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Abstract— In this paper the nonlinear feedback control 
system is presented for the speed control in direct current - 
DC motor. Nonlinear functions of dead zone, Coulomb and 
viscous friction were investigated and used for obtaining the 
mathematical model. The effectiveness and the comparison 
between linear and nonlinear control signal have been 
confirmed using Matlab/Simulink software. From the 
conclusions, based on the experimental results, it is easy to 
see that nonlinear control system is more acceptable and has 
a better performance for speed control. The validity of using 
feedback linearization in DC motors has been proven. 

Keywords— feedback linearization; nonlinear systems; 
nonlinear control; identification 

I. INTRODUCTION  
Speed control in a direct current motor (DC) has been 

challenging, widely studied task. Many researches have 
been done to model electrical machines. For example, 
serial DC motor has often been modelled as linear object. 
On the other hand, models in which motor current or flux 
are found as essential parameters are considered to be 
nonlinear [1]. This paper presents the design and 
implementation concerning both, linear and nonlinear 
models for the system and it represents a continuation of 
the research done by the authors on the similar topic [2]. 
Disparate controllers have been proposed to lead the speed 
of DC machines into the desired value. For example 
Proportional-Integral-Derivative (PID) controller is a 
popular controller in industries due to simple structure, 
low cost and easy to implementation. It provides reliable 
performance for the system if PID parameter is identified 
properly. But it suffers due to lack of robustness [1]. The 
linear approximation, of the nonlinear state space 
representation of the series DC motor, around the 
equilibrium point and PI controller design the tracking 
performance is deteriorated in the periods in which the 
speed is reduced. This is due to the fact that the input 
signal is limited to a minimum of 0 [V]. That is, in this 
condition the motor is actually operating in open loop [3]. 

Besides linear, there are plenty of nonlinear controllers: 
the fuzzy logic and genetic – based new fuzzy models [4], 
artificial neural networks [5], adaptive control technique 
[6], and others. 

It is important to make this comparison to find out 
under what conditions a technique presents a superior 
performance over the other one and thus have the 

certainty when it is useful to implement nonlinear 
controllers, which have greater complexity [7]. 

The aim of this study is the development and later 
implementation of a nonlinear control system, by the 
feedback linearization method, for a laboratory installed 
DC motor, SRV02 Rotary Servo Base Unit, which has 
been considered as a single-input-single-output (SISO) 
system.  

Feedback linearization is an approach to nonlinear 
control design which has attracted a great deal of research 
interest in recent years. By a combination of a nonlinear 
transformation and state feedback (feedback linearization), 
the nonlinear control design is reduced to designing a 
linear control law [8]. The central idea of the approach is 
to algebraically transform a nonlinear system dynamics 
into a (fully or partly) linear one, so that linear control 
techniques can be applied. This differs entirely from 
conventional linearization in that feedback linearization is 
achieved by exact state transformations and feedback, 
rather than by linear approximations of the dynamics [9]. 
This technique has been successfully implemented in 
many applications of control, such as industrial robots, 
high performance aircraft, helicopters and biomedical 
dispositifs, more tasks used the methodology are being 
now well advanced in industry [10]. 

II. LINEAR MODEL OF SYSTEM DYNAMICS 
One of the first steps in the synthesis of a control 

system is constructing an accurate model, because it saves 
time and it brings the cost-effectiveness. An appropriately 
developed system model is essential for reliability of the 
designed control. A DC series motor is an example of a 
simple, controlled process that can serve as a vehicle for 
the evaluation of the performance of the various 
controllers [4]. 

A schematic diagram of the DC motor is given in Fig. 
1.  

_________________________________________________________________________________________________ 
207

mailto:vzaric@mas.bg.ac.rs


 

 
Fig. 1 SRV02 DC motor armature circuit and gain train [11] 

The equations that describe the motor electrical 
components are as follows:  

 𝑉𝑉𝑚𝑚(𝑡𝑡) = 𝑅𝑅𝑚𝑚𝐼𝐼𝑚𝑚(𝑡𝑡) + 𝐿𝐿𝑚𝑚
𝑑𝑑𝐼𝐼𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑑𝑑

+ 𝑒𝑒𝑏𝑏(𝑡𝑡)   (1) 

