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Abstract This paper investigates the nonlinear dynamic be-
havior of a nonlocal functionally graded EulerBernoulli be-
am resting on a fractional visco-Pasternak foundation and
subjected to harmonic loads. The proposed model captures
both, nonlocal parameter considering the elastic stress gra-
dient field and a material length scale parameter considering
the strain gradient stress field. Additionally, the von Karman
strain-displacement relation is used to describe the nonlinear
geometrical beam behavior. The power-law model is utilized
to represent the material variations across the thickness di-
rection of the functionally graded beam. The following steps
are conducted in this research study. At first, the govern-
ing equation of motion is derived using Hamilton’s principle
and then reduced to the nonlinear fractional order differen-
tial equation through the single-mode Galerkin approxima-
tion. The methodology to determine steady-state amplitude-
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frequency responses via incremental harmonic balance me-
thod and continuation technique is presented. The obtained
periodic solutions are verified against the perturbation multi-
ple scales method for the weakly nonlinear case and numer-
ical integration Newmark method in the case of strong non-
linearity. It has been shown that the application of the incre-
mental harmonic balance method in the analysis of nonlocal
strain gradient theory-based structures, can lead to more re-
liable studies for strongly nonlinear systems. In the paramet-
ric study is shown that, on one hand, parameters of the visco-
Pasternak foundation and power-law index remarkable af-
fect the response amplitudes. On the contrary, the nonlocal
and the length scale parameters are having a small influence
on the amplitude-frequency response. Finally, the effects of
the fractional derivative order on the system’s damping are
displayed at time response diagrams and subsequently dis-
cussed.

Keywords Nonlocal strain gradient theory · Functionally
graded beams · Fractional Pasternak layer · Duffing
oscillator · Fractional damping · Incremental harmonic
balance method

1 Introduction

Structures with physical properties which are varied contin-
uously and gradually along a certain direction are known as
functionally graded (FG) materials [18, 39, 63]. The major
advantage of such materials that are emphasized in the engi-
neering practice is that they lack stress concentration, which
is a common problem at interfaces of conventional lami-
nated composites [18, 39]. FG materials are usually com-
posed of two different material phases such as metal and
ceramics. Despite a significant amount of work done in the
field of FG structures, there is still a lot of space and need
for the investigation of MEMS/NEMS systems based on FG



2 Nikola Nešić et al.

materials. Nanobeams and nanoplates are utilized in differ-
ent MEMS/NEMS devices [49, 36], such as microactuators
[45, 21], microswitches [73], micro sensors [43], nanoscale
resonators [20], energy harvesting nanodevices [68], etc. For
studying the dynamic behavior of such systems various ap-
proaches based on experiments, molecular dynamics simu-
lations, and continuum mechanics are already employed in
the literature [9, 15, 42, 29, 40, 53]. However, it can be time
and skill-demanding to set up and validate the experiment
or to implement molecular dynamics simulations for such
structures. For these reasons, size-dependent continuum me-
chanics models gain popularity due to their simplicity in pre-
dicting the mechanical behavior of micro/nano-scaled struc-
tural systems. Various non-classical elasticity theories are
used to capture the size effects in micro and nanostructures.
Among them, the most vastly used continuum theories for
studying the nanostructures are: nonlocal elasticity theory
[53, 51, 48], strain gradient theory [29], modified couple
stress theory (or modified strain gradient theory) [70], and
the surface elasticity theory [65]. Some experiments [29] re-
vealed that nonlocal elasticity theory shows limitations in
displaying the stiffness-hardening effect. This deficiency can
be avoided when nonlocal strain gradient theory (NLSGT)
is used as originally described by Lim et al. [37], which in-
cludes both nonlocal and length scale effects into the con-
sideration.

Many studies employed NLSGT when analyzing the me-
chanical behavior of FG structures. Gao et al. [16] investi-
gated the nonlinear free vibration of FG circular nanotubes
using NLSGT and two steps perturbation method. Janevski
[24, 25] studied linear vibration, stability, and buckling of
nonlocal strain gradient Euler-Bernoulli and Timoshenko be-
ams under the influence of temperature. El-Borgi et al. [9]
investigated the free and forced vibration response of a sim-
ply supported FG beam resting on the nonlinear elastic foun-
dation. The authors applied the perturbation method of mul-
tiple scales to obtain the amplitude-frequency curves of the
system. Other authors [22] studied the heat-induced nonlin-
ear vibration of FG capacitive nanobeam within the frame-
work of NLSGT. The semi-analytic perturbation method of
averaging was applied to obtain the governing equations and
study the steady-state responses. They also used a shooting
technique in conjunction with the Floquet theory for cap-
turing the periodic motions and examining their stability.
Wang and Shen [66] investigated the lateral nonlinear vi-
bration of an axially moving simply supported viscoelas-
tic nanobeam based on NLSGT. They used a direct multi-
scale method to obtain the steady-state amplitude-frequency
response in the subharmonic parametric resonance state as
well as the RouthHurwitz criterion to determine the stabil-
ity of the (non-) zero equilibrium solution. Jalaei et al. [23]
investigated the dynamic stability of a temperature-depend-
ent Timoshenko functionally graded nanobeam exposed to

the axial excitation load and magnetic field in a thermal en-
vironment. The authors used Navier’s and Bolotin’s method-
based approach to solve the problem. Li et al. [33] studied
the longitudinal vibration of rods also using the NLSGT
and derived analytical solutions for predicting the natural
frequencies and mode shapes for specified boundary con-
ditions. They discovered that the NLSGT rod model exerts
a stiffness-softening effect when the nonlocal parameter is
larger than the length scale parameter and exerts a stiffness-
hardening effect in the opposite case. Li [35] investigated the
vibration of axially FG beams based on NLSGT and Euler-
Bernoulli beam theory and solved the problem via the gen-
eralized differential quadrature method. Simsek [59] pro-
posed a beam model for nonlinear free vibration of an FG
nanobeam with immovable ends based on the NLSGT and
Euler-Bernoulli (EB) beam theory in conjunction with the
von-Karmans geometric nonlinearity. Liu [38] examined the
nonlinear vibrational behavior of FG sandwich NLSGT nano-
beams in the presence of initial geometric imperfection. Non-
linearity induced by the von Karman theory and a cosine
function similar to the mode shape form is employed to de-
scribe the geometric imperfection mode. They used Hes vari-
ational principle to solve a nonlinear differential equation
and obtain nonlinear frequency. Based on NLSGT, Li and
Hu [32] and Zhen and Zhou [76] studied the wave propa-
gation in fluid-conveying viscoelastic single-walled carbon
nanotubes. Moreover, Li [34] investigated the fluid critical
flow velocities of fluid-conveying microtubes modeled using
NLSGT and Timoshenko and EulerBernoulli beam theories.

