

Abstract—One of the significant aspects for enabling the

intelligent behavior to the Unmanned Aerial Vehicles (UAVs) is

by providing an algorithm for navigation through the dynamic

and unseen environment. Therefore, to be autonomous, they

need sensors to perceive their surroundings and utilize gathered

information to decide which action to take. Having that in mind,

in this paper, the authors designed the system for obstacle

avoidance and also investigate the elements of the Markov

decision process and their influence on each other. The flying

mobile robot used within the considered problem is quadrotor

type and has an integrated Lidar sensor which is utilized to

detect obstacles. The sequential decision-making model based on

Q-learning is trained within the MATLAB Simulink

environment. The simulation results demonstrate that the UAV

can navigate through the environment in most algorithm runs

without colliding with surrounding obstacles.

Index Terms—unmanned aerial vehicles, collision avoidance,

reinforcement learning, Q-learning.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have become

increasingly widely used due to their ability to operate in

remote or hazardous areas, collect data, and perform various

tasks autonomously. However, UAVs face a critical challenge

in ensuring safe operation, primarily when operating in close

proximity to other entities. Therefore, collision avoidance

systems are essential to ensuring UAV safety and have been a

research focus in recent years.

Reinforcement learning (RL) is a machine learning field

that has shown great promise in developing systems which

Đorđe Jevtić, Junior Research Assistant, University of Belgrade - Faculty

of Mechanical Engineering, Department of Production Engineering,

Laboratory for industrial robotics and artificial intelligence

(ROBOTICS&AI), Kraljice Marije 16, 11120 Belgrade 35, The Republic of

Serbia (drjevtic@mas.bg.ac.rs), ORCID ID (https://orcid.org/0000-0002-

6917-1663).

Dr. Zoran Miljković, Full Professor, University of Belgrade - Faculty of

Mechanical Engineering, Department of Production Engineering, Laboratory

for industrial robotics and artificial intelligence (ROBOTICS&AI), Kraljice

Marije 16, 11120 Belgrade 35, The Republic of Serbia

(zmiljkovic@mas.bg.ac.rs), ORCID ID (https://orcid.org/0000-0001-9706-

6134).

Dr. Milica Petrović, Associate Professor, University of Belgrade - Faculty

of Mechanical Engineering, Department of Production Engineering,

Laboratory for industrial robotics and artificial intelligence

(ROBOTICS&AI), Kraljice Marije 16, 11120 Belgrade 35, The Republic of

Serbia (mmpetrovic@mas.bg.ac.rs), ORCID ID (https://orcid.org/0000-0002-

4950-6518

Aleksandar Jokić, Teaching Assistant, University of Belgrade - Faculty of

Mechanical Engineering, Department of Production Engineering, Laboratory

for industrial robotics and artificial intelligence (ROBOTICS&AI), Kraljice

Marije 16, 11120 Belgrade 35, The Republic of Serbia (ajokic@mas.bg.ac.rs),

ORCID ID (https://orcid.org/0000-0002-7417-4244).

have to learn from experience and adapt to changing

situations. This makes RL suitable framework for the

implementation on intelligent mobile robots that operate in

dynamic and complex environments.

In [1], the authors presented the development and

evaluation of a Deep Recurrent Q-Network with Temporal

Attention, which is used in a deep RL robotic controller to

enable efficient obstacle avoidance for UAVs. cGAN network

is used to predict a depth map, which is then utilized to

determine the optimal action for the UAV. Critical

information is retained over a long sequence of observations

to solve the problem of partial observability successfully. In

research [2] the authors focused on utilizing the Q-learning

algorithm to create a method for UAVs to learn paths and

avoid obstacles. In order to deal with continuous state space

fitting, a neural network is employed. Additionally, the

authors propose a trap-escape strategy to aid the UAV in

extricating itself from problematic situations. To address the

high variance and low reproducibility of collision avoidance

policies obtained by utilizing RL, [3] introduces a two-stage

training method for RL-based collision avoidance. Within the

first stage, the policy is optimized by using a supervised

training method with a loss function that encourages the agent

to follow the well-known reciprocal collision avoidance

strategy, while in the second stage, it is refined by using

policy gradient method.

Different from other approaches, this research aims to

investigate the performance of a Q-learning-based collision

avoidance system for UAVs, which is a part of the larger

navigation system presented in [4].

