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Abstract— In this paper a method is presented for the 
classification of COVID-CT (CT_COVID, CT_NonCOVID)  
image data set. Four different types of deep convolutional 
neural networks are proposed, two with the architecture 
resembling the VGGNet, one resembling the LeNet-5 and 
one using transfer learning. In addition, neural networks 
utilized the following techniques: decay, dropout and batch 
normalization. Since we needed to combat a significantly 
small dataset, we used data augmentation in order to 
transform and expand our dataset. Moreover, 
juxtapositions were made when observing the results given 
by these four neural networks, as well as the affect made by 
two different optimizers. The training of the neural 
networks was done using small batches with a binary cross 
entropy loss function, in order to achieve an up to scratch 
classification accuracy. 

Keywords— deep learning; convolutional neural networks; 
image classification; data augmentation; batch 
normalization; COVID-CT dataset; dropout; transfer 
learning. 

I. INTRODUCTION 
Convolutional neural networks (CNNs) are a subset of 

deep neural networks, which are used for classifying 
images. The main idea is to take a set of images correctly 
labeled as the input data and used them to train our neural 
network so as to achieve an output with an appropriate 
categorization [1]. The inspiration for CNNs comes from 
the observation of the animal visual cortex. Conversely, 
the flourishing of these networks only came recently due 
to the increase of computational power and the 
development of many possible libraries that could be 
used to battle complex mathematically based problems, 
such as back propagation. The first paper [2] that 
introduced the convolutional neural networks as we have 
come to know them today has demonstrated that a model 
which consists of a multilayered network can be 
successfully used for recognition of stimulus patterns 
according to the differences in their shapes. However, 
there is some debate that the true begging was when a 
paper in 1990 [3] demonstrated that a CNN model which 
aggregates simpler features into progressively more 
complicated features can be successfully used for 
handwritten character recognition. In 2012 the ImageNet 
Large Scale Visual Recognition Challenge [4], at that 
moment consisting of he 1000 categories and 1.2 million 
images received a submission that would propel the 

CNNs development once again. AlexNet [5] achieved a 
top-5 error of 15.3% , which at the moment surpassed by 
an astonishing 10% all of the other submissions, and had 
a much faster training time as it was implemented on a 
GPU. The following year, the same challenge, now with a 
larger dataset was won by ZFNet [6]. It had the top-5 
error of 14.8%, however even more so important is that it 
was able to reduce the first layer filter size from  to  and 
had a stride of 2, rather than 4 in the pooling layer.  

VGG16 is a convolutional neural network model 
proposed in the paper [7]. This model achieved 92.7% 
top-5 test accuracy. The main contribution of this model 
was that it used  kernel sized filters, instead of the  . It 
was trained for weeks using GPUs, and had a huge 
computational cost. However, it introduced a new idea 
using the same kernels throughout the entire architecture, 
this aided in generalization for classification problems 
outside of what they were originally trained on. If for a 
second we go back to LeNet [8] that was the foundation 
for all of these previously mentioned CNNs we can 
observe the main sequence of three layers convolution, 
pooling and non-linearity still play the key part, and 
sometimes it is beneficial not to import to many layers 
when training a smaller dataset [9]. Finally, in recent 
years transfer learning [10], which addresses cross 
domain learning problems by extracting useful 
information from data in a related domain and 
transferring them for being used in target tasks, has been 
demonstrating a significant impact. 

Coronavirus disease 2019 (Covid19) is an infectious 
disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) [11]. It was first identified 
in December 2019 in Wuhan, Hubei, China, and has 
resulted in widespread pandemic. At the moment 
Covid19 has caused over one million deaths all around 
the world and counting. There are several methods that 
include quick testing, however in order to grasp the full 
scope of the problem some of the most important ways to 
battle this disease is to examine the computed 
tomography (CT) scan images. Chest CT scanning in 
patients with Covid19 has shown ground-glass 
opacification, possibly with consolidation, as well as 
cases of pleural effusion, pleural thickening and 
lymphadenopathy. Data is collected daily and it is still 
scarce, howbeit one of the first datasets was proposed and 
constructed for a marvellous paper [12], that is still 
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pending publication at the moment, in order to try and aid 
the ongoing battle against the pandemic. In it multi-task 
learning and contrastive self-supervising learning were 
used and achieved an accuracy of  89% in distinguishing 
between CT_COVID and CT_NonCOVID images. In 
addition to all that was stated beforehand the pivotal goal 
of this paper is to try and implement various CNNs to 
combat this classification problem and if possible obtain 
a slightly better classification accuracy.  