One of the pioneering works in the application of frac-
tional calculus in structural mechanics was done by Rossikhin
and Shitikova [55]. Their work includes an overview of dif-
ferent papers in this area. The same authors in [54] pro-
posed a methodology based on the Laplace integral trans-
form method to investigate free damped vibrations of di-
verse linear hereditarily elastic mechanical systems of sin-
gle and multiple degrees of freedom whose hereditary prop-
erties are described by fractional derivatives. Different gen-
eralized rheological models were used such as the Maxwell
model with one or two fractional parameters (orders of frac-
tional derivatives), the Kelvin-Voigt model, and the standard
linear solid model. Later on, Atanackovic and Stankovic stud-
ied the existence, regularity, and stability of the solution
of an elastic rod on a fractional derivative type of foun-
dation [3] and investigated lateral vibration of the axially
loaded rod. Zhang et al. [74] studied the nonlinear dynamic
response of a simply supported fractional viscoelastic beam
subjected to transverse harmonic excitation. By using the av-
eraging method, the authors obtained a steady-state response
of a single-mode system. Numerical results are determined
by an algorithm based on the fractional-order GrünwaldLet-
nikov derivative and verified with analytical results. Eyebe
[14] investigated the nonlinear vibration of a nanobeam rest-
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ing on a fractional-order Winkler-Pasternak foundation by
using the DAlembert principle to obtain the governing equa-
tions and a method of multiple scales to approximate the
resulting nonlinear problem. Further, Lewandowski [30] in-
vestigated the nonlinear, steady-state vibration and stability
of harmonically excited fractional viscoelastic beams. The
viscoelastic material of the beams is described by using the
Zener rheological model with fractional derivatives. Ampli-
tude equations are obtained by using the finite element and
the harmonic balance method in conjunction with the con-
tinuation method.

In the paper [6], a homogeneous Euler Bernoilli beam
on a Winkler-type nonlinear, viscoelastic and unilateral or
bilateral foundation was considered. The presented model
was subjected to multiple concentrated or distributed trans-
verse static or dynamic loads. The IHB method was suited
for obtaining nonlinear frequency response of the system.
Obtained and presented amplitude-frequency diagrams were
expectantly similar to diagrams from our study. However,
the considered parameters set was different both regarding
the loading and the foundation properties. Their interest was
the reaction of the foundation, which models foam mate-
rials, both to compression and tension. Instead, we research
the influence of the parameters of the fractional-order model
of foundation that can represent a range of different materi-
als from foams to rubbers. Furthermore, our numerical cal-
culations were verified with two other numerical methods,
namely with multiple time scales and Newmark methods.

In this work, a detailed investigation of the nonlinear vi-
bration of the nonlocal strain gradient Euler-Bernoulli beam
resting on the fractional visco-Pasternak foundation and sub-
jected to harmonic loads is performed. The suggested model
contains both, nonlocal parameter considering the nonlo-
cal elastic stress field and a material length scale parame-
ter considering the strain gradient stress field. The following
steps are conducted in this research study. First, the govern-
ing equation of motion is derived using Hamilton’s principle
and then reduced to the nonlinear fractional order differen-
tial equation via Galerkin approximation. The methodology
to determine steady-state amplitude-frequency responses via
incremental harmonic balance method and continuation tech-
nique is presented. The obtained periodic solutions are ver-
ified against the perturbation multiple scales method and
numerical integration Newmark method. At last, a detailed
parametric study is performed to show the influence of power-
law index, nonlocal parameter, length scale parameter, pa-
rameters of fractional visco-Pasternak foundation, and load
factors on the amplitude-frequency response curves of the
proposed nonlinear problem. Additionally, the effects of the
fractional derivative order and power-law index on the sys-
tem’s damping are displayed at time response diagrams and
subsequently discussed.

2 Preliminaries

2.1 Fractional derivative

The vibration of the deformable structures grounded on the
different types of foundation is present in a wide range of
practical structures. Usually, the impact of the foundation
layer has great importance and has to be modeled appropri-
ately. The model of the foundation with different properties
can be found in the literature [72]. Visco-Pasternak founda-
tion model used in our study was upgraded with fractional-
order time derivatives of the deformation function. This al-
lows us to encompass the whole range of grounds with dif-
ferent properties. We will use the Riemann-Liouville defini-
tion (Eq.(1)) when considering the IHB and multiple scales
solutions and the GrünwaldLetnikov definition (Eq.(2)) in
the case of Newmark method [50, 61]. Riemann-Liouville
definition is equal to GrünwaldLetnikov definition [50], and
these two definitions are equivalent for a wide class of func-
tions and are often used in real physical and engineering
problems. For this reason, we can use one definition and then
turn to another when calculating the frequency responses by
approximate and numerical methods. Here, both definitions
are given for clarity.

The left Riemann-Liouville derivative of the continuous
and differentiable, on a time interval [a, b], function f (t), is
defined as:

aDα
t f (t) =

1
Γ(1−α)

d
dt

∫ t

a

f (τ)
(t − τ)α

dτ, t ∈ [a,b] , (1)

where α is the fractional-order derivative parameter within
the interval 0 < α < 1.

GrünwaldLetnikov definition of a fractional derivative is
given as

aDα
t f (t) = lim

h→0

a∆α
t f (t)
hα

, (2)

where

a∆
α
t f (t) =

[ t−a
h
]

∑
j=0

(−1) j
(

α

j

)
f (t − jh), (3)

and [x] means the integer part of x.

2.2 Functionally graded material

A small-scale FG beam of width b and thickness h is made of
two different materials, and the effective material properties
(e.g. Youngs modulus E and density ρ) vary continuously
through the beam’s thickness (z direction). Those materials
properties regarding geometrical middle axis based on the
power-law distribution function of material, are:

P(zm) = (Pt −Pb)

(
zm

h
+

1
2

)k

+Pb, (4)
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Fig. 2: Model of the nonlinear nonlocal strain gradient beam
on a fractional visco-Pasternak foundation.

where indices t and b denote the top and bottom layer of
the beam and k is the power-law index, which determines
the material variation in the thickness direction of the beam.
Geometrical and physical middle surfaces of homogeneous
materials coincide. However, the change of material proper-
ties in one direction shifts the physical middle surface from
the geometrical one for some finite length c. Such new sys-
tem of reference for FG materials and structures is proposed
by several authors [4],[31], [59]. Therefore, to simplify the
analysis and avoid the bending-stretching mode coupling ef-
fect we will use a new coordinate system where the x axis
lies in the physical middle surface and the vertical axis is
given as z, i.e.

z = zm + c. (5)

Constant c, denoting the position of the physical middle sur-
face, can be calculated as

c =

∫ h
2
− h

2
zmP(zm)dzm∫ h

2
− h

2
P(zm)dzm

(6)

For our case of a rectangular FG beam with width b and
height h, by substituting Eq.(4) in Eq.(6), expression for c is
simplified to

c =
(Et −Eb)hk

2(2+ k)(Et + kEb)
(7)

By taking the physical middle surface as a reference, ma-
terial properties can be expressed as

E(z) = (Et −Eb)

(
z
h
+

1
2

)k

+Eb, (8)

ρ(z) = (ρt −ρb)

