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The time interval minimization of rigid body motion with constant
mechanical energy has been considered in this paper. Generalized
coordinates are Cartesian’s coordinates of mass center and the Euler’s
angles, which are specified at the initial and the final position. The
problem has been solved by the application of the Pontryagin’s principle.

Finite difference method has been applied in order to obtain the solution of
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1. INTRODUCTION

The well-known Bernoulli’s problem of the
brachistochrone [1] has set in 1996 the foundations of
numerous researches in analytical mechanics. Let us
mention the paper [2] in which the differential equations
of motion of a material system were formulated and
given problems of motion of a rigid body solved. By the
use of the classical calculus of variations the differential
equations of the brachistochronic motion of a non-
conservative mechanical system were obtained [3]. In
order to obtain finite solutions of the problem
mentioned, it is necessary to solve two-point boundary
value problem for a system of ordinary differential
equations or, even in particular cases, to solved
complicate algebraic problems. The most detailed
review of scientific results in the field of
brachistohronic motion is given in the monograph [4].

Having in mind the equivalence of some problems
of the classical calculus of variations with the problems
of optimal control, the problems mentioned can be
formulated and solved applying the Pontryagin’s
principle [5]. The aim of this paper is to obtain
equations of the brachistochronic general motion of the
rigid body, which is the extension of the research in [6].
The analytical solution of the plane motion and the
realisation of the control are given in [6]. In this paper it
was necessary to apply the corresponding numerical
methods [7].

2. THE FORMULATION OF THE PROBLEM OF
OPTIMAL CONTROL

The problem of determining the equations of motion of
arigid body in the gravitational field between two given
positions in a minimal time and with invariable
mechanical energy is considered. Having given the
initial and the final values of the generalized coordinates
(the coordinates of the mass centre x., y., z. and the
Eulerian angles y, 6 and ¢), but not the generalized
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the two-point boundary value problem.
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velocities, the projections v of the velocity vector and
the projections w, of the angular velocity on the
principal inertial axes of the rigid body, can be taken as
controls. The problem of the optimal control has the
form:
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where g is the acceleration of gravity, while i; denotes
the radii of inertia with respect to the principal central
axes.

The corresponding problems of the singular controls
[8], too, reduces to the problem (1), if one takes for the
controls the corresponding projections of the principal
vector and the principal moment of the system about the
mass centre of the forces acting on the body.

3. ANALYSIS OF THE SOLUTIONS

In order to solve the problem (1), let us write the
Pontryagin’s function [5]:
H :ﬂo +/11V1 +AQV2 +ﬂ,3V3 +
+14 (@ sin ¢)sin_1 6+ w, cos gz)sin_1 0)+
+ 14 () cos p — @, sin @) +
+15 (w5 — oy sin pctgf — w, cos pctgl) )

and the system of differential equations for the co-state
variables 4, and g
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where p is the multiplier of the constraint from the
problem (1).

As the controls are from an open set, the conditions
of optimality [5] become:
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The multiplier of the constraint is determined from
the conditions [5]:

H=0, y=-1, 5)
so that its value is:
1
p= ; (6)
28¥c
and the corresponding optimal controls are:
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Before we start solving the two-point boundary value
problem, having put (7) in (1), let us note the following:
a) the path of the mass centre is a plane curve, as in
virtue of (1), (3) and (7),

€ =const, ®)
C

so that, without loss in generality, we can take:

2 (=0 teft.4]; )
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b) the equation of motion:
-8 q_
Ye(t) = =5 (1=cos pr) (10)
p

has the same form as in the case of a
brachistochronic motion of the particle or in the
case of a plane motion of the rigid body [6];

c) if the ellipsoid of inertia is reduced to a sphere (i
= I, = i3 = i), the vector of angular velocity, in
virtue of (1), (3) and (7), has a constant direction.
In the general case of the ellipsoid of inertia, the
direction of the angular velocity is variable.

