

Classification of COVID-CT Images Utilizing
Four Types of Deep Convolutional Neural Networks

Lara LABAN, Mitra VESOVIĆ
Control Engineering, Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade, Serbia

laralaban@mas.bg.ac.rs, mvesovic@mas.bg.ac.rs

Abstract— In this paper a method is presented for the
classification of COVID-CT (CT_COVID, CT_NonCOVID)
image data set. Four different types of deep convolutional
neural networks are proposed, two with the architecture
resembling the VGGNet, one resembling the LeNet-5 and
one using transfer learning. In addition, neural networks
utilized the following techniques: decay, dropout and batch
normalization. Since we needed to combat a significantly
small dataset, we used data augmentation in order to
transform and expand our dataset. Moreover,
juxtapositions were made when observing the results given
by these four neural networks, as well as the affect made by
two different optimizers. The training of the neural
networks was done using small batches with a binary cross
entropy loss function, in order to achieve an up to scratch
classification accuracy.

Keywords— deep learning; convolutional neural networks;
image classification; data augmentation; batch
normalization; COVID-CT dataset; dropout; transfer
learning.

I. INTRODUCTION
Convolutional neural networks (CNNs) are a subset of

deep neural networks, which are used for classifying
images. The main idea is to take a set of images correctly
labeled as the input data and used them to train our neural
network so as to achieve an output with an appropriate
categorization [1]. The inspiration for CNNs comes from
the observation of the animal visual cortex. Conversely,
the flourishing of these networks only came recently due
to the increase of computational power and the
development of many possible libraries that could be
used to battle complex mathematically based problems,
such as back propagation. The first paper [2] that
introduced the convolutional neural networks as we have
come to know them today has demonstrated that a model
which consists of a multilayered network can be
successfully used for recognition of stimulus patterns
according to the differences in their shapes. However,
there is some debate that the true begging was when a
paper in 1990 [3] demonstrated that a CNN model which
aggregates simpler features into progressively more
complicated features can be successfully used for
handwritten character recognition. In 2012 the ImageNet
Large Scale Visual Recognition Challenge [4], at that
moment consisting of he 1000 categories and 1.2 million
images received a submission that would propel the

CNNs development once again. AlexNet [5] achieved a
top-5 error of 15.3% , which at the moment surpassed by
an astonishing 10% all of the other submissions, and had
a much faster training time as it was implemented on a
GPU. The following year, the same challenge, now with a
larger dataset was won by ZFNet [6]. It had the top-5
error of 14.8%, however even more so important is that it
was able to reduce the first layer filter size from to and
had a stride of 2, rather than 4 in the pooling layer.

VGG16 is a convolutional neural network model
proposed in the paper [7]. This model achieved 92.7%
top-5 test accuracy. The main contribution of this model
was that it used kernel sized filters, instead of the . It
was trained for weeks using GPUs, and had a huge
computational cost. However, it introduced a new idea
using the same kernels throughout the entire architecture,
this aided in generalization for classification problems
outside of what they were originally trained on. If for a
second we go back to LeNet [8] that was the foundation
for all of these previously mentioned CNNs we can
observe the main sequence of three layers convolution,
pooling and non-linearity still play the key part, and
sometimes it is beneficial not to import to many layers
when training a smaller dataset [9]. Finally, in recent
years transfer learning [10], which addresses cross
domain learning problems by extracting useful
information from data in a related domain and
transferring them for being used in target tasks, has been
demonstrating a significant impact.

Coronavirus disease 2019 (Covid19) is an infectious
disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [11]. It was first identified
in December 2019 in Wuhan, Hubei, China, and has
resulted in widespread pandemic. At the moment
Covid19 has caused over one million deaths all around
the world and counting. There are several methods that
include quick testing, however in order to grasp the full
scope of the problem some of the most important ways to
battle this disease is to examine the computed
tomography (CT) scan images. Chest CT scanning in
patients with Covid19 has shown ground-glass
opacification, possibly with consolidation, as well as
cases of pleural effusion, pleural thickening and
lymphadenopathy. Data is collected daily and it is still
scarce, howbeit one of the first datasets was proposed and
constructed for a marvellous paper [12], that is still

201

mailto:laralaban@mas.bg.ac.rs
mailto:mvesovic@mas.bg.ac.rs

pending publication at the moment, in order to try and aid
the ongoing battle against the pandemic. In it multi-task
learning and contrastive self-supervising learning were
used and achieved an accuracy of 89% in distinguishing
between CT_COVID and CT_NonCOVID images. In
addition to all that was stated beforehand the pivotal goal
of this paper is to try and implement various CNNs to
combat this classification problem and if possible obtain
a slightly better classification accuracy.