(
z
h
+

1
2

)k

+ρb. (9)

2.3 Nonlocal strain gradient theory

According to the nonlocal strain gradient theory [37], the
strain energy U can be expressed as:

U =
1
2

∫
V
(σi jεi j +σ

(1)
i jk εi j,k)dV, (10)

where σi j is the nonlocal stress, and σ
(1)
i jk is the high-order

nonlocal stress. Total stress is given by:

ti j = σi j −∇σ
(1)
i jk . (11)

Constitutive equation for the nonlocal and local part [12] can
be written as:

(1−µ
2
∇

2)σxx = E(z)εxx, (12)

(1−µ
2
∇

2)σ
(1)
xxx = l2E(z)εxx,x, (13)

where µ and l are the nonlocal and length scale parameter,
respectively, ∇= ∂

∂x , E(z) is the elasticity modulus, εxx is the
axial strain, and εxx,x is the axial strain gradient. The general
nonlocal strain gradient constitutive relation is given as [33]:

(1−µ
2
∇

2)txx = (1− l2
∇

2)E(z)εxx. (14)

Salehipour et al. [57] and later Batra [5] proposed the
modified nonlocal theory that is applicable to non-homogen-
ous materials. However, according to [57], when the nabla
operator reduces to partial derivative of length coordinate x
(∇ = ∂

∂x ) and material properties of the beam are only the
functions of the thickness coordinate z, then classical Erin-
gen theory can be used to account for the small-scale effects
in FG beams or plates. Moreover, by introducing the phys-
ical surface reference system one can avoid coupling be-
tween the bending and stretching modes. In our analysis, we
adopted both assumptions to study the nonlinear dynamic
response of the FG nonlocal beam resting on the fractional
visco-Pasternak foundation.

3 Beam model and equation of motion

Beam model is given in the Fig.(2). The displacement field
of the Euler-Bernoulli beam is given as:

ux(x,z, t) = u(x, t)− z
∂w
∂x

,

uy(x,z, t) = 0,

uz(x,z, t) = w(x, t),

(15)

where ux, uy and uz denote the displacements along the length,
width and thickness directions, respectively. Terms u and w
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are the axial and transverse displacements of the physical
middle surface, respectively. Thus, the non-zero strain com-
ponents of Euler-Bernoulli beam with considered geometric
nonlinearity takes the form

εxx =
∂u
∂x

+
1
2

(
∂w
∂x

)2

− z
∂ 2w
∂x2 . (16)

We are considering the following stress resultants:

Nxx =
∫

A
txxdA, N(0)

xx =
∫

A
σxxdA, N(1)

xx =
∫

A
σ
(1)
xx dA,

M =
∫

A
ztxxdA, M(0) =

∫
A

zσxxdA, M(1) =
∫

A
zσ

(1)
xx dA.

(17)

Further, we define the extensional Axx and the bending coef-
ficient Dxx as

{Axx,Dxx}= b
∫ h

2−c

− h
2−c

{1,z2}E(z)dz. (18)

Note that for homogeneous beam Axx = EA and Dxx = EI.
By substituting stress resultants Eq.(17) into Eq.(14), the ax-
ial force and moment are obtained as:

Nxx = N(0)
xx − ∂N(1)

xx

∂x
, M = M(0)− ∂M(1)

∂x
. (19)

By integrating the general constitutive relation Eq.(14) over
area A, or multiplying it with z and integrating over area A,
and using relations Eq.(18) and Eq.(17) leads to

Nxx = µ
2 ∂ 2Nxx

∂x2 +

(
1− l2 ∂ 2

∂x2

)
Axx

(
∂u
∂x

+
1
2

(
∂w
∂x

)2
)
,

(20)

M = µ
2 ∂ 2M

∂x2 −Dxx

(
1− l2 ∂ 2

∂x2

)
∂ 2w
∂x2 . (21)

The variation of strain energy δU of the FG beam can
be given as in [31, 60]:

(22)

δU =
∫

V

(
σxxδεxx + σ

(1)
xx

∂

∂x
(δεxx)

)
dV

=
∫ L

0

(
Nxxδ

∂u
∂x

+ Nxx
∂w
∂x

δ
∂w
∂x

− M
∂ 2w
∂x2

)
dx

+

[
N(1)

xx δ
∂u
∂x

+ N(1)
xx

∂w
∂x

δ
∂w
∂x

− M(1) ∂ 2w
∂x2

]L

0
.

Virtual kinetic energy considering both the longitudinal and
transverse motions can be given by

(23)

δK = b
∫ L

0

∫ h
2−c

− h
2−c

ρ(z)
∂ux

∂ t
δ

∂ux

∂ t
dzdx

+ b
∫ L

0

∫ h
2−c

− h
2−c

ρ(z)
∂uz

∂ t
δ

∂uz

∂ t
dzdx

=
∫ L

0
m0 (u̇δ u̇ + ẇδ ẇ)dx +

∫ L

0
m2

∂ ẇ
∂x

δ
∂ ẇ
∂x

dx.

In Eq.(23) the mass moments of inertia take the following
form

{m0,m1,m2}= b
∫ h

2−c

− h
2−c

{1,z,z2}ρ(z)dz. (24)

Note that for homogeneous beam m0 = ρA and m2 = ρI.
According to Emam and Nayfeh [10], the first-order mass
moment m1 can be neglected in the virtual kinetic energy
(Eq.(23)) since its contribution is relatively small.
Virtual work of external loads can be given by [2]:

δW =
∫ L

0
(Fmb+q)δwdx+

[
Qδw−Mδ

∂w
∂x

]L

0
, (25)

where

Fm = (kw +KwDα)w− (kg +KgDα)
∂ 2w
∂x2 ,

q = Q0 +Q1cosΩ1t.
(26)

In Eq.(25) Fm is the restoring force due to the visco Paster-
nak layer, q is the distributed transverse load, Q is the exter-
nal shear force, and M is the external bending moment. In
Eq.(26) Dα is the operator of RiemannLiouville fractional
derivative. In [56], a similar foundation type is introduced
but without the fractional time derivatives.
Hamilton’s principle will be applied by using the Eq.(27):∫ t2

t1
(δK −δU −δW )dt = 0. (27)

By substituting Eqs.(22),(23), and (25) into Eq.(27), the fol-
lowing two equations of motion are obtained

∂Nxx

∂x
−m0

∂ 2u
∂ t2 = 0, (28)

∂ 2M
∂x2 +

∂

∂x

(
Nxx

∂w
∂x

)
+m2

∂ 4w
∂x2∂ t2 −m0

∂ 2w
∂ t2 −bFm−q= 0,

(29)

with classical boundary conditions at x = 0 or x = L:

Nxx or u,

∂M
∂x

+Q or w,
(30)

and non-classical boundary conditions at x = 0 or x = L:

N(1)
xx or

∂u
∂x

,

M(1) or
∂ 2w
∂x2 .