This paper is organised in the following manner: 
section 2 represents a description of the dataset. In 
section 3 the main methods which are used are explained 
in detail, as well as the architecture of the CNN. As a 
result, in section 4 we discuss the results and compare the 
methods, based on accuracy and loss functions. In section 
5, following a short summary a conclusion is made and 
future work and possible directions are stated. 

II. DATASET AND ITS IMPLEMENTATION 
The dataset which is used in this paper consists of 672 

CT scan images from patients [13], including 349 
CT_COVID and 323 CT_NonCOVID. We took the 
approach of data augmentation, where we increase the 
diversity of data by altering the original samples using 
translation, rotation, shearing, flips and adding them to 
the training set. Data augmentation covers a wide range 
of techniques used to generate new training samples 
using the original input images, by applying random 
jitters and perturbations in such a manner as to not 
change the class labels. The main idea here is to decrease 
the generalization error of the testing (sometimes at the 
expense of the training error) so as to achieve an increase 
of generalizability of the model. The neural network is 
then using slightly modified versions of the input data 
and it is able to learn more robust features. 

However, we introduced scaling of the data, as well,  
by computing a weight for each class during the training 
and as an outcome amplifying the loss by a larger weight 
when we approach the smaller dataset. Even though the 
difference is small in this example, this benefited the 
training process. During the preprocessing of images we 
resized all the images to a fixed size 32𝑥𝑥23 , and in doing 
so we also maintained the aspect ratio. The reasoning 
behind this being that all the images in a dataset need to 
have a fixed feature vector size. This means all the 
images will have identical widths and heights, making it 
easier to quickly load and preprocess a dataset and briskly 
move through our convolutional neural network. The 
aspect ratio will enable us to resize the images along the 
shorter dimension, be it width or height, and in cropping 
it, will maintain the ratio. It is important to note that this 
step is not necessary if you are not working with a 
difficult dataset. Notwithstanding its benefits, it was 
implemented in this particular dataset. 

A. ImageNet dataset 
ImageNet is a dataset consisting of over 14 million 

images, which belong to one thousand classes. It was 
used as the dataset in the highly respected convolutional 
neural network model VGG16 which was proposed by 
Oxford scientists. In this paper the VGG16 network was 
used as a pre-trained convolutional neural network, in 
order to incorporate transfer learning. 

III.    METHODS DESCRIPTION 
In order to try and reduce overfitting and increase our 

classification accuracy on the CT_COVID dataset we 
endeavour in performing three types of neural network 
training techniques: 

• dropout and decay 
• batch normalization 
• transfer learning (neural networks as feature 

extractors) 
The first technique that is used in order to improve the 

generalization error in the convolutional neural network 
is dropout [14]. Dropout is nothing more than a form of 
regularization, which succours us in controlling the 
model capacity. The dropout layers are arranged in the 
network in such a manner that we have randomly 
disconnected nodes by a probability of 0.3 in the first few 
layers; and 0.6  probability in the last layer. The reason 
for this is that if the first layers are dropped by a higher 
probability, then that will later affect the training. The 
dropout is implemented after the pooling layer, and 
before the next convolutional layer (or last flatten and 
dense layers). This was used for the neural networks 
resembling the VGG with data augmentation (DA). The 
network resembling the VGG without DA used a dropout 
with a probability 0.25 in the first few layers and double 
the increase in the last layer, while the LeNet network did 
not utilize this method. Decay that is used in this neural 
network is a standard decay that can be obtained using 
the Keras library in Python. Since the learning rate  
controls the step that is made along the gradient, larger 
steps are usually used in the beginning to make sure that 
we do not stagnate in the local optima, while smaller 
steps are used deeper in the network and near the end of 
the convolution in order to converge to a global minimum. 
We have initialized the learning rate to be 0.01 (for the 
networks with DA) and 0.05 (for the network without 
DA), and applied the following formula to adjust it after 
each epoch, 