This paper is organised in the following manner:
section 2 represents a description of the dataset. In
section 3 the main methods which are used are explained
in detail, as well as the architecture of the CNN. As a
result, in section 4 we discuss the results and compare the
methods, based on accuracy and loss functions. In section
5, following a short summary a conclusion is made and
future work and possible directions are stated.

II. DATASET AND ITS IMPLEMENTATION
The dataset which is used in this paper consists of 672

CT scan images from patients [13], including 349
CT_COVID and 323 CT_NonCOVID. We took the
approach of data augmentation, where we increase the
diversity of data by altering the original samples using
translation, rotation, shearing, flips and adding them to
the training set. Data augmentation covers a wide range
of techniques used to generate new training samples
using the original input images, by applying random
jitters and perturbations in such a manner as to not
change the class labels. The main idea here is to decrease
the generalization error of the testing (sometimes at the
expense of the training error) so as to achieve an increase
of generalizability of the model. The neural network is
then using slightly modified versions of the input data
and it is able to learn more robust features.

However, we introduced scaling of the data, as well,
by computing a weight for each class during the training
and as an outcome amplifying the loss by a larger weight
when we approach the smaller dataset. Even though the
difference is small in this example, this benefited the
training process. During the preprocessing of images we
resized all the images to a fixed size 32𝑥𝑥23 , and in doing
so we also maintained the aspect ratio. The reasoning
behind this being that all the images in a dataset need to
have a fixed feature vector size. This means all the
images will have identical widths and heights, making it
easier to quickly load and preprocess a dataset and briskly
move through our convolutional neural network. The
aspect ratio will enable us to resize the images along the
shorter dimension, be it width or height, and in cropping
it, will maintain the ratio. It is important to note that this
step is not necessary if you are not working with a
difficult dataset. Notwithstanding its benefits, it was
implemented in this particular dataset.

A. ImageNet dataset
ImageNet is a dataset consisting of over 14 million

images, which belong to one thousand classes. It was
used as the dataset in the highly respected convolutional
neural network model VGG16 which was proposed by
Oxford scientists. In this paper the VGG16 network was
used as a pre-trained convolutional neural network, in
order to incorporate transfer learning.

III. METHODS DESCRIPTION
In order to try and reduce overfitting and increase our

classification accuracy on the CT_COVID dataset we
endeavour in performing three types of neural network
training techniques:

• dropout and decay
• batch normalization
• transfer learning (neural networks as feature

extractors)
The first technique that is used in order to improve the

generalization error in the convolutional neural network
is dropout [14]. Dropout is nothing more than a form of
regularization, which succours us in controlling the
model capacity. The dropout layers are arranged in the
network in such a manner that we have randomly
disconnected nodes by a probability of 0.3 in the first few
layers; and 0.6 probability in the last layer. The reason
for this is that if the first layers are dropped by a higher
probability, then that will later affect the training. The
dropout is implemented after the pooling layer, and
before the next convolutional layer (or last flatten and
dense layers). This was used for the neural networks
resembling the VGG with data augmentation (DA). The
network resembling the VGG without DA used a dropout
with a probability 0.25 in the first few layers and double
the increase in the last layer, while the LeNet network did
not utilize this method. Decay that is used in this neural
network is a standard decay that can be obtained using
the Keras library in Python. Since the learning rate
controls the step that is made along the gradient, larger
steps are usually used in the beginning to make sure that
we do not stagnate in the local optima, while smaller
steps are used deeper in the network and near the end of
the convolution in order to converge to a global minimum.
We have initialized the learning rate to be 0.01 (for the
networks with DA) and 0.05 (for the network without
DA), and applied the following formula to adjust it after
each epoch,