 
 𝑒𝑒𝑏𝑏(𝑡𝑡) = 𝑘𝑘𝑚𝑚𝜔𝜔𝑚𝑚(𝑡𝑡)   (2) 

where 𝑉𝑉𝑚𝑚 , 𝑒𝑒𝑏𝑏 ,  𝑘𝑘𝑚𝑚  and 𝜔𝜔𝑚𝑚  are motor voltage back 
electromotive voltage, back electromotive voltage 
constant and speed of the motor shaft, respectively. Since 
the motor inductance 𝐿𝐿𝑚𝑚 is much less than its resistance 
𝑅𝑅𝑚𝑚 , it can be ignored [11]. Solving the system of 
equations for motor current  𝐼𝐼𝑚𝑚  , we get an electrical 
equation of DC motor: 
 

 𝐼𝐼𝑚𝑚(𝑡𝑡) =
𝑉𝑉𝑚𝑚(𝑡𝑡) − 𝑘𝑘𝑚𝑚𝜔𝜔𝑚𝑚(𝑡𝑡)

𝑅𝑅𝑚𝑚
. 

 
  (3) 

The linear model can be obtained using the Second 
Newton’s Law of Motion and connection between 
moment of inertia of the load 𝐽𝐽𝑙𝑙 and of the motor shaft 𝐽𝐽𝑚𝑚, 
speed of the load shaft 𝜔𝜔𝑙𝑙, viscous friction acting on the 
motor shaft 𝐵𝐵𝑚𝑚  and on the load shaft 𝐵𝐵𝑙𝑙 ,  total torque 
applied on the load 𝜏𝜏𝑙𝑙 and on the motor 𝜏𝜏𝑚𝑚, with resulting 
torque acting on the motor shaft from the load torque 
denoted as 𝜏𝜏𝑚𝑚𝑚𝑚:    

The linear model can be obtained using the Second 
Newton’s Law of Motion and connection between 
moment of inertia, viscous friction constants, and torque 
of load and motor:    

 𝐽𝐽𝑙𝑙
𝑑𝑑𝜔𝜔𝑙𝑙(𝑡𝑡)
𝑑𝑑𝑑𝑑

+ 𝐵𝐵𝑙𝑙𝜔𝜔𝑙𝑙(𝑡𝑡) = 𝜏𝜏𝑙𝑙(𝑡𝑡)   (4) 

 

 𝐽𝐽𝑚𝑚
𝑑𝑑𝜔𝜔𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑑𝑑

+ 𝐵𝐵𝑚𝑚𝜔𝜔𝑚𝑚(𝑡𝑡)  + 𝜏𝜏𝑚𝑚𝑚𝑚(𝑡𝑡)  = 𝜏𝜏𝑚𝑚(𝑡𝑡)   (5) 

so the mechanical equation is: 
 

 𝐽𝐽𝑒𝑒𝑒𝑒
𝑑𝑑𝜔𝜔𝑙𝑙(𝑡𝑡)
𝑑𝑑𝑑𝑑

+ 𝐵𝐵𝑒𝑒𝑒𝑒𝜔𝜔𝑙𝑙(𝑡𝑡) = 𝜂𝜂𝑔𝑔𝐾𝐾𝑔𝑔𝜏𝜏𝑚𝑚(𝑡𝑡)   (6) 

   
where  𝐽𝐽𝑒𝑒𝑒𝑒  and 𝐵𝐵𝑒𝑒𝑒𝑒  are total moment of inertia and 
damping term. 𝜂𝜂𝑔𝑔  and 𝐾𝐾𝑔𝑔  are, respectively, the gearbox 
efficiency and the total gear ratio. Combining electrical 
and mechanical equations, assuming that motor torque is 
proportional to the voltage, the final equation becomes: 

 �
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜔𝜔𝑙𝑙(𝑡𝑡)� 𝐽𝐽𝑒𝑒𝑒𝑒 + 𝐵𝐵𝑒𝑒𝑒𝑒,𝑣𝑣𝜔𝜔𝑙𝑙(𝑡𝑡) = 𝐴𝐴𝑚𝑚𝑉𝑉𝑚𝑚(𝑡𝑡)   (7) 

 
where the equivalent damping term is given by: 

  

 𝐵𝐵𝑒𝑒𝑒𝑒,𝑣𝑣 =  
𝜂𝜂𝑔𝑔𝐾𝐾𝑔𝑔2𝜂𝜂𝑚𝑚𝑘𝑘𝑡𝑡𝑘𝑘𝑚𝑚 + 𝐵𝐵𝑒𝑒𝑒𝑒𝑅𝑅𝑚𝑚

𝑅𝑅𝑚𝑚
 

 
  (8) 

and the actuator gain equals: 
 