 𝛼𝛼𝑖𝑖+1 = 𝛼𝛼𝑖𝑖
1+𝑘𝑘∙𝑖𝑖

 (1) 

where 𝛼𝛼 is the current learning rate, 𝑖𝑖 is the epoch and 𝑘𝑘 
is the decay calculated as the division between the 
learning rate and the number of epochs. This type of 
adjustment of the learning rate each epoch, can increase 
accuracy, as well as reduce the loss function and the time 
necessary to train a network. Batch normalization [15] is 
used to normalize the activations of a given layer’s inputs 
by applying mean and standard deviation before passing 
it onto the next layer. In addition, the covariate shift 
refers to a change in the distribution of the input variables 
which are present in the training and validation data. 
Since it has been proven that the training of the neural 
network is the most coherent when the inputs to each 
layer are alike, the main intention is that even when the 
explicit values of inputs layers to hidden layers change, 
their mean and standard deviation will still remain 
relatively the same, thus reducing the covariate shift. 
Batch normalization has demonstrated an immensely 
effective approach to reducing the number of epochs 
necessary for training by allowing each layer to learn 
independently. Here the idea that differs from the original 
paper and is first proposed in [16] states that the batch 
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normalization should be implemented after the activation 
layer. The main reasoning behind this is that we want to 
avoid setting the negative values coming out of the 
convolution layer to zero. Instead we pass them through 
the batch normalization layer, right after the activation 
(ReLU) layer, and assure that some of the features that 
otherwise would not have made it do. This yields a higher 
accuracy and lower loss, and is to this day a debate 
amongst the creators of Keras. 

 Finally, the second technique is transfer learning [17], 
a machine learning technique where networks can behave 
as feature extractors. Transfer learning is nothing more 
than the ability to use a pre-trained model to learn 
patterns from data, on which the original network was not 
trained on. As previously stated deep neural networks 
trained on a large scale dataset ImageNet have 
demonstrated to be superb at this task.  

 When treating networks as feature extractors we 
choose a point, in this case before the fully connected 
layer and remove it. Subsequently, in this particular 
example while using the VGGNet pre-trained on the 
ImageNet we removed the fully connected layer and 
stopped at the last pooling layer where the output shape is 
7 × 7 × 512, 512 filters with the size 7 × 7. Now, our 
feature vector has 7 × 7 × 512 = 25088  values and it 
will be used to quantify the contents of the images, which 
were not included in the original training process. The 
format which allows us to extract these features is the 
hierarchical data format version 5 (hdf5), which is used to 
store and organize large amount of data.  

 Transfer learning is an optimization, which has been 
proven to yield a better performance and drastically save 
time. This is precisely why we used it in this paper, to see 
if we could obtain a higher classification, and perform 
faster. Transfer learning relaxes the hypothesis that the 
training data must be independent and identically 
distributed with the test data, which we clearly stated as a 
must in the beginning of this chapter. Moreover, transfer 
learning is able to solve the problem of insufficient 
training data. Furthermore, there is the option to remove 
the fully connected layers of the existing network in order 
to add a new fully connected layer to the CNN and fine 
tune the weights to recognize object classes. However, 
here it was not implemented since treating networks as 
arbitrary feature extractors was enough. 

A. Convolutional Neural Network 
Into the bargain all that was explained, we picked the 

following CNN architecture shown in Fig. 1. It is 
consisted of multiple convolutional and pooling layers, as 
well as the fully connected layers. The first two 
convolutional layers learn 32 filter each with a size 3 × 3. 