(31)

By assuming the fast dynamics, acceleration in the axial di-
rection in Eq.(28) is negligible. Therefore Nxx =C = const.
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Substituting Eqs.(14) and (16) into Eq. (17) , the axial force
Nxx can be written as

Nxx =

(
1− l2 ∂ 2

∂x2

)
Axx

[
∂u
∂x

+
1
2

(
∂w
∂x

)2
]
. (32)

By substituting Eq.(32) into Eq.(19) one can obtain

N(0)
xx − ∂N(1)

xx

∂x
=

(
1− l2 ∂ 2

∂x2

)
Axx

[
∂u
∂x

+
1
2

(
∂w
∂x

)2
]
, (33)

where

N(0)
xx = Axx

[
∂u
∂x

+
1
2

(
∂w
∂x

)2
]
, (34)

and

N(1)
xx = l2Axx

[
∂ 2u
∂x2 +

∂w
∂x

∂ 2w
∂x2

]
. (35)

In the case of hinged-hinged beams, the following boundary
conditions are valid:

u(x = 0) = 0, N(1)(x = 0) = 0,

u(x = L) = 0, N(1)(x = L) = 0.
(36)

Substituting Eq.(34) into Eq.(32) and applying the boundary
conditions Eq.(36), one can obtain expression for the axial
force in the following form

Nxx =
Axx

2L

∫ L

0

(
∂w
∂x

)2

dx. (37)

Substituting Eq.(37) and the second equation of motion (29)
into (21) moment M can be expressed as

(38)
M = µ

2

[
−Axx

2L

∫ L

0

(
∂w
∂x

)2

dx
∂ 2w
∂x2 −m2

∂ 4w
∂x2∂ t2 +m0

∂ 2w
∂ t2

+ bFm + q

]
− Dxx

(
1 − l2 ∂ 2

∂x2

)
∂ 2w
∂x2 .

Substituting Eq.(38) in (21), we obtain the size-dependent
nonlinear equations of motion for an FG Euler-Bernoulli
beam model based on the nonlocal strain gradient theory

(39)

(
1 − µ

2 ∂ 2

∂x2

)[
−Axx

2L

∫ L

0

(
∂w
∂x

)2

dx
∂ 2w
∂x2

− m2
∂ 4w

∂x2∂ t2 + m0
∂ 2w
∂ t2 + bFm + q

]

+ Dxx

(
1 − l2 ∂ 2

∂x2

)
∂ 4w
∂x4 = 0.

After substituting relations for the external loads (Eq.(26))
in Eq.(39), it leads to Eq.(40), given by

(40)

(
1 − µ

2 ∂ 2

∂x2

)[
−Axx

2L

∫ L

0

(
∂w
∂x

)2

dx
∂ 2w
∂x2

− m2
∂ 4w

∂x2∂ t2 + m0
∂ 2w
∂ t2 + bkww + bKwDα w

− bkg
∂ 2w
∂x2 − bKgDα ∂ 2w

∂x2 +Q0 +Q1cosΩ1t

]

+ Dxx

(
1 − l2 ∂ 2

∂x2

)
∂ 4w
∂x4 = 0.

We introduce the following nondimensional parameters:

X =
x
L
, W =

w
kx
, Σ =

l
L
, λ =

µ

L
, ζ =

b
L
, τ = tS

τ
α = tα Sα , S =

kx

L2

√
Axx

m0
y =

m2

m0L2 , F0 =
Q0L4

Axxk3
x

F1 =
Q1L4

Axxk3
x
, Ω = Ω1

L2

kx

√
m0

Axx
, k1 =

ζ kwL5

Axxk2
x
,

K1 =
ζ KwL5

Axxk2
x

Sα , k2 =
ζ kgL3

Axxk2
x
, K2 =

ζ KgL3

Axxk2
x

Sα .

(41)

Note that kx, appearing in Eq.(41), is the radius of gyration,
defined in Eq.(42) as

kx =

√
Dxx

Axx
. (42)

For the homogenous beam kx =
√

Ix
A . Using nondimensional

parameters from Eqs.(41) in Eq.(40), nonlinear equation of
motion is transformed into the following nondimensional
form

(43)

(
1 − λ

2 ∂ 2

∂X2

)[
−1

2

∫ 1

0

(
∂W
∂X

)2

dX
∂ 2W

∂X2

− y
∂ 4W

∂X2
∂τ2

+
∂ 2W
∂τ2 + k1W + K1Dα

τ W

− k2
∂ 2W

∂X2 − K2Dα
τ

∂ 2W

∂X2 + F0 + F1 cosΩτ

]

+

(
1 − Σ

2 ∂ 2

∂X2

)
∂ 4W

∂X4 = 0.

The solution of Eq.(43) could be assumed as a sum of prod-
ucts of amplitude and time functions for each mode. The
most usual is single mode discretization which has been
used by many authors (For example [9, 14, 17, 19, 22, 30,
33, 37, 56, 59, 64, 65]), and solution would be assumed
as in Eq.(44). In our case, this is legitimate, since we have
only cubic nonlinearity, and Nayfeh and Lacarbonara have
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shown in their study [46] that in certain cases one-mode
Galerkin approximation fails to predict the dynamic behav-
ior of hinged-hinged beams, especially when quadratic type
nonlinearity is involved and even modes are observed in cer-
tain subharmonic or superharmonic resonance conditions.

W
(
X ,τ

)
= φn

(
X
)

q(τ). (44)

where φn
(
X
)

is the amplitude function, q(τ) is the time
function and n = 1,2, ... is the mode number. Coefficients
s0 − s5 are calculated as

{s0,s1,s2,s3,s4,s5}=
∫ 1

0
{φ ,φ 2,φ ′′

φ ,φ IV
φ ,φV I

φ ,φ ′2}dX .

(45)

By replacing Eq.(44) into Eq.(43), and using Eq.(45) we
obtain the following nonlinear fractional-order differential
equation

q̈+ γDα
τ q+ω

2
0 q+θq3 = f0 + f1 cosΩτ, (46)

where parameters are given as

γ =
K1s1 −K2s2 −λ 2K1s2 +λ 2K2s3

s1 − ys2 −λ 2s2 + yλ 2s3
,

ω
2
0 =

k1s1 − k2s2 −λ 2k1s2 +λ 2k2s3 + s3 −Σ2s4

s1 − ys2 −λ 2s2 + yλ 2s3
,

θ =
− 1

2 s5s2 +
1
2 s5s3λ 2

s1 − ys2 −λ 2s2 + yλ 2s3
,

f0 =
−s0F0

s1 − ys2 −λ 2s2 + yλ 2s3
,

f1 =
−s0F1

s1 − ys2 −λ 2s2 + yλ 2s3
.

(47)

Note that Eq.(40) could have been nondimensionalized
in many ways. Among them, the optimal one is given in
this paper. Radius of gyration kx (Eq.(42)) is introduced in
nondimenzionalization process with the purpose to reduce
nonlinear parameter θ in Eq.(46). Extreme high values of
θ comparing to linear stiffness parameter ω2

0 would later
induce problems with solving fractional-order differential
equation of motion (Eq.(46)).