 𝐴𝐴𝑚𝑚 =
𝜂𝜂𝑔𝑔𝐾𝐾𝑔𝑔𝜂𝜂𝑚𝑚𝑘𝑘𝑡𝑡

𝑅𝑅𝑚𝑚
     (9) 

 
Linear mathematical model is: 
 
 𝐽𝐽𝑒𝑒𝑒𝑒𝜔̇𝜔𝑙𝑙(𝑡𝑡) + 𝐵𝐵𝑒𝑒𝑒𝑒,𝑣𝑣𝜔𝜔𝑙𝑙(𝑡𝑡) = 𝐴𝐴𝑚𝑚𝑉𝑉𝑚𝑚(𝑡𝑡). (10) 

 
Choosing 𝑦𝑦 = 𝜔𝜔𝑙𝑙  as output variable and 𝑢𝑢 = 𝑉𝑉𝑚𝑚  as 

input signal, state equation of the system is obtained as 
follows: 

 
 𝐽𝐽𝑒𝑒𝑒𝑒𝑦̇𝑦(𝑡𝑡) + 𝐵𝐵𝑒𝑒𝑒𝑒,𝑣𝑣𝑦𝑦(𝑡𝑡) = 𝐴𝐴𝑚𝑚𝑢𝑢(𝑡𝑡). (11) 
 
 

 
 

Fig. 2.  Block diagram of a linear system 

III. EXPERIMENTAL VERIFICATION OF THE OBTAINED 
LINEAR MATHEMATICAL MODEL 

Responses of the system represented with the block 
diagram in the Fig. 2 are shown in the Fig. 3 and Fig. 4. 
After recording the responses of the object, comparisons 
were made with the responses obtained by simulations of 
the linear model, for step and sinusoidal inputs [2]. 

 

 
Fig. 3 Experimental results: comparison between real and model data for 

step input 
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Fig. 4 Experimental results: comparison between real and model data for 

sinusoidal input 

 
 

IV. FEEDBACK LINEARIZATION 
Feedback linearization approach differs from the 

classical linearization (about the desired equilibrium 
point) in that no approximation is used; it is exact. 
Exactness, however, assumes perfect knowledge of the 
state equation and uses that knowledge to cancel the 
nonlinearities of the system. Since perfect knowledge of 
the state equation and exact mathematical cancellation of 
terms are almost impossible, the implementation of this 
approach will almost always result in a close-loop system, 
which is a perturbation of a nominal system whose origin 
is exponential stable. The validity of the method draws 
upon Lyapunov theory for perturbed systems [12] (that 
can be further studied in Chapter 9 of literature [12]). 
  Consider the single – input – single – output nonlinear 
SISO system [12]: 
 

 𝒙̇𝒙 = 𝒇𝒇(𝒙𝒙) + 𝑔𝑔(𝒙𝒙)𝑢𝑢 
y = h(x) (12) 

where f(x), g(x) and h(x) are sufficiently smooth in a 
domain 𝐷𝐷 ⊂ 𝑅𝑅𝑛𝑛  (the mapping  f : D ⟶ 𝑅𝑅𝑛𝑛 , g : D ⟶ 
𝑅𝑅𝑛𝑛 are vector fields on D) and  𝒙̇𝒙 = [𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑛𝑛 ]𝑇𝑇  is a 
state vector. It is necessary to find a state feedback control 
𝑢𝑢 , that transforms the nonlinear system into an equivalent 
linear system. Clearly, generalization of this idea is not 
possible in every nonlinear system: there must be a certain 
structural property that allows performing in such a 
manner of cancellation. 

Using feedback to cancel nonlinearities requires the 
nonlinear state equation to have a structure: 
   Definition [12]: 
 
 𝒙̇𝒙 = 𝑨𝑨𝑨𝑨 + 𝐵𝐵𝛾𝛾(𝒙𝒙)[𝑢𝑢 −  𝛼𝛼(𝒙𝒙)] (13) (13) 
where  A is n ⨯ n and B is n ⨯ p matrix, the functions 𝛼𝛼 : 
𝑅𝑅𝑛𝑛⟶ 𝑅𝑅 𝑝𝑝 , 𝛾𝛾  : 𝑅𝑅𝑛𝑛⟶ 𝑅𝑅 𝑝𝑝 ⨯ 𝑝𝑝  are defined on domain 𝐷𝐷 ⊂
𝑅𝑅𝑛𝑛 that contains the origin. Furthermore, two conditions 
must be satisfied. The first one is that the pair (A, B) must 
be controllable. The second one is that γ(x) must be 
nonsingular for all x ∈ D. This is consequence of the 
control law form: 𝑢𝑢 = 𝛼𝛼(𝑥𝑥) + 1