 𝛼𝛼𝑖𝑖+1 = 𝛼𝛼𝑖𝑖
1+𝑘𝑘∙𝑖𝑖

 (1)

where 𝛼𝛼 is the current learning rate, 𝑖𝑖 is the epoch and 𝑘𝑘
is the decay calculated as the division between the
learning rate and the number of epochs. This type of
adjustment of the learning rate each epoch, can increase
accuracy, as well as reduce the loss function and the time
necessary to train a network. Batch normalization [15] is
used to normalize the activations of a given layer’s inputs
by applying mean and standard deviation before passing
it onto the next layer. In addition, the covariate shift
refers to a change in the distribution of the input variables
which are present in the training and validation data.
Since it has been proven that the training of the neural
network is the most coherent when the inputs to each
layer are alike, the main intention is that even when the
explicit values of inputs layers to hidden layers change,
their mean and standard deviation will still remain
relatively the same, thus reducing the covariate shift.
Batch normalization has demonstrated an immensely
effective approach to reducing the number of epochs
necessary for training by allowing each layer to learn
independently. Here the idea that differs from the original
paper and is first proposed in [16] states that the batch

202

normalization should be implemented after the activation
layer. The main reasoning behind this is that we want to
avoid setting the negative values coming out of the
convolution layer to zero. Instead we pass them through
the batch normalization layer, right after the activation
(ReLU) layer, and assure that some of the features that
otherwise would not have made it do. This yields a higher
accuracy and lower loss, and is to this day a debate
amongst the creators of Keras.

 Finally, the second technique is transfer learning [17],
a machine learning technique where networks can behave
as feature extractors. Transfer learning is nothing more
than the ability to use a pre-trained model to learn
patterns from data, on which the original network was not
trained on. As previously stated deep neural networks
trained on a large scale dataset ImageNet have
demonstrated to be superb at this task.

 When treating networks as feature extractors we
choose a point, in this case before the fully connected
layer and remove it. Subsequently, in this particular
example while using the VGGNet pre-trained on the
ImageNet we removed the fully connected layer and
stopped at the last pooling layer where the output shape is
7 × 7 × 512, 512 filters with the size 7 × 7. Now, our
feature vector has 7 × 7 × 512 = 25088 values and it
will be used to quantify the contents of the images, which
were not included in the original training process. The
format which allows us to extract these features is the
hierarchical data format version 5 (hdf5), which is used to
store and organize large amount of data.

 Transfer learning is an optimization, which has been
proven to yield a better performance and drastically save
time. This is precisely why we used it in this paper, to see
if we could obtain a higher classification, and perform
faster. Transfer learning relaxes the hypothesis that the
training data must be independent and identically
distributed with the test data, which we clearly stated as a
must in the beginning of this chapter. Moreover, transfer
learning is able to solve the problem of insufficient
training data. Furthermore, there is the option to remove
the fully connected layers of the existing network in order
to add a new fully connected layer to the CNN and fine
tune the weights to recognize object classes. However,
here it was not implemented since treating networks as
arbitrary feature extractors was enough.

A. Convolutional Neural Network
Into the bargain all that was explained, we picked the

following CNN architecture shown in Fig. 1. It is
consisted of multiple convolutional and pooling layers, as
well as the fully connected layers. The first two
convolutional layers learn 32 filter each with a size 3 × 3.

Sequentially, the fourth and the fifth layers learn 64
filters with the size 3 × 3 and the last two learn 128
filters with the size 3 × 3 . The pool layer is used to
reduce the computational load and the number of
parameters, thus reducing the risk of overfitting. We used
a max pooling layer with a pool size 2 × 2 and a stride 2.
Finally, we have the fully connected layer which consists
of 2048 parameters, input values which learn 512 nodes.
The activation layers which were used are Rectified
Linear Unit (ReLU) defined as,

 𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥) (2)

where 𝑥𝑥 is the input into the neuron. Softmax or the
normalized exponential function assigns normalized class
probabilities for each prediction, and is represented by,

 𝑆𝑆(𝑦𝑦𝑖𝑖) = 𝑒𝑒𝑦𝑦𝑖𝑖

∑ 𝑒𝑒𝑦𝑦𝑗𝑗𝑘𝑘
𝑗𝑗=1

 (3)

for 𝑖𝑖 = 1, … , 𝑘𝑘 and z = (𝑧𝑧1, … , 𝑧𝑧𝑘𝑘) ∈ ℝ𝑘𝑘.
Softmax takes an input vector and normalizes it into a
probability distribution between [0,1]. Therefore the sum
of all output values is equal to 1, which in turn makes the
training converge more quickly. In order to achieve this,
before training we must include one hot encoding in order
to convert the labels from integers to vectors.

