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Abstract. The problem of an elastic plate, originally unmagnetized, in a uniform magnetic 
field is considered in the paper. The magnetic forces are of two kinds: the force of the 
magnetic field on conducting currents in the material, induced by its motion in the static 
field and the force between the magnetic field and the magnetized material (independent of 
the motion).The general equations are linearized by assuming linear constitutive equations 
and that all electromagnetic variables in the deformed body may be divided into two parts: a 
rigid body state and a perturbation state. Maxwell’s stress is calculated and involved in 
differential equation related to bending. Obtained equation is solved in analytical form using 
the integral-transformation technique (Double Fourier finite-sine transformation and Laplace 
transformation). Discussion of the obtained solution is done using Kirchhoff’s hypothesis.  

 

 

1. Introduction  

The theory of electro-magneto-thermoelasticity investigates the interaction between the 
straian and the electromagnetic field in a solid elastic body. A propagation of an elastic 
field in presence of magnetic field was considered by L. Knopoff (1955), J.W. Dunkin i 
A.C. Eringen (1963). F.W. Brown (1966) developed a rigorous phenomenological theory 
for ferromagnetic materials on the basis of the large deformation theory and the clasical 
theory of feromagnetisam. H.F. Tiersten (1964) developed an analogous theory based on a 
microscopic model. Since the general nonlinear theory is complicated, Y.W. Pao and C.S. 
Yeh 1 derived a set of linear equations and boundary conditions for soft feromagnetic 
elastic materials. They applied linear theory to investigate magnetoelastic buckling of an 
isotropic plate. The same problem was treated on the other way by F.C. Moon i Y.H. Pao 
2. Basic general information about the theory of magneto-thermoelasticity was presented 
in monographs by H. Parkus 3. A great contribution of a research in this scientific field 
was given by W. Nowacki, S.A. Ambarcumian 4, M. Krakowski 5. From 1975 on  
Michigan Technological University (N.S. Christopherson, M.O. Peach, J.M. Dalrymple, 
L.G. Viegelahn 6), a set of experiments were done to reconsider theoretical results. 
Because of a disagreement in analytical and experimental results methods of numerical 
analyses were involved in consideration  (K. Miya, T. Takagi, Y. Ando (1980), X. Tian and 
Y. Shen 7). Sharma and Pal investigated the propagation of magnetic-thermoelastic plane 
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wave in homogeneous isotropic conducting plate under uniform static magnetic field [8]. 
The problem with high-frequncy electromagnetic waves was presented in [9] and the 
problem with low-frequency electromagnetic field was descused in [10]. 

2. Basic equations 

Electro-magneto-thermoelastic problem considered in the paper shows one type of 
interaction between electromagnetic and strain field in a solid plate. It is assumed that the 
plate material is elastic and isotropic, possessing a good electric conductivity. Many nickel-
iron alloys used for building the magnetic circuits of motors, generators, inductors, 
transformers are of this type. 

As a result of time changing electromagnetic field conducting currents appear in electric 
conductors. This problem is mathematically described by the system of Maxwell’s 
equations with the relations for slowly moving media and modified Ohm’s low 6: 
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where the following notation is applied: H – intensity of the magnetic field, K – intensity of 
the electric field, B – magnetic flux density (magnetic induction), D – electric induction, J – 
current density, u – deflection, 0 – permeability of vacuum,  – electric conductivity, 0 – 
dielectric constant of vacuum, t – time. 

In the consideration of the plate vibrations, we shall take the assumption that the 
longitudinal vibrations are independent of transversal vibrations. Transversal vibrations can 
be obtained by using the following differential equation 11: 
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where: D – flexural rigidity of the plate, X – mechanical force,  f – Lorenz force. ij and Tij 
denote mechanical and magnetic stress tensors (ij

+, Tij
+ are stress components on the upper 

and ij
-, Tij

- on the lower side of the plate), where h is the plate thickness and  is the 

four-dimension Laplace operator.   

4
1

Of course, presented systems of equations has to be accomplished with the appropriate set 
of boundary and initial conditions.  
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Presented system of differential equations is complicated to be solved in analytical form.  
So, at first we have to simplify mathematical model of the discusted problem. In this paper 
only the problem of the plate subjected to homogenius magnetic field will be presented.  

In this case, electromagnetic energy which is converting in thermal energy is very small, so 
Joules heat can be neglected. Mahwell’s equations (1) can be linearysed, too. Deformation 
field is coupled with the magnetic field. 

3. Thin metallic plate in a stationary homogenius magnetic field 

Let the thin simply supported plate made of homogenius, isotropic linear magnetic material 
is subjected transversal to an external uniform homogenius magnetic field induction 

000 HB


  in air. The magnetic permeability of the plate material is =0r and at the 

beginning the plate is quite non-magnetized (Figure 1). 