Sequentially, the fourth and the fifth layers learn 64 
filters with the size 3 × 3  and the last two learn 128 
filters with the size 3 × 3 . The pool layer is used to 
reduce the computational load and the number of 
parameters, thus reducing the risk of overfitting. We used 
a max pooling layer with a pool size 2 × 2 and a stride 2. 
Finally, we have the fully connected layer which consists 
of 2048 parameters, input values which learn 512 nodes. 
The activation layers which were used are Rectified 
Linear Unit (ReLU) defined as, 

 𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥) (2) 

where 𝑥𝑥  is the input into the neuron. Softmax or the 
normalized exponential function assigns normalized class 
probabilities for each prediction, and is represented by, 

 𝑆𝑆(𝑦𝑦𝑖𝑖) = 𝑒𝑒𝑦𝑦𝑖𝑖

∑ 𝑒𝑒𝑦𝑦𝑗𝑗𝑘𝑘
𝑗𝑗=1

 (3) 

for 𝑖𝑖 = 1, … , 𝑘𝑘 and z = (𝑧𝑧1, … , 𝑧𝑧𝑘𝑘) ∈ ℝ𝑘𝑘. 
Softmax takes an input vector and normalizes it into a 
probability distribution between [0,1]. Therefore the sum 
of all output values is equal to 1, which in turn makes the 
training converge more quickly. In order to achieve this, 
before training we must include one hot encoding in order 
to convert the labels from integers to vectors. 

 

 
Fig. 1 A schematic of the convolutional neural network without batch 
normalization, that resembles the VGGNet. All of the convolutional 
layers that precede the fully connected layers have filters 32, 64, 128 

that are the same size . The probability distribution is applied in the last 
layer using Softmax and the output yields two class labels CT_Covid 

and CT_NonCovid. 

In addition, later when we want to add the batch 
normalization layer, we can apply it after each activation 
layer, as discussed previously. 

B. Implementation and training of a simpler version of 
the LeNet 

    Taking into the bargain all that was explained before, 
the implementation of this CNN was done by using the 
Python programming language. We used Keras [18] 
which is mainly used for implementing of activation 
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functions, optimizers, convolutional and pooling layers, 
and is actually able to do backpropagation automatically.  

Right after we load and preprocess our images dataset 
it is necessary to use one hot encoding. This is done by 
using a part of the Sklearn library LabelBinarizer. 
However beforehand we must split the training data and 
the validation data, here we opted to split it 75% and 25%, 
sequentially. The next step is the implementation of an 
optimizer, here we used the Adam optimizer. The Adam 
optimizer is short for Adaptive Moment Estimation 
optimization algorithm [19]. Its main purpose is to 
attempt to rectify the negative effects of a globally 
accumulated cache by converting the cache into an 
exponentially weighted moving average, just like the 
Root Mean Square Propagation (RMSProp). The Adam 
optimizer is essentially a combination of momentum and 
RMSProp. Momentum is implemented into the neural 
network, by adding a temporal element to the update 
vector of the past time step to the current update vector, 

∆𝒘𝒘(𝑘𝑘) =  −𝛼𝛼∇𝐸𝐸(𝑘𝑘) + 𝛾𝛾∆𝒘𝒘(𝑘𝑘 − 1)                  (4) 

where 𝛾𝛾 is usually set between 0.8 and 0.9 and function 𝐸𝐸 
is the index of performance. 

This network resembles the architecture of the LeNet 
in such a way that we have 5 × 5 filters with a stride of 
20 in the first convolution layer, and 50 in the second 
convolutional layer. The mini batch method were the 
neural network selects a part of the training data and 
updates the weights, but trains the network with the 
average weight update. Usually the smallest standard 
batch size which is used is 32, however we opted to use 
24, as it complemented our data. The reasoning behind 
this is that present research confirms that using small 
batch sizes achieves the best training stability and 
generalization performance, for a given computational 
cost, across a wide range of experiments. The loss 
function which was used is the binary_crossentropy 
function. This was done because we only had two classes, 
if there were more we would have had to use 
categorical_cross_entropy, but have in mind we could 
have used categorical as well, but studies show that 
binary is much more efficient in this case. The training of 
the CNN was done in 30 epochs. 