Fig. 1 A schematic of the convolutional neural network without batch
normalization, that resembles the VGGNet. All of the convolutional
layers that precede the fully connected layers have filters 32, 64, 128

that are the same size . The probability distribution is applied in the last
layer using Softmax and the output yields two class labels CT_Covid

and CT_NonCovid.

In addition, later when we want to add the batch
normalization layer, we can apply it after each activation
layer, as discussed previously.

B. Implementation and training of a simpler version of
the LeNet

 Taking into the bargain all that was explained before,
the implementation of this CNN was done by using the
Python programming language. We used Keras [18]
which is mainly used for implementing of activation

203

functions, optimizers, convolutional and pooling layers,
and is actually able to do backpropagation automatically.

Right after we load and preprocess our images dataset
it is necessary to use one hot encoding. This is done by
using a part of the Sklearn library LabelBinarizer.
However beforehand we must split the training data and
the validation data, here we opted to split it 75% and 25%,
sequentially. The next step is the implementation of an
optimizer, here we used the Adam optimizer. The Adam
optimizer is short for Adaptive Moment Estimation
optimization algorithm [19]. Its main purpose is to
attempt to rectify the negative effects of a globally
accumulated cache by converting the cache into an
exponentially weighted moving average, just like the
Root Mean Square Propagation (RMSProp). The Adam
optimizer is essentially a combination of momentum and
RMSProp. Momentum is implemented into the neural
network, by adding a temporal element to the update
vector of the past time step to the current update vector,

∆𝒘𝒘(𝑘𝑘) = −𝛼𝛼∇𝐸𝐸(𝑘𝑘) + 𝛾𝛾∆𝒘𝒘(𝑘𝑘 − 1) (4)

where 𝛾𝛾 is usually set between 0.8 and 0.9 and function 𝐸𝐸
is the index of performance.

This network resembles the architecture of the LeNet
in such a way that we have 5 × 5 filters with a stride of
20 in the first convolution layer, and 50 in the second
convolutional layer. The mini batch method were the
neural network selects a part of the training data and
updates the weights, but trains the network with the
average weight update. Usually the smallest standard
batch size which is used is 32, however we opted to use
24, as it complemented our data. The reasoning behind
this is that present research confirms that using small
batch sizes achieves the best training stability and
generalization performance, for a given computational
cost, across a wide range of experiments. The loss
function which was used is the binary_crossentropy
function. This was done because we only had two classes,
if there were more we would have had to use
categorical_cross_entropy, but have in mind we could
have used categorical as well, but studies show that
binary is much more efficient in this case. The training of
the CNN was done in 30 epochs.

C. Implementation and training of a simpler version of
the VGGNet
We constructed two different neural networks

resembling the VGG, the first one had a dropout of 0.25
in the first few layers and no data augmentation or batch
normalization layers. The training data and the validation
data were split 75% and 25%, sequentially. Here we
utilized the SGD optimizer, which was set to a learning
rate of 0.05, with a decay in order to slowly reduce the
learning rate over time and converge to the global
solution more efficiently. Decaying the learning rate is
beneficial in reducing overfitting and obtaining a higher
classification accuracy. The smaller the learning rates are,
the smaller the weight update will be enabling us to
converge. The gradient descent method is an iterative
optimization algorithm that operates over an optimization
surface. It is a simple modification to the standard
algorithm of gradient descent. The main purpose of SGD
is to calculate the gradient and adjust the weights of the
training data (but not on the whole dataset, but rather on a

mini batch). All the images were resized to 32 × 32
aspect ration, the batch size we used was again 24 and the
loss fucntion was the binary_crossentropy function. The
training of the CNN was done in 30 epochs.
 The second neural network resembling the VGG had
a similar architecture as depicted in Fig. 1, with the
addition of batch normalization layers. Here our training
data and the validation data were split 80% and 20%.
Here we trained our network once with the SGD
optimizer and once more with the Adam optimizer. The
learning rate was set to 0.01, with decay and adjustment
after each epoch. Both times data scaling, as well as data
augmentation was used. All the images were resized to
32 × 32 aspect ration, the batch size we used was 32 and
the loss function was the binary_crossentropy function.
The training of the CNN was done in 30 epochs (utilizing
the Adam optimizer) and in 100 epochs (using the SGD
optimizer).

 After the training we implemented a method that
takes the weights and the state of the optimizer and
serializes them to the disc in a hdf5 format, in order to
load them and test the labeling.