4 Nonlinear periodic response

Analytical perturbation methods such as the multiple scales
method are usually used to solve the nonlinear fractional dif-
ferential equations in the case of weak nonlinearity [58]. For
strong nonlinearities, it is more common to use numerical
methods such as the differential quadrature method (DQM)
[41] or incremental harmonic balance (IHB) method [47]. A
brief review of available numerical methods for solving the
aforementioned nonlinear fractional differential equations is
given by Zhou et al. [77]. In this study, periodic solutions

found by the IHB method are verified with the results from
both the perturbation multiple scales and Newmark numeri-
cal method.

4.1 The incremental harmonic balance method with
continuation technique

IHB method has established reference quotations for solving
the nonlinear structural problems. Among others, Dou and
Jensen [8] developed a method for optimizing the nonlinear
structural resonance with time-harmonic loads by using the
IHB. Karlicic et al. [26] used IHB and perturbation method
of multiple scales for investigation of the dynamic behavior
and stability for a single wall carbon nanotube modeled as a
nonlinear nanobeam embedded in a Kelvin-Voigt viscoelas-
tic medium. IHB method was also employed for studying
the coupled Duffing oscillators [27] and parametrically am-
plified Mathieu-Duffing oscillator [28] used for energy har-
vesting purposes.
To apply the IHB method, we introduce a new time scale
τ = Ωτ into Eq.(46) to obtain the system of nonlinear ordi-
nary differential equations in the following form

Ω
2 d2q

dτ
2 + γΩ

α Dα
τ q+ω

2
0 q+θq3 = f0 + f1 cosτ. (48)

For the arbitrarily chosen initial values for q0 and Ω0 of the
steady-state modal amplitude, a neighboring state of motion
has the incremental changes to the current state and can be
expressed in the following form

q = q0 +∆q, Ω = Ω0 +∆Ω. (49)

Substituting Eq.(49) into Eq.(48) and neglecting higher-order
terms, we obtain a linearized incremental relation given as

(50)Ω
2
∆q′′ + γΩ

α
0 Dα

τ ∆q + ω
2
0 ∆q + 3θq2

0∆q
= r − 2Ω0q′′0∆Ω + f0 + f1 cosτ,

where r is residual term given as

r =−
(
Ω

2
0q′′0 + γΩ

α
0 Dα

τ q0 +ω
2
0 q0 +θq3

0
)
. (51)

To obtain the periodic solutions of the fractional-order dif-
ferential equation, q0 and ∆q are expanded as a finite Fourier
series of N terms as

q0 = a0 +
N

∑
n=1

[an cos(nτ)+bn sin(nτ)] =CA0, (52)

∆q = ∆a0 +
N

∑
n=1

[∆an cos(nτ)+∆bn sin(nτ)] =C∆A, (53)

where

C = [1 cosτ cos2τ ... cosNτ sinτ sin2τ ... sinNτ] ,

(54)
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A0 = [a0 a1 a2 ... aN b1 b2 ... bN ]
T , (55)

∆A = [∆a0 ∆a1 ∆a2 ... ∆aN ∆b1 ∆b2 ... ∆bN ]
T . (56)

We substitute Eqs.(52),(53),(54),(55) and (56) into Eq.(50),
and apply the Galerkin procedure. Since a fractional-order
derivative is an aperiodic function, in the integration pro-
cedure we choose the time period T = ∞ and average the
integration results for the fractional derivative. In the same
way, for the periodic function, we choose the time terminal
as T = 2π , which leads us to the following system of equa-
tions

(57)

1
2π

∫ 2π

0
(δ∆q)T [

Ω
2
∆q′′ + ω

2
0 ∆q + 3θq2

0∆q
]

dτ

+
1
T

∫ T

0
(δ∆q)T [γΩ

α Dα
τ ∆q]dτ

=
1

2π

∫ 2π

0
(δ∆q)T [−Ω

2q′′0 − ω
2
0 q0 − θq3

0

+ f0 + f1 cosτ
]

dτ − 1
T

∫ T

0
(δ∆q)T [γΩ

α Dα
τ q0]dτ

− 1
2π

∫ 2π

0
(δ∆q)T [2Ω0q′′0

]
dτ∆Ω.

This gives us a system of linearized algebraic equations in
terms of ∆A in the following form

M∆A+V ∆Ω = R, (58)

where elements of the Jacobi matrix M, the corrective vector
R, and vector V are given in Appendix 1.

In case that we want the solution at a given single fre-
quency, we would set ∆Ω to zero in Eq.(58). Otherwise, we
would solve Eq.(58) for both A and ∆Ω, but insert ∆Ω in the
first entry of the vector ∆A and transform the system of equa-
tions. We initialize solution process by entering guessed val-
ues of A, and calculate ∆A using Eq.(58). The solution ∆A is
then added to the current estimated value of A to determine
the new vector A, i.e,

Ak+1 = Ak +∆A. (59)

We repeat this process until the value of the residuum norm
|R| is within preset tolerance (in our case less than 10−5).

4.1.1 The continuation method

For starting the recurrent continuation process we need to
obtain the periodic response in two successive points by us-
ing the IHB method. These initial points are usually taken
far from the resonant state, where response amplitudes for
both of them are having similar and small values. Then we
apply the predictor-corrector method to carry out point-to-
point computation for determining the corresponding branch-
es of the frequency responses. Eq.(58) can be rewritten in the
more general matrix form as

[M V ]

[
∆A
∆Ω

]
= R. (60)

We introduce new vectors X = [A Ω]T and ∆X = [∆A ∆Ω]T .
Let us also introduce a function g(X) of vector X in the fol-
lowing form: Eq.(61). Note that the function g(X) can be
defined in many ways, but the one given in Eq.(61) is the
most appropriate

g(X) = XT X . (61)

We will also introduce arc-length parameter η to follow the
direction of the path. An augmented equation would be

g(X)−η = 0. (62)

The slope can be determined by using the two previous known
points Xk−1 and Xk−2 on the response curves, such as

X ′ =
Xk−1 −Xk−2

‖Xk−1 −Xk−2‖
. (63)

The first prediction of the next point can be determined by

Xu = Xk−1 +∆ηX ′. (64)

Eq.(60) can be extended with Eq.(62), and then the tangent
stiffness matrix and residual vector can be given in the fol-
lowing form[

M V
∂g
∂A

∂g
∂Ω

][
∆A
∆Ω

]
=

[
R

∆η −g

]
. (65)

More information about the continuation method can be found
in [6, 11, 67].