The rest of the paper is organized as follows. Section 2

provides the Bellman equation for updating Q-value at every

time step and procedure for the trade-off between exploration

and exploitation. Section 3 describes the proposed action

space, state space, and reward function with particular

reference to minimal requirements for the Lidar sensor

implemented on a flying mobile robot. Section 4 explains the

simulation setup, while Section 5 presents the experimental

results generated within the MATLAB Simulink environment.

Finally, Section 6 concludes the paper with suggestions for

future research.

II. Q-LEARNING

Q-learning is a well-known and widely used RL algorithm,

which is an off-policy, model-free, temporal difference

control algorithm first introduced by Watkins in 1989. One of

the main characteristics of this method is the capability for

Reinforcement Learning-based Collision

Avoidance for UAV

Đorđe Jevtić, Zoran Miljković, Milica Petrović and Aleksandar Jokić

PROCEEDINGS, X INTERNATIONAL CONFERENCE IcETRAN, East Sarajevo, B&H, 05 - 08.06.2023

IcETRAN 2023 ROI2.2 - Page 1 of 6 ISBN 978-86-7466-970-9

mailto:drjevtic@mas.bg.ac.rs
mailto:zmiljkovic@mas.bg.ac.rs
mailto:mmpetrovic@mas.bg.ac.rs
mailto:ajokic@mas.bg.ac.rs

direct approximation of the optimal state-value function,

independent of the policy being followed. For more

information regarding this algorithm, the authors refer to [5].

In every time step, the state-value function is updated using

the following equation:

1 1 1(,) (1) (,) [max (,)]
t t t t t t t t t

Q s a Q s a r Q s a  + + += −  +  + (1)

where: Qt+1(st, at) represents state-value function at time step

t+1; rt+1 denotes the reward function; st represents the state at

time step t; at represents the action chosen by the intelligent

agent at time step t; γ is the discount factor (0 ≤ γ ≤ 1); and α
is the learning rate (0 ≤ α ≤ 1).
 Even though the intelligent agent does not have the

information about the environment dynamics at the begging of

the learning process, it certainly has to know which action to

take at every time step, which is achieved by introducing the

initial policy into the RL framework. In this paper, ε-greedy

policy is utilized for action selection process, and it is defined

as shown in the following equation:

()
a random action , with prob.

()
arg max , ,otherwise.

t t
a

a

a Q s a




=  


s (2)

where ε denotes the parameter which defines the ratio
between exploration and exploitation (0 ≤ ε ≤ 1). One of

significant challenges that especially arises in RL is trade-off

between exploration and exploitation. In this paper, the ε
value is updated per the following rule:

_ min

_ _

_ min

(1)

current episode

next episode current episode decay

next episode

if do

else

end

 

  

 



=  −

=
 (3)

where εmin is the minimal value of ε which should be defined
at the begging of the training process.

III. ALGORITHM DESIGN

In this section, we define action space, state space, and reward

function for the design of a RL simulation model utilized for

the tasks of collision avoidance, navigation, and localization

in the unknown environment. It is important to emphasize that

the state space needs to be defined with the data not specific

to a current environment so that generalization can be

achieved also in a new scenario. Therefore, the environment

needs to be configured in such a way as to enable UAV to

visit as many states as possible. Since the task of the

intelligent agent is to learn the optimal behavior, the episode

is terminated when the UAV collides with an obstacle or

when the maximum number of time steps is achieved.

A. Action Space

In order to define input parameters for the RL algorithm,

the action space, state space, and reward function need to be

defined. On the other hand, it is essential to optimize the

balance of both the action and state space dimensionality to

increase the learning speed of the intelligent agent and enable

the adequate generalization process adaptable to other

scenarios [6]. Therefore, the action vector consists of the

following three actions: going forward, going diagonally left,

and going diagonally right (see Fig. 1.). It is obvious, by

seeing at the action space configuration, that the forward

movement is favored. The defined action space reduces the

maneuverability of the agent, however, a smaller action space

is one of the prerequisites for adequate convergence properties

of the Q-learning algorithm.

Fig. 1. Actions which an intelligent agent can select at every time step.

With the previously defined action vector, the intelligent

agent needs to anticipate the sequence of actions that will lead

to the state from which the currently detected obstacle is

avoidable. To achieve the aforementioned, the simulation

constraints that depends on action values, sensor view and

range, and state space need to be defined.