C. Implementation and training of a simpler version of 
the VGGNet 
We constructed two different neural networks 

resembling the VGG, the first one had a dropout of  0.25 
in the first few layers and no data augmentation or batch 
normalization layers.  The training data and the validation 
data were split 75% and 25%, sequentially. Here we 
utilized the SGD optimizer, which was set to a learning 
rate of  0.05, with a decay in order to slowly reduce the 
learning rate over time and converge to the global 
solution more efficiently. Decaying the learning rate is 
beneficial in reducing overfitting and obtaining a higher 
classification accuracy. The smaller the learning rates are, 
the smaller the weight update will be enabling us to 
converge. The gradient descent method is an iterative 
optimization algorithm that operates over an optimization 
surface. It is a simple modification to the standard 
algorithm of gradient descent. The main purpose of SGD 
is to calculate the gradient and adjust the weights of the 
training data (but not on the whole dataset, but rather on a 

mini batch). All the images were resized to 32 × 32 
aspect ration, the batch size we used was again 24 and the 
loss fucntion was the binary_crossentropy function. The 
training of the CNN was done in 30 epochs. 
      The second neural network resembling the VGG had 
a similar architecture as depicted in Fig. 1, with the 
addition of batch normalization layers. Here our training 
data and the validation data were split 80% and 20%. 
Here we trained our network once with the SGD 
optimizer and once more with the Adam optimizer. The 
learning rate was set to  0.01, with decay and adjustment 
after each epoch. Both times data scaling, as well as data 
augmentation was used. All the images were resized to 
32 × 32 aspect ration, the batch size we used was 32 and 
the loss function was the binary_crossentropy function. 
The training of the CNN was done in 30 epochs (utilizing 
the Adam optimizer) and in 100 epochs (using the SGD 
optimizer). 

 After the training we implemented a method that 
takes the weights and the state of the optimizer and 
serializes them to the disc in a hdf5 format, in order to 
load them and test the labeling. 

D. Implementation using transfer learning 
The first step in this process is to extract features from 

VGG16, in doing so we are forward propagating the 
images until a given layer, and then taking those 
activations and treating them as feature vectors. Here the 
main two differences are that we used the standard a 
batch size of 32 and the training and test split is done at 
the same time as training, we again split it into 75% 
training data and 25% test data. Once the extraction of the 
features was done, we trained the classifier on those 
features. We also implement the GridSearchCV class to 
assists us to turn the parameters to the LogisticRegression 
classifier.  

The final results are presented in the following 
chapter, comparisons are made and a visual 
representation of the graphs is shown using Matplotlib in 
order to estimate if there is overfitting. 

IV.    RESULTS AND COMPARISONS 
The results of the CNN resembling LeNet are 

presented in Table 1. We clearly see that our neural 
network has classification accuracy of 68%. 

 

 
Fig. 2 A graph depicting a convolutional neural network that resembles 

the LeNet – training and validation loss and accuracy curves 

In the following table we use the term precision which 
represents true positive divided by a sum of true positive 
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and false positive, recall which represents true positive 
divided by a sum of true positive and false negative.  
Therefore, precision is good to determine when the cost 
of false positives is high, on the other hand recall tells us 
the number of correctly labeled data. Ultimately, we have 
the f1-score used to find the weighted average of recall 
and precision. In analyzing the curves shown in Fig. 2 we 
see that our network learned until the 30 epoch, beyond 
that overfitting would occur, as we can clearly see a 
generalization gap forming in both loss and accuracy 
curves. Fig. 3 depicts the results when using the network 
resembling the VGG without data augmentation, here we 
can observe that the training and validation curves show a 
wide generalization gap at the 30 epoch resulting in 
overfitting. The classification accuracy is 76% (Table 1.), 
this is no good if we have overfitting, that is why the next 
approach uses data augmentation in order to combat this 
problem. 