D. Implementation using transfer learning
The first step in this process is to extract features from

VGG16, in doing so we are forward propagating the
images until a given layer, and then taking those
activations and treating them as feature vectors. Here the
main two differences are that we used the standard a
batch size of 32 and the training and test split is done at
the same time as training, we again split it into 75%
training data and 25% test data. Once the extraction of the
features was done, we trained the classifier on those
features. We also implement the GridSearchCV class to
assists us to turn the parameters to the LogisticRegression
classifier.

The final results are presented in the following
chapter, comparisons are made and a visual
representation of the graphs is shown using Matplotlib in
order to estimate if there is overfitting.

IV. RESULTS AND COMPARISONS
The results of the CNN resembling LeNet are

presented in Table 1. We clearly see that our neural
network has classification accuracy of 68%.

Fig. 2 A graph depicting a convolutional neural network that resembles

the LeNet – training and validation loss and accuracy curves

In the following table we use the term precision which
represents true positive divided by a sum of true positive

204

and false positive, recall which represents true positive
divided by a sum of true positive and false negative.
Therefore, precision is good to determine when the cost
of false positives is high, on the other hand recall tells us
the number of correctly labeled data. Ultimately, we have
the f1-score used to find the weighted average of recall
and precision. In analyzing the curves shown in Fig. 2 we
see that our network learned until the 30 epoch, beyond
that overfitting would occur, as we can clearly see a
generalization gap forming in both loss and accuracy
curves. Fig. 3 depicts the results when using the network
resembling the VGG without data augmentation, here we
can observe that the training and validation curves show a
wide generalization gap at the 30 epoch resulting in
overfitting. The classification accuracy is 76% (Table 1.),
this is no good if we have overfitting, that is why the next
approach uses data augmentation in order to combat this
problem.

Fig. 3 A graph depicting a convolutional neural network without data

augmentation and with batch normalization, that resembles the VGGNet
– training and validation loss and accuracy curves

Fig. 4 represents the neural network resembling the
VGG, with data augmentation and the SGD optimizer.
The classification accuracy obtained after 30 epochs is
72%, and the training and loss curves show slight
deviations.

Fig. 4 A graph depicting a convolutional neural network with data

augmentation and batch normalization (optimizer SGD), that resembles
the VGGNet – training and validation loss and accuracy curves – 30

epochs

The same classification accuracy is acquired when
utilizing the Adam optimizer, only then we need 100
epochs to achieve so. Fig. 6 depicts the same neural
network explained beforehand when using the SGD
optimizer over the course of 100 epochs resulting in a
classification accuracy of 75%. We can conclude that

data augmentation does indeed help in reducing the
generalization gap, however this particular dataset was
quite faulty to begin with.

Fig. 5 The pre-trained CNN weights are loaded from the disk and make
predictions for 30 randomly selected images. In the upper left and right
corner we have an example of CT_COVID scans, and in the lower left

and right corner an example of CT Non_COVID scans.

Fig. 6 A graph depicting a convolutional neural network with data

augmentation and batch normalization (optimizer SGD), that resembles
the VGGNet – training and validation loss and accuracy curves – 100

epochs

TABLE I
 EXPERIMENTAL RESULTS

 precision recall f1-score
CNN resembling LeNet (Adam optimizer, with data

augmentation)
macro avg 0.68 0.68 0.67

CNN resembling VGG (SGD optimizer, without data
augmentation, without batch normalization)

macro avg 0.76 0.71 0.69
CNN resembling VGG (Adam optimizer, with data

augmentation, 100 epochs, with batch normalization)
macro avg 0.72 0.72 0.72

CNN resembling VGG (SGD optimizer, with data
augmentation, 30 epochs, with batch normalization)

macro avg 0.72 0.70 0.69
CNN resembling VGG (SGD optimizer, with data

augmentation, 100 epochs, with batch normalization)
macro avg 0.75 0.75 0.75

Transfer learning using VGG16

macro avg 0.90 0.91 0.90

In Table 1 we can see the results obtained by using
transfer learning have a classification accuracy of 90%,

205

which is by far the best. Furthermore, we observe that the
CNN in Fig. 4 is the best one if we opted to use a method
that does not include transfer learning. Nevertheless, it is
clear then when taking into account all four approaches
we shall choose transfer learning, because not only does
it yield a higher classification accuracy, but it also wasted
less computational time. Compared with the original
paper that combated this classification problem [12] we
were able to achieve only slightly better classification
accuracy, with an increase being 1%.