B. State Space

State space is defined according to the distance data

acquired by a Lidar sensor with a 360° environment view

attached to the intelligent agent. It is essential to define the

minimal upper bound value of the Lidar range required for a

mobile robot to perform obstacle avoidance maneuver if the

object is detected (see Fig. 2.). For an intelligent agent to learn

the maneuver mentioned above, the considered states need to

be visited a sufficient number of times during the training

process in order to get as good value estimations as possible.

Fig. 2. Calculation of minimal upper bound value of the Lidar range.

PROCEEDINGS, X INTERNATIONAL CONFERENCE IcETRAN, East Sarajevo, B&H, 05 - 08.06.2023

IcETRAN 2023 ROI2.2 - Page 2 of 6 ISBN 978-86-7466-970-9

State space defined with all Lidar distance (increment of 2

mm) and angle values (increment of 1°) is infinitely large

(3604001). Therefore, the state space needs to be discretized

for a learning algorithm to converge to an optimal value. The

first approximation is added to the angle of view, which is

bounded to [-75,75] degrees in front of the robot (Fig. 3).

Fig. 3. Lidar measurements bounded to the [-75,75] degrees.

In the next step, state space is discretized and defined by using

variables x1, x2, x3, and x4. Values of these variables depend on

the area in which the obstacles are detected, defined by angle

and distance from the mobile robot. Variables x1 and x2 are

used to define the distance (d) to the closest obstacle:

0, 1.2 3.0

1, 3.0 5.5 1, 2

2, 5.5 8.0

i

m d m

x m d m i

m d m

 
=   =
  

 (4)

The main difference between these two variables is that x1 is

used to define distance in the area left to UAV’s heading

direction (see Fig. 4), whereas x2 defines distance to closest

obstacle in the area right to UAV’s heading direction. The

distance d is calculated for both sides separately.

Fig. 4. State-space areas discretized by using state variables x1 and x2.

Variable x3 and x4 are defined according to the following

equation:

1(4) 3(3)

2(4) 4(3)

0, /

1, /
3, 4

2,

3,

i i

i i

i

obstacle in h h

obstacle in h h
x i

obstacle across theentire side

obstacle out of range

= =

= =



= =



 (5)

where g represents the angle of the Lidar beam that detected

the obstacle (see Fig. 5.), while areas h1 : 0° ≤ g < 25° and h2 :

25° ≤ g < 50° and h3 : -25° < g ≤ 0° and h4 : -50° ≤ g < -25°.

Fig. 5. State-space areas discretized by using state variables x3 and x4.

Finally, elements of the state-space vector are defined in the

following way:

1 2 3 41000 100 10
id

state x x x x=  +  +  + (6)

Since D(x1, x2) = {0,1,2} and D(x3, x4) = {0,1,2,3}, the total

number of states are 144. As mention earlier, in every time

step the agent can choose one of three possible actions.

Therefore, the dimensions of Q-table are 144 x 3.

C. Reward Function

To perform a training by utilizing RL algorithm, it is

necessary to quantify the behavior of intelligent agent (i.e., the

sequence of actions), differentiate between a set of different

behaviors, and estimate the value function for every visited

state-action pair. For all the previously mentioned tasks, the

reward function is utilized. Reward function is also used to

learn which actions are optimal in each state. In this paper, the

reward function is defined as a sum of four functions (r1, r2, r3

[7], and r4), defined with equations (7) to (10):

1

0.2,

0.1, /

t

t

a forward
r

a left right

+ =
= − =

 (7)

2

2

2

0.2, 0

0.2, 0

r

r

W d
r

W d

+  = −  
 (8)

1

3

0.8, / /

0,

t t
a left right a right left

r
otherwise

−− =  =
= 


 (9)

 
4

0.8, / , 0,1,2,3

0,

t n
a left right n

r
otherwise

−−  = 
= 


 (10)

where at is the action taken at the current time step. The

function r1 is utilized to encourage the intelligent agent to

move forward and discourages left or right moves. This

function favors the behavior where the intelligent agent does

not make unnecessary turns. The function r2 is utilized to

discourage intelligent agent from coming close to the

obstacles. In (9), Δd represents the difference between the

cumulative distance from the obstacles in the entire sensor

view in two consecutive time steps. Whereas Wr2 is a

weighting vector that emphasizes obstacles that are closer to

the center of the sensor view, i.e., that are in the intelligent

agent’s path. It is important to note that the positive reward in
(7) must not be larger than the negative reward in (8) to

PROCEEDINGS, X INTERNATIONAL CONFERENCE IcETRAN, East Sarajevo, B&H, 05 - 08.06.2023

IcETRAN 2023 ROI2.2 - Page 3 of 6 ISBN 978-86-7466-970-9

discourage the forward movement toward incoming obstacles.