5 Numerical results

The methodology outlined in the previous section is uti-
lized herein to find the solution of the fractional-order forced
Duffing differential equation Eq.(46) and examine the reso-
nance of a nonlocal FG beam on a fractional visco-Pasternak
foundation. The combination of the IHB and path-following
methods are introduced to trace branches of periodic so-
lutions of a nonlinear model of a nonlocal strain-gradient
beam on a fractional visco-Pasternak foundation with direct
transversal harmonic excitation. The obtained diagrams are
showing periodic responses given in the form of amplitude-
frequency curves. Firstly, beam natural frequency for two
different models, obtained by simplifying our model, are
verified for the data available in the literature (Tables 1 and
2). In the second part of the numerical study, the validity of
the results from the IHB method is examined (Figs.(3,4,6)),
which is then followed by the parametric study in the fre-
quency (Figs.(5,7-14)) and time-domain (Fig.(15)). It is de-
monstrated that the fractional visco-Pasternak layer has a
significant influence on the response amplitudes. Moreover,
the results obtained by the IHB method are verified with the
results from multiple scales and the Newmark method. The
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Table 1: The first five non-dimensional fundamental nat-
ural frequencies of a local Euler-Bernoulli beam resting
on Winkler-Pasternak foundation for the simple-supported
boundary conditions (k1 = 25,k2 = 25)

Present Ref.[62] Ref.[14] Ref.[71] Ref.[44]

19.2133 19.2133 19.2133 19.21 19.2178
50.7002 50.7002 50.7002 50.7 50.7804
100.6767 100.677 100.6767 100.7 -
170.0281 170.028 170.0281 170.1 -
258.9868 258.987 258.9868 259.1 -

Table 2: Comparison of non-dimensional fundamental
natural frequencies of simply supported nonlocal Euler-
Bernoulli beam with different nonlocal parameters µ

(L = 10, h = 1, ρ = 1, E = 30 ·106, ν = 0.3.)

µ Present Ref.[53] Ref. [1] Ref.[75]

0 9.8293 9.8696 9.8298 9.8696
1 9.3774 9.4159 9.3814 9.4159
2 8.9826 9.0195 8.9892 9.0195
3 8.6338 8.6693 8.6424 8.6693
4 8.3228 8.3569 8.3329 8.3569

last part of the numerical results section is devoted to the
analysis of the influence of different parameters on the re-
sponse. The results revealed the importance of the first and
third harmonics. The parameter values of the presented me-
chanical model are adopted from the paper [31], extended
with parameters for fractional Pasternak layer and FG mate-
rial, and presented in Table 3. The static part of the excitation
force Q0 is set to zero and the dynamic part Q1 is given in the
table. When some parameter is varied remaining coefficients
are taken from the Table 3. Moreover, it should be noted
that the number of adopted harmonics in the Fourier series
is N = 6 and this is used in all numerical examples. The
amplitudes obtained by the IHB method and corresponding
to particular Fourier coefficients (Eq.(55)) and harmonics
(Eq.(54)) are computed as given in Eq.(66),

A0 = a0, Ai =
√

a2
i +b2

i , (i = 1,2, . . . ,N). (66)

For verification with the multiple scale method, a small non-
dimensional bookkeeping parameter takes the value ε = 0.01.

5.1 Verification

To check the derivation of the equation of motion, eigenfre-
quencies of two simplified models are computed and com-
pared with results obtained by other authors. Table 1 com-
pares the first five non-dimensional fundamental natural fre-

Table 3: Parameter values of the presented mechanical
model

Parameter Symbol Value

Fractional derivative α 0.5
Young’s modulus at top Et 390 GPa
Young’s modulus at bottom Eb 210 GPa
Density at top ρt 3960 kg/m3

Density at bottom ρb 7800 kg/m3

Power-law index k 1
Height of the beam h 100 nm
Width of the beam b 1 µm
Length of the beam L 10 µm
Nonlocal parameter µ 10 nm
Length scale parameter l 100 nm
Winkler coeff. of viscoelastic layer kw 0.0001 m−1

Winkler coeff. of viscoelastic layer Kw 0.0001 Nsα/m3

Pasternak coeff. of viscoelastic layer kg 0.0001 m
Pasternak coeff. of viscoelastic layer Kg 0.0001 Nsα/m
Amplitude of excitation force Q1 0.003 N

quencies of a local Euler-Bernoulli beam resting on Winkler-
Pasternak foundation for the simply supported boundary con-
ditions with foundation parameters k1 = 25, k2 = 25 with
values obtained by other authors [62, 14, 71, 44], where fine
agreement can be observed. Besides that, we made a com-
parison of non-dimensional fundamental natural frequencies
of simply supported nonlocal Euler-Bernoulli beam with dif-
ferent values of nonlocal stress-gradient parameter µ with
data available in the literature [53, 1, 75]. Results are in good
agreement.

With the purpose of demonstrating the reliability and ac-
curacy of the proposed approach for the determination of
the amplitude-frequency responses and corresponding peri-
odic solutions, the obtained results from the IHB are verified
with two different approaches - the perturbation method of
multiple scales and the direct numerical integration by us-
ing the Newmark method. The first one is used to obtain the
amplitude-frequency response diagrams, and the second one
to capture periodic motions at desired excitation frequen-
cies. The way we applied the Newmark method to solve the
nonlinear fractional differential equation of motion Eq.(48)
is given in Appendix 3 thoroughly.

First, we will verify the results by comparing the steady-
state frequency responses for the superharmonic resonance
case Ω = 1

3 ω0 obtained by the IHB method with the results
from the multiple scales method, as given in Fig.(3) and
Fig.(4). In these figures, response amplitudes corresponding
to displacement are given on the ordinate axis while excita-
tion frequency Ω is on the abscissa.

In Fig.(3) the amplitude-frequency response curves are
given for amplitudes A3 obtained by the IHB, and ampli-
tudes corresponding to the excitation frequency Ω = 1

3 ω0
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Fig. 3: The amplitude-frequency response curves of the non-
linear nonlocal strain gradient FG beam on a fractional
visco-Pasternak foundation are given in sub-figure (a). The
sub-figure (b) is zoomed sub-figure (a). The periodic re-
sponse is obtained by the incremental harmonic balance
(IHB) method - solid line and multiple scales method - cir-
cles.

obtained by using the multiple scales method. Fractional
parametar α is varied. Fig.(3) (b) is zoomed Fig.(3) (a) that
enables one to clearly compare the obtained results. Data in
Fig.(3) reveals that results obtained by these two methods
match well. Besides that, we can also observe that an in-
crease of α decreases the amplitude, which is slightly shifted
to the right towards higher frequencies.

In Fig.(4) the frequency response curves are given for
amplitudes A3 obtained by using the IHB method and am-
plitudes corresponding to the excitation frequency Ω = 1

3 ω0
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Q1 = 0.003 MS
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Fig. 4: The amplitude-frequency response curves of the non-
linear nonlocal strain gradient FG beam on a fractional
visco-Pasternak foundation. The periodic response is ob-
tained by the incremental harmonic balance (IHB) method
- solid line and the multiple scales method - circles.

obtained by using the multiple scales method. External exci-
tation magnitudes are given as: Q1 = 0.001, Q1 = 0.002, and
Q1 = 0.003. From this figure, we can observe a good match-
ing between the result obtained by two different methods.
Besides that, we can also observe that an increase of the ex-
ternal excitation magnitude increases the amplitude and shift
its value to the right towards higher frequencies.