V. CONCLUSIONS
 In this paper we described four different approaches of

using convolutional neural networks to classify a dataset
consisting of CT_COVID and CT_NonCOVID images.
We used CNNs that we constructed based on the
VGGNet and LeNet5 and implemented them with and
without data augmentation. Furthermore, we used a
transfer learning technique by extracting features of the
neural network VGG16 trained on the ImageNet dataset.
The main idea of this paper was to see if a different
approach can have better results on this particular dataset,
as well as see if a smaller neural network could have
almost as good classification as transfer learning. The
final results, when compared showed a clear advantage
when using transfer learning, however it also showed us
the importance of data augmentation when approaching a
rather small dataset.

 Further research will focus on implementing different
types of optimizers, including metaheuristic algorithms as
optimizers. Also, we will focus on battling larger datasets
consisting of Covid19 CT scans, once they become
available, as well as obtaining a higher classification
accuracy utilizing different methods.

ACKNOWLEDGMENT
This research was supported by the Science Fund of

the Republic of Serbia, grant No. 6523109, AI-
MISSION4.0, 2020-2022.

This paper was conceived within the research on the
project: “Integrated research in the field of macro, micro
and nano mechanical engineering - Deep machine
learning of intelligent technological systems in
production engineering”, The Ministry of Education,
Science and Technological Development of the Republic
of Serbia (contract no. 451-03 -68 / 2020-14 / 200105),
2020.

This work was financially supported by the Ministry
of Education, Science and Technological Development of
the Serbian Government, Grant TR-35029 (2018-2020).

REFERENCES
[1] L. Laban, R. Jovanović, M. Vesović, V. Zarić,

“Classification of Chest X-Ray Images Using Deep
Convolutional Neural Networks“, International
Conference on Electrical, Electronic, and Computing
Engineering, Belgrade, Serbia, September 28-30, 2020, to
be published.

[2] K. Fukushima, S. Miyake, “Neocognitron: A new
algorithm for pattern recognition tolerant of deformations

and shifts in position,” Pattern Recognition, vol. 15, no. 6,
pp. 455-469, 1982.

[3] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. E. Hubbard, L. D. Jackel, “Handwritten digit
recognition with a back-propagation network,” Advances
in Neural Information Processing Systems 2, pp. 396-404,
June, 1990.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.
Ma, Z. Haung, A. Karpathy, A. Khosla, M. Bernstein, A.
C. Berg, L. Fei-Fei, “ImageNet large scale visual
recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211-252, April, 2015.

[5] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,”
Advances in Neural Information Processing Systems, vol.
25, no. 2, pp. 1097-1105, 2012.

[6] M. D. Zeiler, R. Fergus, “Visualizing and understanding
convolutional networks,” 13th European Conference,
Zurich, Switzerland, pp. 818-833, September 6-12, 2014.

[7] K. Simonyan, A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

[8] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-
based learning applied to document recognition,”
Proceedings of the IEEE, vol. 86, n. 11, pp. 2278-2324,
November, 1998.

[9] Z. Li, W. Yang, S. Peng, F. Liu, “A survey of
convolutional neural networks: Analysis, applications and
prospects,” arXiv preprint arXiv:2004.02806, 2020.

[10] L. Shao, F. Zhu, X. Li, “Transfer learning for visual
Categorization: A survey,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 26, no. 5, pp. 1019-
1034, May, 2015.

[11] https://www.mayoclinic.org/diseases-
conditions/coronavirus/symptoms-causes/syc-20479963,
(last accessed 13/10/2020).

[12] X. Yang, X. He, J. Zhao, Y. Zhang, S. Zhang, P. Xie,
“COVID-CT-Dataset: A CT Scan Dataset about COVID-
19”, https://arxiv.org/abs/2003.13865, 2020, to be
published.

[13] Dataset provided on GitHub, https://github.com/UCSD-
AI4H/COVID-CT, (last accessed 23/07/2020).

[14] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
R. R. Salakhutdinov, “Improving neural networks by
preventing co-adaptation of feature detectors”, arXiv
preprint arXiv:1207.0580, July, 2012.

[15] S. Ioffe, C.Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate
shift”, Proceedings of the 32nd International Conference
on Machine Learning, vol. 37, pp. 448-456, July, 2015.

