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Brachistochronic Rigid Body General 
Motion 
 
The time interval minimization of rigid body motion with constant 
mechanical energy has been considered in this paper. Generalized 
coordinates are Cartesian’s coordinates of mass center and the Euler’s 
angles, which are specified at the initial and the final position. The 
problem has been solved by the application of the Pontryagin’s principle. 
Finite difference method has been applied in order to obtain the solution of 
the two-point boundary value problem. 
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1. INTRODUCTION 
 

The well-known Bernoulli’s problem of the 
brachistochrone [1] has set in 1996 the foundations of 
numerous researches in analytical mechanics. Let us 
mention the paper [2] in which the differential equations 
of motion of a material system were formulated and 
given problems of motion of a rigid body solved. By the 
use of the classical calculus of variations the differential 
equations of the brachistochronic motion of a non-
conservative mechanical system were obtained [3]. In 
order to obtain finite solutions of the problem 
mentioned, it is necessary to solve two-point boundary 
value problem for a system of ordinary differential 
equations or, even in particular cases, to solved 
complicate algebraic problems. The most detailed 
review of scientific results in the field of 
brachistohronic motion is given in the monograph [4]. 

Having in mind the equivalence of some problems 
of the classical calculus of variations with the problems 
of optimal control, the problems mentioned can be 
formulated and solved applying the Pontryagin’s 
principle [5]. The aim of this paper is to obtain 
equations of the brachistochronic general motion of the 
rigid body, which is the extension of the research in [6]. 
The analytical solution of the plane motion and the 
realisation of the control are given in [6]. In this paper it 
was necessary to apply the corresponding numerical 
methods [7]. 

 
2. THE FORMULATION OF THE PROBLEM OF 

OPTIMAL CONTROL 
 

The problem of determining the equations of motion of 
a rigid body in the gravitational field between two given 
positions in a minimal time and with invariable 
mechanical energy is considered. Having given the 
initial and the final values of the generalized coordinates 
(the coordinates of the mass centre xc, yc, zc and the 
Eulerian angles ψ, θ and φ), but not the generalized 

velocities, the projections vk of the velocity vector and 
the projections ωk of the angular velocity on the 
principal inertial axes of the rigid body, can be taken as 
controls. The problem of the optimal control has the 
form: 
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where g is the acceleration of gravity, while ik denotes 
the radii of inertia with respect to the principal central 
axes. 

The corresponding problems of the singular controls 
[8], too, reduces to the problem (1), if one takes for the 
controls the corresponding projections of the principal 
vector and the principal moment of the system about the 
mass centre of the forces acting on the body. 

 
3. ANALYSIS OF THE SOLUTIONS 

 
In order to solve the problem (1), let us write the 
Pontryagin’s function [5]: 
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and the system of differential equations for the co-state 
variables λk and µk: 
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where ρ is the multiplier of the constraint from the 
problem (1). 

As the controls are from an open set, the conditions 
of optimality [5] become: 
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The multiplier of the constraint is determined from 
the conditions [5]: 

 H = 0,  λ0 = – 1, (5) 

so that its value is: 

 
c
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and the corresponding optimal controls are: 
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Before we start solving the two-point boundary value 
problem, having put (7) in (1), let us note the following: 

a) the path of the mass centre is a plane curve, as in 
virtue of (1), (3) and (7), 

                             c
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so that, without loss in generality, we can take: 

                      [ ]c 0 1( ) 0 ,z t t t t= ∈ ; (9) 

b) the equation of motion: 

           c 2( ) (1 cos )gy t pt
p

= −  (10) 

has the same form as in the case of a 
brachistochronic motion of the particle or in the 
case of a plane motion of the rigid body [6]; 

c) if the ellipsoid of inertia is reduced to a sphere (i1 
= i2 = i3 = i), the vector of angular velocity, in 
virtue of (1), (3) and (7), has a constant direction. 
In the general case of the ellipsoid of inertia, the 
direction of the angular velocity is variable. 

 
4. THE ANALYTICAL SOLUTION IN THE CASE OF A 

SPHERE OF INERTIA 
 

The direction of the angular velocity vector being 
constant, the change of orientation of the rigid body 
results from a rotation around the axis of an also 
constant direction. The direction and the angle can be 
determined by the theory of finite rotations [9]. Namely, 
the knowledge of Euler’s angles at the beginning and at 
the end of the interval of motion allows to calculate the 
vectors of the finite rotations: 0Θ , which corresponds to 
the rotation between the position ψ = θ = φ = 0 and the 
initial position, 1Θ , which corresponds to the rotation 
between the position ψ = θ = φ = 0 and the final 
position, as well as Θ  for the rotation between the 
initial and the final positions. For that purpose, we use 
the relation between Euler’s angles and the vector of the 
finite rotations [9]: 
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as well as the rule of the subtraction of rotations [9]: 
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By calculating the vector Θ , the unit vector e  of 
the axis of finite rotation, as well as the angle χ  are 
also determined, as: 

 2 tg
2
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In that way, the problem (1) is reduces to the problem: 
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which has an analytical solution, as in the case of 
brachistochronic plane motion [6], which will not be 
considered here. 

 
5. THE NUMERICAL SOLUTIONS 

 
Let us solve the problem (1) for given: 
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As t1 is not prescribed, by the introduction of the 
dimensionless time t′: 
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in virtue of (1), (3), (6), (7) and (16) we have the 
following system of differential equations: 
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where ()′ denotes differentiation with respect to t′. The 
problem is now reduced to the case of prescribed 
interval of the independent variable, whereas one has to 
add the condition at the initial point to the boundary 
conditions (15): 
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The problem is solved by the use of the program [7] 
based upon the method of finite differences with 
tolerance of relative error of 10-6. The path of the mass 

centre, as well as, the laws of change of the Euler’s 
angles is presented in the Figure 1 and in the Figure 2. 

 
Figure 1. Path of the mass centre 

The time of motion, t1 = 0.959330s, is also 
calculated. 

 
Figure 2. Laws of change of the Euler’s angles 

 
6. CONCLUSION 

 
The difficulties which arise from numerical methods are 
the limiting factor for the application of the theory of 
optimal control in mechanics. The fact that no general 
algorithm and no corresponding program for the 
solution of two-point boundary value problems of the 
principle of maximum do not exist today makes every 
successfully solved problem of this kind valuable. Some 
recently solved problems of optimal control of 
mechanical systems [4] confirm that opinion. 

The fact that the control belongs to an open set, as 
well as the smoothness of the solution obtained in this 
paper, made possible a relatively simple application of 
numerical methods. Meanwhile, the problems in which 
the mechanical systems with controls from a closed set 
are considered demand a more complicated treatment. 

Some particular results of this paper can be found in 
PhD thesis [8]. 
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БРАХИСТОХРОНО ОПШТЕ КРЕТАЊЕ 

КРУТОГ ТЕЛА 
 
Александар Обрадовић, Никола Младеновић, 

Саша Марковић 
 
Разматра се минимизација времена кретања крутог 
тела уз неизмењену вредност механичке енергије. За 
генералисане координате узете су координате 
центра маса и Ојлерови углови, чије су вредности 
задате на почетку и крају интервала кретања. 
Задатак је решен применом Понтрјагиновог 
принципа максимума. Нумеричко решење 
двотачкастог граничног проблема добијено је 
методом коначних разлика за системе обичних 
диференцијалних једначина. 

 