 
Fig. 3 A graph depicting a convolutional neural network without data 

augmentation and with batch normalization, that resembles the VGGNet 
– training and validation loss and accuracy curves 

Fig. 4 represents the neural network resembling the 
VGG, with data augmentation and the SGD optimizer. 
The classification accuracy obtained after 30 epochs is 
72%, and the training and loss curves show slight 
deviations.  

 
Fig. 4 A graph depicting a convolutional neural network with data 

augmentation and batch normalization (optimizer SGD), that resembles 
the VGGNet – training and validation loss and accuracy curves – 30 

epochs 

The same classification accuracy is acquired when 
utilizing the Adam optimizer, only then we need 100 
epochs to achieve so. Fig. 6 depicts the same neural 
network explained beforehand when using the SGD 
optimizer over the course of 100 epochs resulting in a 
classification accuracy of 75%. We can conclude that 

data augmentation does indeed help in reducing the 
generalization gap, however this particular dataset was 
quite faulty to begin with. 

 
Fig. 5 The pre-trained CNN weights are loaded from the disk and make 
predictions for 30 randomly selected images. In the upper left and right 
corner we have an example of CT_COVID scans, and in the lower left 

and right corner an example of CT Non_COVID scans. 

 
Fig. 6 A graph depicting a convolutional neural network with data 

augmentation and batch normalization (optimizer SGD), that resembles 
the VGGNet – training and validation loss and accuracy curves – 100 

epochs 

TABLE I 
 EXPERIMENTAL RESULTS  

 precision recall f1-score 
CNN resembling LeNet (Adam optimizer, with data 

augmentation) 
macro avg 0.68 0.68 0.67 

CNN resembling VGG (SGD optimizer, without data 
augmentation, without batch normalization) 

macro avg 0.76 0.71 0.69 
CNN resembling VGG (Adam optimizer, with data 

augmentation, 100 epochs, with batch normalization) 
macro avg 0.72 0.72 0.72 

CNN resembling VGG (SGD optimizer, with data 
augmentation, 30 epochs, with batch normalization) 

macro avg 0.72 0.70 0.69 
CNN resembling VGG (SGD optimizer, with data 

augmentation, 100 epochs, with batch normalization) 
macro avg 0.75 0.75 0.75 

Transfer learning using VGG16 

macro avg 0.90 0.91 0.90 

 
In Table 1 we can see the results obtained by using 
transfer learning have a classification accuracy of 90%, 
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which is by far the best. Furthermore, we observe that the 
CNN in Fig. 4 is the best one if we opted to use a method 
that does not include transfer learning. Nevertheless, it is 
clear then when taking into account all four approaches 
we shall choose transfer learning, because not only does 
it yield a higher classification accuracy, but it also wasted 
less computational time. Compared with the original 
paper that combated this classification problem [12] we 
were able to achieve only slightly better classification 
accuracy, with an increase being 1%. 

V. CONCLUSIONS 
 In this paper we described four different approaches of 

using convolutional neural networks to classify a dataset 
consisting of CT_COVID and CT_NonCOVID images. 
We used CNNs that we constructed based on the 
VGGNet and LeNet5 and implemented them with and 
without data augmentation. Furthermore, we used a 
transfer learning technique by extracting features of the 
neural network VGG16 trained on the ImageNet dataset.  
The main idea of this paper was to see if a different 
approach can have better results on this particular dataset, 
as well as see if a smaller neural network could have 
almost as good classification as transfer learning. The 
final results, when compared showed a clear advantage 
when using transfer learning, however it also showed us 
the importance of data augmentation when approaching a 
rather small dataset. 

 Further research will focus on implementing different 
types of optimizers, including metaheuristic algorithms as 
optimizers. Also, we will focus on battling larger datasets 
consisting of Covid19 CT scans, once they become 
available, as well as obtaining a higher classification 
accuracy utilizing different methods.  
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