Show simple item record

dc.creatorLazarević, Mihailo
dc.creatorRapaić, Milan
dc.creatorŠekara, Tomislav
dc.date.accessioned2023-03-31T06:40:34Z
dc.date.available2023-03-31T06:40:34Z
dc.date.issued2014
dc.identifier.isbn978-960-474-348-3
dc.identifier.urihttps://machinery.mas.bg.ac.rs/handle/123456789/6683
dc.description.abstractThe Fractional Calculus (FC) is a generalization of classical calculus concerned with operations of integration and differentiation of non-integer (fractional) order. The concept of fractional operators has been introduced almost simultaneously with the development of the classical ones. The first known reference can be found in the correspondence of G. W. Leibniz and Marquis de l’Hospital in 1695 where the question of meaning of the semi-derivative has been raised. This question consequently attracted the interest of many wellknown mathematicians, including Euler, Liouville, Laplace, Riemann, Grünwald, Letnikov and many others. Since the 19th century, the theory of fractional calculus developed rapidly, mostly as a foundation for a number of applied disciplines, including fractional geometry, fractional differential equations (FDE) and fractional dynamics. The applications of FC are very wide nowadays. It is safe to say that almost no discipline of modern engineering and science in general, remains untouched by the tools and techniques of fractional calculus. For example, wide and fruitful applications can be found in rheology, viscoelasticity, acoustics, optics, chemical and statistical physics, robotics, control theory, electrical and mechanical engineering, bioengineering, etc..In fact, one could argue that real world processes are fractional order systems in general. The main reason for the success of FC applications is that these new fractional-order models are often more accurate than integer-order ones, i.e. there are more degrees of freedom in the fractional order model than in the corresponding classical one. One of the intriguing beauties of the subject is that fractional derivatives (and integrals) are not a local (or point) quantities. All fractional operators consider the entire history of the process being considered, thus being able to model the non-local and distributed effects often encountered in natural and technical phenomena. Fractional calculus is therefore an excellent set of tools for describing the memory and hereditary properties of various materials and processes.sr
dc.language.isoensr
dc.publisherWSEAS Presssr
dc.relationinfo:eu-repo/grantAgreement/MESTD/Technological Development (TD or TR)/35006/RS//sr
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/41006/RS//sr
dc.relationinfo:eu-repo/grantAgreement/MESTD/Technological Development (TD or TR)/33020/RS//sr
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174001/RS//sr
dc.rightsclosedAccesssr
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceAdvanced Topics on Applications of Fractional Calculus on Control Problems, System Stability And Modelingsr
dc.subjectfractional calculussr
dc.subjecthistorical backgroundsr
dc.subjectRiemann-Liouville definitionsr
dc.subjectGrunwald-Letnikov definitionsr
dc.subjectCaputo definitionsr
dc.titleIntroduction to Fractional Calculus with Brief Historical Backgroundsr
dc.typebookPartsr
dc.rights.licenseBYsr
dc.citation.epage16
dc.citation.spage3
dc.identifier.rcubhttps://hdl.handle.net/21.15107/rcub_machinery_6683
dc.type.versionpublishedVersionsr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record