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Supervised self-organizing map, a type of artificial neural network, is applied for classification of human breast
tissue samples utilizing data obtained from fluorescence landscape measurements. Female breast tissue samples
were taken soon after the surgical resection, identified and stored at −80 ◦C until fluorescence measurements. From
fluorescence landscapes obtained in UV–VIS region spectral features showing statistically significant differences
between malignant and normal samples are identified and further quantified to serve as a training input to
neural network. Additional set of samples was used as a test group input to trained network in order to evaluate
performance of proposed optical biopsy method. Classification sensitivity of 83.9% and specificity of 88.9% are
found.

PACS numbers: 87.64.kv, 84.35.+i, 87.19.xj, 33.50.–j

1. Introduction

The breast cancer is one of the most common malig-
nant tumors among women in the world [1] and if not
diagnosed at proper time it delivers high mortality rates.
On the other hand, if observed in early stages breast can-
cer is one of the most treatable forms of cancer. The im-
portant task of oncology is the development of methods
for the early detection of tumors and tumor pre-stages,
because a successful therapy essentially depends on the
point in time at which the disease is detected, making
possible to improve patient quality of life and survival
rates.

Tissue diagnosis using optical spectroscopy has been
considered as an alternative technique for the conven-
tional diagnostic methods because of its advantages, such
as minimal invasiveness, less time consumption and re-
producibility. For more than two decades, various opti-
cal spectroscopic techniques including fluorescence spec-
troscopy have been widely explored as diagnostic tools
in the discrimination of normal from abnormal tissues in
various organ sites such as breast [2, 3], colon [4], oral [5],
and skin [6]. The endogenous fluorophores, such as
nicotinamide adenine dinucleotide (NADH), flavin ade-
nine dinucleotide (FAD), collagen, elastin, amino acids,
vitamins, lipids and porphyrins, have a significant varia-
tion in the concentration in different tissue types. These
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differences, together with alternations in the local en-
vironment within the tissue, are the basis for the dis-
crimination between tumor and normal tissue by fluores-
cence spectroscopy. To observe majority of fluorescence
changes a more sophisticated method of fluorescence di-
agnosis is developed, called fluorescence landscape spec-
troscopy (also known as excitation–emission matrix spec-
troscopy), utilizing multiple-color illumination, with the
full fluorescence spectrum recorded for each excitation
wavelength. The different excitation wavelengths might
be expected to variously excite different fluorophores, re-
sulting in more complex emission patterns with more in-
formation relevant to biochemical changes than for single-
-color excitation, and with presumed greater likelihood of
distinguishing malignancy from normal conditions. How-
ever, observed data are subtly related in ways that are
often difficult to express in the form of diagnostic rules
and must be processed for tissue classification purposes.

Artificial neural networks are very useful for handling
complex decision tasks such as those involved in medical
diagnosis. The networks can capture such relationships
between the input findings to generate robust outputs.
In addition, networks are always consistent, for they are
not prone to human fatigue or bias. Among the various
existing neural network architectures and learning algo-
rithms, Kohonen’s self-organising map (SOM) [7, 8] is one
of most popular neural network models. SOMs converts
high-dimensional, non-linear statistical relationships into
simple geometric relationships in an n-dimensional array.
This reduced representation seeks to best preserve the in-
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put data’s original topology and density. Although SOMs
are often described as neural networks, they can be also
described as vector prototyping. A SOM’s aim is to find
the optimal set of lower dimensional prototype vectors to
properly group the high dimensional pattern space (clus-
tering property), while preserving the probability den-
sity of the original manifold (topology preservation). For
these reasons they are particularly good candidate for
fluorescence data conversion into classification rules.

2. Methods and results

Method for breast cancer diagnostic, based on mea-
surements of tissue fluorescence landscapes and data clas-
sification by supervised self-organizing maps (SSOM), is
developed in several steps. First, fluorescence landscapes
are measured on two sets of breast tissue specimens, ma-
lignant and normal. Selection of spectral features is made
regarding statistical significance of observed differences in
fluorescence response. Second, SSOM is constructed and
trained with data obtained by quantification of selected
spectral features. Then fluorescence measurements are
performed on the test group samples and chosen spectral
components are quantified to create test data sets. Tissue
classifications are then obtained as SSOM outputs after
test data inputs. Finally, classification results are com-
pared with histopathology data to calculate classification
sensitivity and specificity of the method.

2.1. Fluorescence landscape measurements and data

The breast tissue specimens were obtained from the
Institute of Oncology and Radiology of Serbia. The sam-
ples were taken soon after the surgical resection, iden-
tified and stored at −80 ◦C until luminescence charac-
terization. Their sizes varied from 0.2 × 0.5 × 0.5 cm3

to 0.3 × 1.0 × 1.5 cm3. According to the histopatholog-
ical exam, all malignant breast tissue samples included
in the present study were infiltrating ductal carcinoma.
Tissue specimens were collected after the signed Informed
Consent was obtained from patients. The Consent was
acquired according to the International Ethical Guide-
lines for Biomedical Research involving Human Subjects
(CIOMS), Geneva 1993 and the Guidelines for Good
Clinical Practice (CPMP/ICH/135/95), September 1997.