 

x1 

x2

x3 

a 

b 

h
 

Figure1. Coordinate system and plate dimensions  

In that case we have two kinds of forces: 

1. forces of interaction between magnetic field and magnetized material, independent of 
vibrations - motion and 

2. forces of the magnetic field and the conducting currents in the plate material, induced 
by the plate vibrations in the stationary magnetic field. 

Electromagnetic field forming in the plate appeares on the action of magnetized material 
and macroscopic conducting current, as can be presented in next way 

21
0 pppp hhHH


 ,     (3) 

where 1
ph


 and 2
ph


 are small fluctuations of the magnetic field generated on the presented 

actions. In the mathematical model their influence on each other can be neglected.  

If the thin metallic plate is placed in strong homogeneous magnetic field H0=const. 
appropriate of the law of the line refraction, in the plate is forming magnetic field intensity 
Hp0. In the moment t=0 plate is losing stability place, apropos the plate has initial 
deformation conditions. It can be presented in the next form  
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On the coupling between the electromagnetic field and the deformation field there are small 

fluctuations of the electric field e


and the magnetic field in the plate 2
ph


, defined as 
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2

321


 ,   (5) 
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

 . 

As the change of the magnetic field under a deformation is small, for ferromagnetic 
materials can be accepted that the magnetic permeability is nearly constant const.. 
Neglecting of the productions between the values hpi

2, ei , vi  and the productions of their 
derivatives, relations (1) have the next form 6 
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and the Maxwell’s equations are  
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Lorient’s force has a form  
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By eliminating value we can form differential equation for the magnetic field 6 as e

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presented equations have simplified form  
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The whole equation system of this coupled magnetoelastic bending problem is consisted of 
the equations (11) and (2) together with the appropriate boundary and initial conditions and 
relation (10). 

Let us discus one special case when the magnetic field is transversal to the middle surface 
of the thin plate. The plate is rectangular with the material density   (Figure 1.). Using the 
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condition of the equality of the perpendicularity components on the magnetic induction on 
the boundary surfaces, the field forming in the plate is  

0
0

0 HH p 


 ,   00 ,0,0 pp HH 


.   (12) 

If the plate material has high electric conductivity we can say that  
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Appropriate deferential equation of the transversal vibrations, using (2), is  
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As induced tangential components of the field are small compared to the normal 
component, appropriate stresses on the upper and the lower side of the plate are formed 
under the influence of the normal components intensities 

 wxHH pp
2
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2
1300 1  .    (16) 

Using Maxwell’s formula for the stress on the splitted surface of the two magnetics, and the 
fact that the stress is directing to the medium of the smaller magnetic permeability, we can 
take next relation 
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Equation (15) has the form 
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Boundary conditions for the simply supported plate are  
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System of the equations (18) and (19) with the initial conditions (4) can be solved using 
integral transform technique – double sine Fourier transformation and the Laplace 
transformation. Obtained solution has next form  

   
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4. The conclusion 

The analysis of the obtained results can be done using relation for nm. In the cases of the 
paramagnetics and ferromagnetics we have (-0)>0 and the magnetic field is acting in the 
same direction of the elastic field. It means that the magnetic field is in corelation with the 
elasic field and they together gravity to return the plate in the equilibrium position. For 
diamagnetic materials we have (-0)<0 and the magnetic field is acting in opposite 
direction of the direction of the elastic field. 

Using relation (17) and Kirchoff hypothesis, on the base of a sign of , we have to 

conclude that in the case of the plate clamped on only one side we have opposite situation.   

w2
1
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Figure 2. Stress factor as a function of magnetic intensity 

 

On the base on the relation (17) stress factor, defined as 

w

TT
S f 2

1

3333







,     (21) 

is presented on diagram from figure 2. As can be noticed, considered problem is interesting 
only for ferromagnetic plates and very strong magnetic fields. 

In the reference 7 the hypothesis of the magnetoelasticity for real conductors were formed 
and the appropriate theory was developed. On that theory, for the case of the plate placed 
transversal to magnetic field we have the opposite conclusions. As that theory is not in 
agreement with Kirchoff hypothesis in the paper 12 modified hypothesis were defined. 
Than, the correct result can be involved and for a real conductors.  

Presented theoretical analysis has the assumption that the plate is subjected to hardly 
uniform and hardly transversal magnetic field. Obtained theoretical results are valid only 
for very thin plates. In the case of thick plate we have the boundary effect, and we have to 
involve in consideration finite element method.  
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