On the other hand, the positive reward in (8) needs to be

larger than the negative in (7) since obstacle avoidance has

priority over forward movement. The function r3 discourages

zig-zag movement, which is especially important in the

domain of aerial vehicles with the limited flight time. Finally,

the function r4 is utilize to discourages movement in circles;

specifically, it gives a negative reward if the agent makes four

consecutive left or right actions. The entire reward function is

defined with the following equation:

1 2 3 4

100, collision

, no collision
t

r
r r r r

−
=  + + +

 (11)

The reward function would be a sum of all four reward

functions if the intelligent agent did not collide with the

obstacle. The collision is detected if the smallest element of

weighted distance to the obstacles is smaller than the

threshold value which is defined as follows:

min() ,
w collision w t t

d d d W d = (12)

where Wt is a weighting vector.

IV. SIMULATION SETUP

In this section, the employed simulation model developed

within the MATLAB Simulink environment will be presented,

specifically two libraries were utilized: UAV Toolbox and

RL. It is important to note that RL-block can be used in

event-based mode since version R2022a. Therefore this is one

of the first research papers that utilizes RL-block in the

mentioned mode (see Fig. 6.), but in general, also one of the

first studies that use RL-block for the intelligent tasks on

flying mobile robots. The prevoiously mentioned mode can be

utilized when different sample time of the low-level control

system and intelligent agent is required. For example, when

the action is defined as the next pose that the agent should

visit, the RL-block should acquire and process information

only when the pose is achieved. Furthermore, this mode is

also suitable when we want to investigate the flexibility of the

intelligent agent's behavior, i.e. to examine the dependence

between the state variables’ limits defined in (4) and the

values of specified actions. Accordingly, it is much easier to

determine hyperparameters of the RL algorithm if we define

the actions as fixed values, while the number of samples in

which the action is performed/exectued is changed for every

algorithm run. Another significant aspect when utilizing a

reinforcement learning algorithm is the definition of an

adequate sample time. Evidently, for the actions defined as in

Fig. 1., this value should be as high as possible so that the

agent can achieve the next pose in the shortest possible time

interval. However, it should be noted that the maximum value

of the sample time is conditioned by the behavior of the

intelligent agent, which depends on the adopted low-level

control implemented in the Simulink library. The

recommended sample time for the adopted low-level control

is 0.001 s, however this value turned out to be too small for

training the intelligent agent. Therefore, in the next step, it

was increased ten times, and after that, the accuracy in

achieving the desired pose was tested, as well as the flight

stability of the UAV. The agent has demonstrated the best

behavior when set to move 2 m forward and slightly worse

but still satisfactory when it is set to move 1 m forward, which

is closer to the robot's behavior in a real environment.

Therefore, it makes sense to adopt sample time which will

cause reduced accuracy in achieving the desired pose. The

errors should not be so large as to disturb the operation of the

entire system and not small enough because it will not reflect

the operation of the system in real-world. Finally, to examine

the limits of the adopted low-level control, the sample time

value was again increased ten times, i.e. its value was set to

0.1 s. The obtained results have showned that the flying

mobile robot was not only unable to achieve the desired pose

with the necessary accuracy, but also it lost stability and felt

on the ground.

Fig. 6. Part of the complete Simulink model. As can be seen, RL agent block,

observation block, reward function, and isdone function have to be the

elements of enabled subsystems. Furthermore, RL agent sample time should

be set to -1 in order to enable event-based simulation.