Fluorescence landscapes were measured at room tem-
perature using Perkin Elmer Fluorescence Spectropho-
tometer LS45 in two excitation-emission ranges to avoid
excitation-emission overlapping. First range covered ex-
citation from 335 to 400 nm and emission from 430
to 625 nm (EEM1), and the second had excitation
from 400 to 470 nm and emission from 500 to 640 nm
(EEM2). The spectra were collected at 150 nm/min
scan rate and were automatically normalized to excita-
tion power by the instrument. Fluorescence landscapes
obtained as a difference of averaged measurements on
normal and malignant sample sets in both spectral ranges
are given in Fig. 1 in a form of contour diagrams, EEM1
on the left and EEM2 on the right. It can be clearly seen

that normal and malignant breast tissue differently fluo-
resce in five spectral regions, two in the EEM1 and three
in the EEM2, marked with dashed lines in Fig. 1. Vol-
umes below intensity surface are calculated in each region
for all samples using method previously reported [3], and
further denoted as VI−1, VII−1, VI−2, VII−2 and VIII−2,
where roman numbers stand for spectral region marked
in Fig. 1. 1 and 2 refer to EEM1 and EEM2, respectively.

Fig. 1. Difference of averaged fluorescence landscapes
of normal and malignant tissue sample groups in two
spectral ranges.

Existence of statistically significant differences between
spectral volumes of normal and malignant tissue is eval-
uated through hypothesis testing using the two-tailed
t-test [9]. The results of hypothesis testing together
with mean values and standard deviations are given in
Table I. Decision on statistical significance is made in
a traditional way [9] on the basis of probability value
for null hypothesis, p: > 0.05 Not Significant (NS), 0.01
to 0.05 Significant (S), 0.01 to 0.001 Very Significant
(VS), and < 0.001 Extremely Significant (ES).

TABLE I
Results of the statistical hypothesis testing using two-tailed
t-test (mean value and σ are given in arbitrary units).

Tissue type Mean value σ p Decision

VI−1
malignant 212700 97880

0.035 Snormal 274428 85416

VII−1
malignant 33273 10274

0.002 VSnormal 45360 12596

VI−2
malignant 55580 10689

0.012 Snormal 63717 9161

VII−2
malignant 20673 7090

< 0.001 ESnormal 27660 4671

VIII−2
malignant 219508 38294

0.054 NSnormal 190385 55399

Taking into account results of statistical analysis we
choosed VII−1, VI−2, and VII−2 as inputs for SSOM.

2.2. SSOM architecture and training

In order to use SOM in a supervised way (SSOM) the
network design comprised a 2-dimensional Kohonen map
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(5 × 5; hexagonal connections between map nodes) and
a communication layer, Fig. 2. The later one poses two
types of nodes: observation nodes (X) and class coding
nodes (C). During the training phase the whole commu-
nication layer is used as input layer, while during ex-
ploitation phase observation nodes are used for inputs
and class coding nodes are used as outputs.

Fig. 2. Schematic of SSOM architecture (communica-
tion layer is connected to all nodes in Kohonen map
— for the simplicity connections are drawn just to one
node).

Training data set contains 2000 vectors with
VII−1, VI−2 and VII−2 values generated as Gaussian distri-
bution with mean values and standard deviations taken
from Table II for normal and malignant tissue groups:
Xin(i) ∈ Rn, i = 1, 2, . . . , 2000, n = 3.

2.3. Exploitation phase and results

To test success rate of proposed optical biopsy method
we introduced to trained SSOM data obtained from flu-
orescence landscape measurements on test group of 67
biopsies for which histopathology found 31 malignant
and 36 normal samples. SSOM provided diagnostics
through class coding nodes and the results are presented
in Table II in comparison to histopathology findings.

TABLE II
Accuracy of SSOM based optical biopsy method.

S Histology
S Tissue type Malignant Normal
O malignant 26 4
M normal 5 32

From these data a sensitivity of 83.9% and specificity
of 88.9% is calculated for presented SSOM based optical

biopsy method. Five malignant biopsies and four normal
biopsies were misclassified, yielding a malignant predic-
tive value of 86.7% and a normal tissue predictive value
of 86.5%.

3. Conclusion
In this work the statistical and the neural network ap-

proach have been implemented for breast cancer diag-
nosis from tissue fluorescence landscapes. It is shown
that differences in fluorescence of malignant and normal
breast tissue are statistically significant in three spectral
regions and that fluorescence data from these regions are
adequate inputs for the SSOM to provide relatively high
diagnostic sensitivity and specificity.
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