𝛾𝛾(𝑥𝑥)
𝑣𝑣 that provides a new 

control signal 𝑣𝑣. Even if the state equation does not have 
the structure (13), sometimes it is possible to execute 
feedback linearization for another choice of variables. 
Therefore, a more comprehensive definition is given [12]. 

A nonlinear system:  
 
 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) + 𝐺𝐺(𝑥𝑥) 𝑢𝑢 (14) 

where f : D ⟶ 𝑅𝑅𝑛𝑛 and G : D ⟶ 𝑅𝑅𝑛𝑛 ⨯ 𝑝𝑝 are sufficiently 
smooth on a domain 𝐷𝐷 ⊂   𝑅𝑅𝑛𝑛 , is said to be feedback 
linearizable (or input – state linearizable) if there exist a 
diffeomorphism T : D ⟶ 𝑅𝑅𝑛𝑛  such that  𝐷𝐷𝑧𝑧  = T(D) 
contains the origin and the change of variables 𝑧𝑧 = 𝑇𝑇(𝑥𝑥) 
transforms the system (12) into the form: 

 
 𝑧̇𝑧 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝛾𝛾(𝑥𝑥)[𝑢𝑢 − 𝛼𝛼(𝑥𝑥)] (15) 

with (A,B) controllable and γ(x) nonsingular for all x ∈ D. 
 

V. DETERMINATION OF THE RELATIVE DEGREE 
The relative degree of a linear system is defined as the 

difference between the poles (degree of the transfer 
function's denominator polynomial number) and zeros 
(degree of its numerator polynomial). To extend this 
concept to nonlinear systems more mathematical 
treatment will be needed. The following definition is 
given and repeated here for completeness: Definition [13]: 
The system, outlined in (12), is said to have relative 
degree 𝑟𝑟 at a point 𝑥𝑥0  if: 

i) 𝐿𝐿𝑔𝑔 𝐿𝐿𝑓𝑓𝑘𝑘 ℎ(𝑥𝑥) = 0 for all 𝑥𝑥 in a neighborhood of 𝑥𝑥0 and 
all 𝑘𝑘 < 𝑟𝑟 − 1 

ii) 𝐿𝐿𝑔𝑔 𝐿𝐿𝑓𝑓𝑟𝑟−1 ℎ(𝑥𝑥) ≠ 0 

The terms 𝐿𝐿𝑔𝑔  and 𝐿𝐿𝑓𝑓𝑘𝑘  represent the Lie derivative of 
ℎ(𝑥𝑥) taken along 𝑔𝑔(𝑥𝑥) and k − times along (𝑥𝑥)  , 
respectively.  

NONLINEAR MATHEMATICAL MODEL 
The nonlinear mathematical model of the DC motor 

was obtained considering the speed dependent friction 
nonlinearity. Reference [14] shows that in this case the 
nonlinear mathematical model of DC motor can be 
adopted as follows: 

 𝐽𝐽𝑒𝑒𝑒𝑒𝜔̇𝜔𝑙𝑙 + 𝑇𝑇𝑠𝑠𝑠𝑠(𝜔𝜔𝑙𝑙) + 𝐵𝐵𝑒𝑒𝑒𝑒,𝑛𝑛 𝜔𝜔𝑙𝑙 = 𝐴𝐴𝑚𝑚𝑉𝑉𝑚𝑚 (16) 
The part of the obtained friction curve 𝑇𝑇𝑠𝑠𝑠𝑠(𝜔𝜔𝑙𝑙), for low 

angular velocity values, where the Stribeck effect is 
dominant, is shown in Fig. 5. It is assumed that friction 
characteristics are symmetrical, for negative and positive 
values of angular velocity. 

TABLE I THE NUMERICAL VALUES OF THE PLANT 
PARAMETERS 

Parameters Values and units 
Jeq  
 

0.0021 kg𝑚𝑚2 

Rm 2.6 Ω 
kt 0.0077 Νm/A 
ηm 0.69 
ηg 0.9 
Kg 70 

It is assumed that friction characteristics are 
symmetrical, for negative and positive values of angular 
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velocity. Applying standard optimization techniques with 
Matlab, the friction parameters were obtained (16). 