V. EXPERIMENTAL RESULTS

As mentioned in the previous Section, one of the

prerequisites for achieving a good generalization is reflected

in the number of visited states and the number of actions

taken in all states of the system. The question that arises now

is how can we influence the intelligent agent so that it

achieves the best possible generalization. The performed

simulations demonstrated that the probability of visiting a

greater number of different state-action pairs is higher when

the agent is set to start its movement from different initial

poses rather than when the maximum number of time steps is

increased. This certainly makes sense, because at the

beginning of the training process, the agent mainly explores

the environment by randomly choosing actions (according to

the adopted ε-greedy policy). This often leads to a collision

PROCEEDINGS, X INTERNATIONAL CONFERENCE IcETRAN, East Sarajevo, B&H, 05 - 08.06.2023

IcETRAN 2023 ROI2.2 - Page 4 of 6 ISBN 978-86-7466-970-9

with obstacles and, therefore, to a reduction in the possibility

of exploring some new unvisited states. Furtermore, if the

agent did not visit a sufficient number of state-action pairs at

the beginning of the training process, it is unlikely that it will

succeed in visiting all of them in the future. Regarding solving

this problem, it has a sense that actions that the intelligent

agent has tried once and have led to a collision with the

obstacles should be forbidden during the future exploration

process, with a thorough analysis of cases in which all

possible actions chosen by the intelligent agent could lead to a

collision.

An additional question that arises is whether there is a

connection between the configuration of the environment and

the reward function. The conducted simulations showed that

there is a relation between them. For example, before the

implementation of the r4 in the reward function, the agent had

a tendency to drop into a local minimum during the training

process, which was manifested by orbiting around the

obstacle. This makes sense, since the negative reward given in

expression (7) is smaller than the positive reward given in

expression (8). Therefore, the maximum number of time steps

was achieved while obtaining a large cumulative reward by

orbiting around the obstacle, which is not desired behavior.

To solve the mentioned problem, in the next step, an

additional expression given in (10) was introduced. It is

important to note that introducing a new element that figures

within the reward function was not enough to solve the

problem of achieving the local minimum because the agent

again learned how to orbit around the obstacle, but this time

applying different sets of actions. The conclusion was that it is

impossible to define all potential cases in which this behavior

occurs. However, the way to solve this problem should be

sought in a different configuration of the environment itself.

Certainly, it is necessary to point out one conclusion about the

training processes during which this behavior was observed.

Suppose the agent found itself into a local minimum in several

episodes. In that case, it does not necessarily mean that it will

generate identical behavior at the end of the training process

due to the stochastic nature of the adopted ε-greedy policy. On

the other hand, if the mentioned behavior occurred in a large

number of episodes, and primarily if the agent received the

large cumulative reward by orbiting around the obstacles, it is

very likely that the agent will have a tendency to often fall

into the local minimum after the end of the training process.

At the beginning of the algorithm testing, the environment

shown in the Fig. 7.a) was adopted. The idea behind this

configuration was to allow the agent to perform movement in

at least a few iterations before a potential collision with

obstacles occurs. The results showed that the agent learned to

avoid regions crowded with obstacles and how to moving

around this space in the long run, which was different from

what we wanted to achieve. Thus, in the next step, the

environment's configuration was changed, i.e., the distance

between the boundaries of the environment and obstacles was

reduced to force the agent to enter the region crowded with

obstacles as soon as possible. This time, the learned behavior

was more reasonable. However, it was noticed that the

number of visited state-action pairs at the end of the training

process was not satisfied regarding the generalization

problem. In the last step, the initial pose of the agent is set to

be within the region crowded with obstacles (Fig. 7. b).

a) b)

Fig. 7. Environment configuration at the beggining (a) and environment

configuration at the end (b) of the algorithm testing.

Learning rate, discount factor, total number of learning

episodes, the maximum number of time steps and collision

distance are defined as shown in Table 1.

TABLE I

LEARNING PARAMETERS AND HYPERPARAMETERS

Max. number of episodes 600

Max. number of learning iterations

(time steps)

10

Learning rate – α 0.5

Discount factor – γ 0.95

Initial epsilon value – ε 1

Epsilon decay – εdecay 0.02

Min. value of epsilon – εmin 0.01

Collision distance – dcollision 1.2 m

The obtained results are shown in Fig. 8. It can be seen that

the learning process was successful and that convergence was

achieved. However, due to the stochastic nature of the adopted

ε-greedy policy training process was repeated a certain

number of times in order to make an appropriate conclusion.