4. THE ANALYTICAL SOLUTION IN THE CASE OF A
SPHERE OF INERTIA

The direction of the angular velocity vector being
constant, the change of orientation of the rigid body
results from a rotation around the axis of an also
constant direction. The direction and the angle can be
determined by the theory of finite rotations [9]. Namely,
the knowledge of Euler’s angles at the beginning and at
the end of the interval of motion allows to calculate the

vectors of the finite rotations: ©, which corresponds to
the rotation between the position = 8 = ¢ = 0 and the
initial position, (:)1 , which corresponds to the rotation
between the position = § = ¢ = 0 and the final

position, as well as © for the rotation between the
initial and the final positions. For that purpose, we use
the relation between Euler’s angles and the vector of the
finite rotations [9]:

~ o, - - 0 - =
O, =2(sin—cos Vs s ; +sin—ssinuj +
2 2 2 2
+cos%sin%—w1€)(cos§sin%—w)_l,s =0,1 (11)
2 2 2 2

as well as the rule of the subtraction of rotations [9]:
6=(6,-0, +%@0 xél)(uiéo 67t (12)

By calculating the vector ©, the unit vector é of
the axis of finite rotation, as well as the angle y are

also determined, as:

@zZEtg%. (13)

In that way, the problem (1) is reduces to the problem:
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which has an analytical solution, as in the case of
brachistochronic plane motion [6], which will not be
considered here.

5. THE NUMERICAL SOLUTIONS

Let us solve the problem (1) for given:

a

xe0 =0, oo =1m, 5 =0,6) =—, 9y =0

53 O

T T
Xq =1m, yo =1m, v, =3 6 ==, =3
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W

As t; is not prescribed, by the introduction of the
dimensionless time ¢".

0<t'<1,t=Tt,4=T (16)

in virtue of (1), (3), (6), (7) and (16) we have the
following system of differential equations:
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where ()’ denotes differentiation with respect to ¢. The
problem is now reduced to the case of prescribed
interval of the independent variable, whereas one has to
add the condition at the initial point to the boundary
conditions (15):
1 2 2,2 2 .2 2 .2 2
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The problem is solved by the use of the program [7]
based upon the method of finite differences with
tolerance of relative error of 10°. The path of the mass
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centre, as well as, the laws of change of the Euler’s
angles is presented in the Figure 1 and in the Figure 2.
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Figure 1. Path of the mass centre

The time of motion, #; = 0.959330s, is also
calculated.
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Figure 2. Laws of change of the Euler’s angles

6. CONCLUSION

The difficulties which arise from numerical methods are
the limiting factor for the application of the theory of
optimal control in mechanics. The fact that no general
algorithm and no corresponding program for the
solution of two-point boundary value problems of the
principle of maximum do not exist today makes every
successfully solved problem of this kind valuable. Some
recently solved problems of optimal control of
mechanical systems [4] confirm that opinion.

The fact that the control belongs to an open set, as
well as the smoothness of the solution obtained in this
paper, made possible a relatively simple application of
numerical methods. Meanwhile, the problems in which
the mechanical systems with controls from a closed set
are considered demand a more complicated treatment.

Some particular results of this paper can be found in
PhD thesis [8].
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BPAXNUCTOXPOHO OIIIITE KPETAIBE
KPYTOI TEJIA

Auekcannap Oopanosuh, Huxosna MuaaenoBuh,
Cama Mapxkosuh

Pa3matpa ce MHHMMH3aLWja BpeMEHa KpeTama KpyTor
Tela y3 HeM3MemheHy BPEIHOCT MEXaHUUKe eHepruje. 3a
reHepaJIMCaHe KOOpJIMHATE Yy3eTe Cy KOOpIUHATE
neHtpa mMaca u OjepoBU YIJIOBH, YHje CY BPEIHOCTH
3ajjaTe Ha IIOYETKy W Kpajy HHTEpBaja KpeTama.
3agatak je pemeH npuMeHOM [loHTpjarmHOBOT
MPUHOMNA  MakCHMyMa. Hymepuuko  pememe
IBOTAYKACTOT TpaHUYHOr TpobiemMa TOOHMjeHO je
METOJIOM KOHAUHHX pa3jHKa 3a CHUCTeME OOWYHHX
IUQepeHIINjTHAX jeTHAYHHA.
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