In order to overcome the jump discontinuity of the 
proposed friction model, at 𝜔𝜔𝑙𝑙 = 0, that jump is replaced 
by a line of finite slope, up to a very small threshold ε, 
whose boundaries are given with red dash line, as is 
shown in Fig. 5 [14]. 

 

 
Fig. 5. Friction characteristics of DC motor [14] 

This the line of finite slope will be used only for 
comparison with the hyperbolic tangent function (Fig.  6), 
because method of feedback linearization requires 
differentiable functions (as can be seen from the given 
definitions in the previous section). In this way only 
Coulomb and viscous friction is modelled and static 
friction is neglected [2]. 
 

 
Fig. 6.  Differential function of the hyperbolic tangent   

Choosing  𝑥𝑥 = 𝜔𝜔𝑙𝑙  as state variable,  𝑦𝑦 =  𝜔𝜔𝑙𝑙  as 
measured variable and 𝑢𝑢 = 𝑉𝑉𝑚𝑚  as control variable and 
denoting nonlinearity by 𝑓𝑓(𝑥𝑥) , state equation of the 
system was obtained as follows: 

 
To ensure that this model is an equivalent 

representation of the original system, an experiment was 
performed, with the results shown below on Fig. 7 for step 
and Fig. 8 for sinusoidal response. 

 
Fig. 7.  Experimental results: comparison between real and model data 

for step input 

 

 
Fig. 8.  Experimental results: comparison between real and model data 

for sinusoidal input 

VI. EXPERIMENTAL RESULTS 
Applying Definition [12] to the system (18) – (19) 

yields: 
 

 𝐴𝐴 = −
𝐵𝐵𝑒𝑒𝑒𝑒,𝑛𝑛

𝐽𝐽𝑒𝑒𝑒𝑒
 (20) 

 

 𝐵𝐵 =  
𝐴𝐴𝑚𝑚
𝐽𝐽𝑒𝑒𝑒𝑒

 (21) 

 
 

 

𝛼𝛼(𝑥𝑥) =  
𝐽𝐽𝑒𝑒𝑒𝑒
𝐴𝐴𝑚𝑚

𝑓𝑓(𝑥𝑥) (22) 

 
 𝛾𝛾(𝑥𝑥) = 1.   (23) 

First condition is met: 
 

 𝑈𝑈 = 𝐵𝐵. (24) 
 

Order of system is n = 1 and, because rank U =n, the 
pair (A, B) is controllable: 

 𝑈𝑈 = 𝐵𝐵 = 𝐴𝐴𝑚𝑚
𝐽𝐽𝑒𝑒𝑒𝑒

. (25) 
System transformation is not required and all functions 

are smooth and differentiable. γ(x) is not equal to zero, so 
the second condition is also met. With both conditions 
met feedback linearization is permitted. 

The first derivative of the system (18) – (19) output 
depends on the control signal, which means that the 
relative degree of the system is 1: 

 
 𝑦𝑦 = 𝑥𝑥. (26) 

 
 

𝑦̇𝑦 =  𝑥̇𝑥 = 𝐿𝐿𝒇𝒇 ℎ(𝑥𝑥) + 𝐿𝐿𝒈𝒈ℎ(𝑥𝑥) 𝑢𝑢 (27) 

 
𝑇𝑇𝑠𝑠𝑠𝑠 =  0.0174𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝑙𝑙) +

0.0087𝑒𝑒−
𝜔𝜔𝑙𝑙

0.064 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝑙𝑙),   𝐵𝐵𝑒𝑒𝑒𝑒,𝑣𝑣 = 0.0721  
(17) 

 𝑥̇𝑥 = −
𝐵𝐵𝑒𝑒𝑒𝑒,𝑛𝑛

𝐽𝐽𝑒𝑒𝑒𝑒
𝑥𝑥 − 𝑓𝑓(𝑥𝑥) +

𝐴𝐴𝑚𝑚
𝐽𝐽𝑒𝑒𝑒𝑒

𝑢𝑢  (18) 

 𝑦𝑦 = 𝑥𝑥 (19) 
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𝑥̇𝑥 = −  
𝐵𝐵𝑒𝑒𝑒𝑒,𝑛𝑛