In Fig.(5)(a) and Fig.(5)(b) the frequency response curves
are given for the amplitudes A1 and A3, respectively, which
are given on the ordinate axis while the excitation frequency
Ω is on the abscissa. Due to the stiffness-hardening effect
of the external excitation force parameter, not only does the
maximum amplitude experience a rise but also the frequency
response curves are shifted towards higher excitation fre-
quencies. This shifting can be observed for both, the first
(Fig.(5) a)) and third harmonic amplitude (Fig.(5) b)). Also,
an increase of the external excitation amplitude causes a sig-
nificant bending of the amplitude-frequency curves so that
the multiple-value solutions may exist in the primary reso-
nance case associated with the first and the third harmonic
amplitude. Three periodic orbits are selected from the re-
sponse curves (marked as star points on Fig.(5)), which are
then verified with Newmark-based solutions. The periodic
solutions are depicted in the phase plane, where the veloc-
ity is given on the ordinate axis while the displacement is
given on the abscissa, as shown in sub-figures a), b) and c)
of Fig.(6). We picked two points close and one far from the
resonant state (Fig.(5)). From Fig.(6) we can observe a good
matching between the result obtained by the IHB and New-
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Fig. 5: The amplitude-frequency response curves A1 - sub-
figure (a) and A3 - sub-figure (b) of the nonlinear nonlocal
strain gradient FG beam on fractional visco-Pasternak foun-
dation of the amplitude Q1.

mark method. However, better overlapping is achieved when
we are far from the resonant state.

5.2 Parametric study

In the subsequent examples in this chapter, we have shown
the influence of different parameters such as nonlocal pa-
rameter, strain gradient parameter, power-law index, and pa-
rameters of fractional visco-Pasternak foundation on ampli-
tude-frequency response. The influence of excitation force
is discussed in the previous subsection.
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Fig. 6: The periodic response obtained by the incremental
harmonic balance (IHB) method and Newmark method is
taken for three different points in Fig.(5).
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Fig. 7: The amplitude-frequency response curves of the non-
linear nonlocal strain gradient FG beam on a fractional
visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)
for different values of the nonlocal parameter µ .

Fig.(7) shows the amplitude-frequency response of the
nonlinear nonlocal strain gradient FG beam on a fractional
visco-Pasternak foundation with external excitation for the
first A1 and the third A3 harmonic amplitudes, and different
values of the nonlocal parameter µ . Besides that, selected
parts far from and close to resonant state are magnified on
figures. From the observation of Fig.(7), it could be found
that variations in the nonlocal parameter are having weak
influence in both the first and the third harmonic vibration
amplitudes. Due to large non-linearity and stiffness of the
system, influence of the nonlocal parameter on amplitude-
frequency response is small. In other words, nonlinearity re-
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Fig. 8: The amplitude-frequency response curves of the non-
linear nonlocal strain gradient FG beam on a fractional
visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)
for different values of the length scale parameter l.

duces nonlocal parameter influence on dynamic response of
the system.

The amplitude-frequency response curves for different
values of the length scale parameter l are given in Fig.(8) for
the first A1 and the third A3 harmonic amplitudes. Besides
that, selected parts far from and close to resonant state are
magnified on figures. We observe that variation of the length
scale parameter l has a small influence on vibration am-
plitudes for the primary resonance case and the maximum
value. Due to large non-linearity and stiffness of the sys-
tem, influence of the length scale parameter on amplitude-
frequency response is small. In other words, nonlinearity re-
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Fig. 9: The amplitude-frequency response curves of the non-
linear nonlocal strain gradient FG beam on a fractional
visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)
are plotted for different values of the parameter Kw.

duces length scale parameter influence on dynamic response
of the system.

The amplitude-frequency response curves are given for
the first A1 (Fig.(9) a)) and the third harmonic amplitude A3
(Fig.(9) b)) and variations of the fractional visco-Pasternak
foundation parameter Kw. One can observe that an increase
of Kw decreases the amplitude and therefore enlarges the to-
tal stiffness of the system. Moreover, an increase of Kw as
damping parameter decreases the natural frequencies of the
system and therefore the resonance frequency is shifted to
the left. Besides that, by looking at the data in-depth, it can
be observed that the angle of curve tilt decreases together
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Fig. 10: The amplitude-frequency response curves of the
nonlinear nonlocal strain gradient FG beam on a fractional
visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)
are plotted for different values of the parameter kw.

with the amplitude towards the curvature center for an in-
crease of Kw, which at the same time results in weakening
of the hardening type nonlinear behavior.

Fig.(10) shows the amplitude-frequency response curves
for the first A1 (Fig.(10) a)) and the third harmonic ampli-
tude A3 (Fig.(10) b)) and variations of the foundation param-
eter kw. One can observe that an increase of kw decreases the
amplitude with the stabilizing effect to the system vibrations
and therefore the total stiffness of the system is enlarged.
Besides that, an increase of kw as damping parameter de-
creases the natural frequencies of the system and shifts the
resonance frequency to the right.
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0 5 10 15 20 25

Ω

0

1

2

3

4

5

A
1

Kg = 1 · 10
−4

Kg = 2 · 10
−4

Kg = 3 · 10
−4

Kg = 4 · 10
−4

(a)

0 5 10 15 20 25

Ω

0

0.1

0.2

0.3

0.4

0.5

A
3

Kg = 1 · 10
−4

Kg = 2 · 10
−4

Kg = 3 · 10
−4

Kg = 4 · 10
−4

(b)

Fig. 11: The amplitude-frequency response curves of the
nonlinear nonlocal strain gradient FG beam on a fractional
visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)
for different values of the parameter Kg.

The amplitude-frequency response curves in the first A1
(Fig.(11) a)) and the third harmonic amplitude A3 (Fig.(11)
b)) are given for different values of the fractional visco-
Pasternak foundation parameter Kg. One can notice that an
increase of the parameter Kg decreases the resonance am-
plitude that is shifted to the left. This indicates that raise of
Kg augments the total stiffness of the system. Furthermore,
an increase of the parameter Kg causes weakening of the
nonlinear hardening behavior of the response. Namely, the
hardening-type nonlinearity becomes more apparent when
the damping parameter Kg is small.
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Fig. 12: The amplitude-frequency response curves of the
nonlinear nonlocal strain gradient FG beam on a fractional
visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)
for different values of the parameter kg.

Fig.(12) shows the amplitude-frequency response curves
for the first A1 (Fig.(12) a)) and the third harmonic ampli-
tude A3 (Fig.(12) b)) for different values of the foundation
parameter kg. One can notice that an increase of the parame-
ter kg decreases the resonance amplitude that is shifted to the
right significantly enlarging the hardening effects of nonlin-
earity. This indicates that raise of kg increases the total stiff-
ness of the system.