Fig. 8. Episode reward and achieved number of steps obtained by the

intelligent agent during the training process.

PROCEEDINGS, X INTERNATIONAL CONFERENCE IcETRAN, East Sarajevo, B&H, 05 - 08.06.2023

IcETRAN 2023 ROI2.2 - Page 5 of 6 ISBN 978-86-7466-970-9

Fig. 9. Q-table after the training process.

The final output of the learning process is best illustrated by

the Q-table (Fig. 9.). It can be seen that the agent has visited a

large number of states during the training process and that in

most of the states, the agent has learned which actions

represent the optimal solution.

Fig. 10. The intelligent agent successfully avoids obstacles during the

navigation (upper four snapshots) when starting from two different initial

poses, and there are also two situations (bottom two snapshots) in which it

collides with its surroundings (when starting from the third initial pose).

VI. CONCLUSION

In this paper, the authors presented the approach for

collision avoidance of flying mobile robots based on Q-

learning. Lidar data is utilized to detect obstacles in the

mobile robot environment and to represent the state of the

system. In each episode, mobile robot is set to a random initial

pose in the static environment and trained to avoid obstacles

for a fixed number of time steps. Furthermore, the process of

designing an entire obstacle avoidance system is explained in

detail. The obtained simulation results have shown a

correlation between the state space, action space, reward

function, and environment configuration as well as how

defining one element influences the other. Moreover, after the

learning process is completed, the generated Q-table is

sufficient for the obstacle avoidance problem for majority of

initial poses. In the near future research, it is planned to find

the answers to the question of how the state space should be

defined for arbitrarily defined actions and what the limits of

such system in terms of the agent's maneuverability in the

environment are. Since uncertainties and noises are more

dominant in UAV scenarios in comparison with scenarios in

which unmanned ground vehicles operate, the impact of the

accumulated positioning error on determination of the state

variables’ limits needs to be investigated in detail when the

same action is repeated a couple of times. Furthermore, the

inverse problem should also be considered, for a known pose

tolerance and under imperfect sensing, as well as how to

define adequate actions, and discretize the state space.

ACKNOWLEDGMENT

The results presented here are the research advancements

supported by the Ministry of Science, Technological

Development and Innovation of the Republic of Serbia under

contract number 451-03-47/2023-01/ 200105 dated February

3, 2023.

REFERENCES

[1] A. Singla, S. Padakandla, & S. Bhatnagar, “Memory-based deep

reinforcement learning for obstacle avoidance in UAV with limited

environment knowledge,” IEEE Transactions on Intelligent

Transportation Systems, vol. 22, no. 1, pp. 107-118, November, 2019.

[2] Z. Yijing, Z. Zheng, Z. Xiaoyi, & L. Yang, “ Q learning algorithm based

UAV path learning and obstacle avoidence approach,” In 2017 36th

Chinese control conference (CCC), Dalian, China, pp. 3397-3402, July,

2017.

[3] D. Wang, et al., “A two-stage reinforcement learning approach for

multi-UAV collision avoidance under imperfect sensing,” IEEE

Robotics and Automation Letters, vol. 5, no. 1, pp. 3098-3105, April,

2022.

[4] Z. Miljković & Đ. Jevtić, “Object Detection and Reinforcement

Learning Approach for Intelligent Control of UAV,” in Karabegović, I.,
Kovačević, A., Mandžuka, S. (eds) New Technologies, Development and
Application V (NT 2022), Switzerland: Springer, 2022, pp. 659-669.

[5] R. S. Sutton & A. G. Barto, Reinforcement Learning: An Introduction,

2nd ed. Cambridge, Massachusetts: The MIT Press, 2018.

[6] M. Mitić, “Empirical control of an intelligent mobile robot based on
machine learning,” Ph.D. dissertation, Production Engineering
Department, University of Belgrade - Faculty of Mechanical

Engineering, Serbia, 2014.

[7] A. F. Sæther, B. Høye, K. D. Luong, O. B. Nygaard, “Autonomous Self-
Learning Systems,” College of Applied Science, Oslo and Akershus
University, Norway, 2015.

PROCEEDINGS, X INTERNATIONAL CONFERENCE IcETRAN, East Sarajevo, B&H, 05 - 08.06.2023

IcETRAN 2023 ROI2.2 - Page 6 of 6 ISBN 978-86-7466-970-9