𝐽𝐽𝑒𝑒𝑒𝑒
𝑥𝑥 − 𝑓𝑓(𝑥𝑥) +

𝐴𝐴𝑚𝑚
𝐽𝐽𝑒𝑒𝑒𝑒

 𝑢𝑢  (28) 

 
 
 

𝐿𝐿𝑓𝑓 ℎ(𝑥𝑥) =  −  
𝐵𝐵𝑒𝑒𝑒𝑒,𝑛𝑛

𝐽𝐽𝑒𝑒𝑒𝑒
𝑥𝑥 − 𝑓𝑓(𝑥𝑥)  (29) 

 
 

𝐿𝐿𝑔𝑔ℎ(𝑥𝑥) =  
𝐴𝐴𝑚𝑚
𝐽𝐽𝑒𝑒𝑒𝑒

 (30) 

 
Conclusion is that relative degree of this system is 

equal to the system order 𝑟𝑟  = 1. The desired time – 
domain specifications for controlling the position of the 
load shaft are overshoot: PO < 5% and peak time: 𝑡𝑡𝑝𝑝 ⩽
0.05 𝑠𝑠.  Choosing the control signal in the following form: 

 

 𝑢𝑢 =
𝐽𝐽𝑒𝑒𝑒𝑒
𝐴𝐴𝑚𝑚

[𝑓𝑓(𝒙𝒙) + 𝑣𝑣]   (31) 

 
  with 𝑣𝑣 =  𝐾𝐾𝑝𝑝𝜀𝜀 + 𝐾𝐾𝑖𝑖 ∫ 𝜀𝜀𝑑𝑑𝜏𝜏𝑡𝑡

0 , where 𝐾𝐾𝑝𝑝 = 1.34 , 𝐾𝐾𝑖𝑖 =
124.9, are obtained by calculating the minimum damping 
ratio and natural frequency and 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 is desired output or 
reference, system is linearized.  Linear control is obtained 
in the same way, with the same coefficients, but without 
canceling the nonlinearity:  

 

 𝑢𝑢𝑙𝑙 =  𝐾𝐾𝑝𝑝𝜀𝜀 + 𝐾𝐾𝑝𝑝 � 𝜀𝜀𝑑𝑑𝜏𝜏
𝑡𝑡

0
 (32) 

The experiments were performed with Quanser rotary 
servo motor, SRV02. This model is equipped with the 
optical encoder and tachometer, for motor position and 
speed measuring, respectively [14]. 

 

 
Fig. 9.  Experimental results: speed tracking of step signal for the linear 

and nonlinear controller 

The advantages of a nonlinear controller, for a step input, 
are seen in the shorter peak time and a little bit faster 
system response, although the output controlled with 
linear controller has a slightly smaller overshoot. Greater 
superiority of the nonlinear controller can be observed 
from the sinusoidal inputs (or any other inputs that consist 
change of the direction in the rotation of the load shaft in 
the motor because of the friction effect, which is the most 
noticeable in those cases). 

 
Fig. 10. Experimental results: speed tracking of sine signal for the 

nonlinear and nonlinear controller  

Fig. 11.  Detail from Fig. 10. 

Fig. 12.  Experimental results: position tracking of sine signal for the 
linear and nonlinear controller 

 

 
Fig. 13.  Detail from Fig. 12. 
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 Fig. 14. Detail from experimental results: position tracking of chirp 
signal for the nonlinear controller 

 

Fig. 15.  Detail from experimental results: position tracking of chirp 
signal for the linear controller. 

It can be observed, from the Fig. 9 - 15, that the specific 
requirements are met. The overshoot and the peak time are 
in the domain of desired values. Furthermore, it is 
observed that the nonlinear controller is more convenient 
and has better achievements for speed management. 

VII. CONCLUSION 
The feedback linearization method was proposed for 

controlling the DC motor. The goal was to confirm this 
method for controlling speed of the load shaft. After it has 
been shown that linear equations do not track the behavior 
of the object well enough, the nonlinear model was 
proposed by including Stribeck model of the friction. The 
conditions for fulfilling feedback linearization approach 
were studied. In order to satisfy those conditions an 
approximation of the function, which represent 
nonlinearity, was found as hyperbolic tangent.  
It could be noted, through the experiment and analysis 
results, that the desired response was followed by the 
plant response. The comparison of the linear and 
nonlinear controller is given. The results show that both of 
the controllers are able to satisfy requirements, but that 
nonlinear controller gives better results. 
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