfer between the working fluid and the structural elements. The dynamics of components are quantified by solving ordinary differential equations with appropriate initial and boundary conditions. Compressor and turbine operating points are determined from corresponding performance maps previously calculated using sophisticated aerodynamic, through-flow codes. This includes a sufficient number of such characteristics to account for the variations in speed and machine geometry. The developed dynamic model was verified by comparison of simulation results with experimentally recorded operating parameters for a real engine. This includes the start-up sequence and the load changes. Additional simulation covers the system response to a step increase in fuel flow. The simulation is carried out faster than the real process.",
publisher = "ASME, New York",
journal = "Journal of Turbomachinery-Transactions of The Asme",
title = "Modeling the Transient Behavior of Gas Turbines",
number = "8",
volume = "142",
doi = "10.1115/1.4046451"
}
Petković, Đ., Banjac, M., Milić, S., Petrović, M.,& Wiedermann, A.. (2020). Modeling the Transient Behavior of Gas Turbines. in Journal of Turbomachinery-Transactions of The Asme
ASME, New York., 142(8).
https://doi.org/10.1115/1.4046451
Petković Đ, Banjac M, Milić S, Petrović M, Wiedermann A. Modeling the Transient Behavior of Gas Turbines. in Journal of Turbomachinery-Transactions of The Asme. 2020;142(8).
doi:10.1115/1.4046451 .
Petković, Đorđe, Banjac, Milan, Milić, Srđan, Petrović, Milan, Wiedermann, Alexander, "Modeling the Transient Behavior of Gas Turbines" in Journal of Turbomachinery-Transactions of The Asme, 142, no. 8 (2020),
https://doi.org/10.1115/1.4046451 . .
11
11

Оптимизација производње топлоте за даљинско грејање Београда из блокова А3-А6 у ТЕ „Никола Тесла А“

Petrović, Milan; Milić, Srđan; Banjac, Milan; Đukanović, Dejan; Petković, Đorđe

(Машински факултет у Београду - Лабораторија за топлотне турбомашине, 2019)


                                            

                                            
Petrović, M., Milić, S., Banjac, M., Đukanović, D.,& Petković, Đ.. (2019). Оптимизација производње топлоте за даљинско грејање Београда из блокова А3-А6 у ТЕ „Никола Тесла А“. in Машински факултет, Извештај  ЛТТ-4/18
Машински факултет у Београду - Лабораторија за топлотне турбомашине..
https://hdl.handle.net/21.15107/rcub_machinery_7348
Petrović M, Milić S, Banjac M, Đukanović D, Petković Đ. Оптимизација производње топлоте за даљинско грејање Београда из блокова А3-А6 у ТЕ „Никола Тесла А“. in Машински факултет, Извештај  ЛТТ-4/18. 2019;.
https://hdl.handle.net/21.15107/rcub_machinery_7348 .
Petrović, Milan, Milić, Srđan, Banjac, Milan, Đukanović, Dejan, Petković, Đorđe, "Оптимизација производње топлоте за даљинско грејање Београда из блокова А3-А6 у ТЕ „Никола Тесла А“" in Машински факултет, Извештај  ЛТТ-4/18 (2019),
https://hdl.handle.net/21.15107/rcub_machinery_7348 .

Modelling the transient behaviour of gas turbines

Petković, Đorđe; Banjac, Milan; Milić, Srđan; Petrović, Milan; Wiedermann, Alexander

(American Society of Mechanical Engineers (ASME), 2019)

TY  - CONF
AU  - Petković, Đorđe
AU  - Banjac, Milan
AU  - Milić, Srđan
AU  - Petrović, Milan
AU  - Wiedermann, Alexander
PY  - 2019
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/3183
AB  - As a consequence of the increasing share of renewable energy sources in present-day electrical grid systems, time variations of the power demand for fossil fuel plants can become more sudden. Therefore, an ability to respond to sudden load changes becomes an important issue for power generation gas turbines. This paper describes a real-time model for predicting the transient performance of gas turbines. The method includes basic transient phenomena, such as volume packing and the heat transfer between the working fluid and the structural elements. The dynamics of components are quantified by solving ordinary differential equations with appropriate initial and boundary conditions. Compressor and turbine operating points are determined from corresponding performance maps previously calculated using sophisticated aerodynamic, through-flow codes. This includes a sufficient number of such characteristics to account for the variations in speed and machine geometry. The developed dynamic model was verified by comparison of simulation results with experimentally recorded operating parameters for a real engine. This includes the start-up sequence and the change of load. Additional simulation covers the system response to a step increase in fuel flow. The simulation is carried out faster than the real process.
PB  - American Society of Mechanical Engineers (ASME)
C3  - Proceedings of the ASME Turbo Expo
T1  - Modelling the transient behaviour of gas turbines
VL  - 2A-2019
DO  - 10.1115/GT2019-91008
ER  - 
@conference{
author = "Petković, Đorđe and Banjac, Milan and Milić, Srđan and Petrović, Milan and Wiedermann, Alexander",
year = "2019",
abstract = "As a consequence of the increasing share of renewable energy sources in present-day electrical grid systems, time variations of the power demand for fossil fuel plants can become more sudden. Therefore, an ability to respond to sudden load changes becomes an important issue for power generation gas turbines. This paper describes a real-time model for predicting the transient performance of gas turbines. The method includes basic transient phenomena, such as volume packing and the heat transfer between the working fluid and the structural elements. The dynamics of components are quantified by solving ordinary differential equations with appropriate initial and boundary conditions. Compressor and turbine operating points are determined from corresponding performance maps previously calculated using sophisticated aerodynamic, through-flow codes. This includes a sufficient number of such characteristics to account for the variations in speed and machine geometry. The developed dynamic model was verified by comparison of simulation results with experimentally recorded operating parameters for a real engine. This includes the start-up sequence and the change of load. Additional simulation covers the system response to a step increase in fuel flow. The simulation is carried out faster than the real process.",
publisher = "American Society of Mechanical Engineers (ASME)",
journal = "Proceedings of the ASME Turbo Expo",
title = "Modelling the transient behaviour of gas turbines",
volume = "2A-2019",
doi = "10.1115/GT2019-91008"
}
Petković, Đ., Banjac, M., Milić, S., Petrović, M.,& Wiedermann, A.. (2019). Modelling the transient behaviour of gas turbines. in Proceedings of the ASME Turbo Expo
American Society of Mechanical Engineers (ASME)., 2A-2019.
https://doi.org/10.1115/GT2019-91008
Petković Đ, Banjac M, Milić S, Petrović M, Wiedermann A. Modelling the transient behaviour of gas turbines. in Proceedings of the ASME Turbo Expo. 2019;2A-2019.
doi:10.1115/GT2019-91008 .
Petković, Đorđe, Banjac, Milan, Milić, Srđan, Petrović, Milan, Wiedermann, Alexander, "Modelling the transient behaviour of gas turbines" in Proceedings of the ASME Turbo Expo, 2A-2019 (2019),
https://doi.org/10.1115/GT2019-91008 . .
5
4