[16] A. Rosebrock, Deep Learning for computer vision with
Pyhton: Starter Bundle, 1st ed. PyImageSearch, 2017.

[17] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu, “A
survey on deep transfer learning,” 27th International
Conference on Artificial Neural Networks, Rhodes,
Greece, October 4-7, 2018.

[18] Keras; Python Deep Learning Library https://keras.io,
(last accessed 09/03/2020).

[19] D. P. Kingma, J. Ba, “Adam: A Method for Stochastic
Optimization”, 3rd International Conference for Learning
Representations, San Diego, 2015.

206

https://www.mayoclinic.org/diseases-conditions/coronavirus/symptoms-causes/syc-20479963
https://www.mayoclinic.org/diseases-conditions/coronavirus/symptoms-causes/syc-20479963
https://arxiv.org/abs/2003.13865
https://github.com/UCSD-AI4H/COVID-CT
https://github.com/UCSD-AI4H/COVID-CT
https://keras.io/

	- MASING 2020 -
	Niš, December 09-10, 2020
	UNIVERSITY OF NIŠ
	SCIENTIFIC COMMITTEE
	Organizing Committee
	Publication:
	Proceedings of The Fifth International Conference – MASING 2020
	Edition:
	“MECHANICAL ENGINEERING IN XXI CENTURY”
	ISSN 2738-103X
	Publisher:
	Editor:
	Number of copies:
	Printing:
	PLENARY SESSION
	ENERGETICS, ENERGY EFFICIENCY AND PROCESS ENGINEERING
	MECHANICAL DESIGN, DEVELOPMENT AND ENGINEERING
	MECHATRONICS AND CONTROL
	PRODUCTION AND INFORMATION TECHNOLOGIES
	TRAFFIC ENGINEERING, TRANSPORT AND LOGISTIC
	THEORETICAL AND APPLIED MECHANICS AND MATHEMATICS
	CHALLENGES OF THE ENGINEERING PROFESSION IN MODERN INDUSTRY
	ENGINEERING MANAGEMENT
	0_Plenarna_EXP_A4_Nasl_Str_1_40.pdf
	00_Plenary_Naslovna.pdf
	Blank Page

	1_Energetika_EXP_A4_Naslovna_Str_41_126.pdf
	P36_Jelena D. Petrovic et al MASING 2020_EXP_A4.pdf
	Nanofluid Flow and Heat Transfer Between Horizontal Plates in Porous Media

	01_Eneregetics_Naslovna.pdf
	Blank Page

	2_Konstrukc_EXP_A4_Naslovna_Str_127_194.pdf
	P13_M.Arsic et al for Masing 2020, IMS-Belgrade_EXP_A4.pdf
	Cavitation has not been fully investigated yet, but it is known that one of the causes of its occurrence are high velocities of liquid drops which hit the surface of the metal. Conditions which enable reaching of critical velocities are being restrict...
	Reparation of damages that occur on the casing of synchronous valve comprises the technology for damage reparation by surface welding, post-repair inspections and suggestions that refer to optimal anti-corrosion protection. Chemical composition of m...

	02_Mechanical_Naslovna.pdf
	Blank Page

	3_Mehatronika_EXP_A4_Naslovna_Str_195_232.pdf
	03_Mechatronics_Naslovna.pdf
	Blank Page

	4_Proizvodno_EXP_A4_Naslovna_Str_233_296.pdf
	04_Production_Naslovna.pdf
	Blank Page

	5_Transport_EXP_A4_Naslovna_Str_297_320.pdf
	05_Transport_Naslovna.pdf
	Blank Page

	6_Teorijska_EXP_A4_Naslovna_Str_321_360.pdf
	06_Theoretical_Naslovna.pdf
	Blank Page

	7_Chalanges_EXP_A4__Naslovna_Str_361_390.pdf
	P94_MNHounkonnou-MMitrovic-MASING 2020 _16-11-2020_EXP_A4.pdf
	"So if you asked me: why do mathematics? I would say: mathematics helps people flourish. Mathematics is for human flourishing. Because we are not mathematical machines. We live, we breathe, we feel, we bleed. Why should anyone care about mathematic...

	07_Chalanges_Naslovna.pdf
	Blank Page

	07_Chalanges_Naslovna.pdf
	Blank Page

	8_Managament_EXP_A4_Naslovna_Str_391_432.pdf
	08_Management_Naslovna.pdf
	Blank Page