By comparing the variation of Kw,kw,Kg,kg, one can ob-
serve that an increase of the parameter Kg has a bigger in-
fluence on the increasing total stiffness of the system than
the parameter Kw, even though both parameters contribute
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Fig. 13: The amplitude-frequency response curves of the
nonlinear nonlocal strain gradient FG beam on a fractional
visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)
for different values of fractional parameter α .

to the amplitude decrease. However, kg and kw have similar
effects of moving the amplitude-frequency curve to the right
towards the higher values of the external frequency with the
light reduction of amplitude values.

The amplitude-frequency response curves in the first A1
(Fig.(13) a)) and the third harmonic amplitude A3 (Fig.(13)
b)) are given for different values of the fractional-order deriva-
tive in the model of visco-Pasternak foundation α . It can be
noticed that a decrease of the fractional-order parameter α

by a step of 0,05 increases the amplitude values by almost
double in the primary resonance case. This significant influ-
ence of the parameter α is caused by damping features of
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Fig. 14: The amplitude-frequency response curves of the
nonlinear nonlocal strain gradient FG beam on a fractional
visco-Pasternak foundation. Amplitudes A1 (a) and A3 (b)
for different values of the power-law index k.

the system become less pronounced due to the elastic-like
behavior of the fractional term. Moreover, a decrease of the
fractional derivative parameter α makes the equivalent stiff-
ness coefficient larger, which results in the rightwards bend-
ing of the amplitude-frequency curves and larger primary
resonance frequencies.

Amplitudes of the first A1 (Fig.(14) a)) and the third har-
monic A3 (Fig.(14) b)) of the amplitude-frequency response
are given for different values of the power-law index k that
defines the FG material. One can notice that for k = 1 and
k = 3 the resonant frequencies and hysteresis domain be-
comes larger and more shifted and bent towards the posi-
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tive direction of lateral axis than for the case when k = 2
and k = 4. This can be attributed to increased stiffness prop-
erties of the nonlocal beam for these uneven values of the
power-law index that increases the hardening nonlinearity
and stiffness features of the system.

5.3 Time response

In this section, we show the time responses of the system
obtained via the Newmark method. The influences of the
fractional-order derivative parameter α (Fig.(15)) are stud-
ied to show their effect on the time-dependent behavior of
the system. To understand the influence of the fractional
visco-Pasternak layer on the initial harmonic excitation of
the beam, the following initial conditions are adopted q(0)=
1, q̇(0) = 1. We adopted the following values of fractional
parameter α = 0.5,0.6,0.7. The dimensionless time period
T = 200 is used this in simulation. Similar conclusions can
be drawn here as for the amplitude-frequency response. One
can observe that an increase of the fractional parameter α

leads to stronger damping in time and reduced and attenu-
ated amplitudes of the response. Also, a weak beating phe-
nomenon with decreasing intervals in time can be observed.
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Fig. 15: The time response curves of the nonlinear nonlo-
cal strain gradient FG beam on a fractional visco-Pasternak
foundation. Amplitudes for different values of the fractional
derivative parameter.

5.4 Summary of the numerical results

The following conclusions can be drawn about the results
presented in this section. The hardening-type nonlinearity

becomes more apparent when the force increases and the
following parameters decrease: nonlocal parameter µ , strain-
gradient length scale parameter l, parameters of visco-Paster-
nak foundation α,Kw,Kg. If we increase the external excita-
tion amplitude in this system, the primary resonances will be
strengthened and shifted rightwards i.e. towards higher exci-
tation frequencies. In this case, the hysteresis domain would
also increase. Nonlocal and length scale parameters are both
having a small influence on the amplitude-frequency respon-
se. Parameters of the visco-Pasternak foundation Kw and Kg
augments the total stiffness of the system since their in-
creasing cause response amplitudes decreasing. Specifically,
foundation parameters Kw and kw have smaller influence on
amplitude-frequency response comparing to parameters Kg
and kg. The even values of power-law index k causes higher
amplitude values in comparison to their odd values.

In addition, we remark on the mutual interactions of the
regime in the time domain of the single-amplitude mode
of beam vibration. This is observed from the amplitude-
frequency diagrams of the first mode A1, Figs. (7-14), a small
jump in amplitude in the region of external frequency about
5, before the resonant region, which corresponds to the con-
tribution of resonant jumps of the third amplitude A3. The
amplitude of the third mode A3 has a resonant range around
this frequency and their values go up to values that can be
registered for these small jumps on the amplitude diagrams
of the first mode A1. The second resonant region of the third
amplitude A3 is in the same frequency domain as the one
of the first amplitude A1, the interval 15 − 25. Thus, the
changes of the A1 diagram from this interval are contributed
also by the behavior of the third amplitude A3 in this inter-
val.

6 Conclusions

In this paper, we analyzed the nonlinear vibration problem
of a nonlocal beam resting on the fractional visco-Pasternak
foundation by using the nonlocal strain-gradient theory and
fractional order damping. The governing equation is derived
by using Hamilton’s principle and then discretized via the
Galerkin approximation, which yields a corresponding non-
linear fractional-order forced Duffing type differential equa-
tion. The solution is sought for the steady-state superhar-
monic resonance conditions by using the perturbation mul-
tiple time scales method for the weakly nonlinear case and
IHB and Newmark method for the strongly nonlinear case.
From the verification study, it is revealed that the IHB method
is in good agreement with the multiple time scales analysis
for the weakly nonlinear case and with the numerical New-
mark method for the strongly nonlinear case. The main ad-
vantage of the IHB method over the multiple scales method
lies in the fact that it does not require an introduction of
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small parameter and thus strong nonlinearity cases can be
observed. On the other side, the superiority of the IHB over
the Newmark approach is the simple computational imple-
mentation and easier determination of periodic solutions.
We have also shown that the introduction of the IHB method
in the analysis of NLSGT structures can lead to more reli-
able studies of strongly nonlinear systems. In our paramet-
ric study, we concluded that the nonlocal and length scale
parameters are having a small influence on the amplitude-
frequency response. On the other hand, parameters of the
visco-Pasternak foundation remarkably affect the response
amplitudes. Finally, the power-law index displays a signif-
icant effect on the frequency response, which was also dis-
cussed in the numerical analysis. Generally speaking, the
system vibration amplitudes are higher for the odd values of
the power-law index comparing to materials with the even
values of this parameter.
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buckling and free vibration of Euler-Bernoulli FG na-
nobeams based on the higher-order nonlocal strain
gradient theory.” In: Archives of Mechanics 72.2 (2020).

[25] Goran Janevski, Ivan Pavlović, and Nikola Despenić.
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Appendix 1

Elements of the Jacobi matrix M = M1 +Mα
2 , the corrective

vector R = R1 +Rα
2 , and vector V =V1 +V α

2 are defined as:
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0CTC
)

dτA0

+ f0CT + f0 cosτCT
]

dτ,

(69)

Rα
2 =− 1

T

∫ T

0
CT [γΩ

α Dα
τ (C)]dτA0, (70)

V1 =
1

2π

∫ T

0

[
2Ω0CT d2C

dτ
2

]
dτA0, (71)

V α
2 = 0. (72)

Within each incremental step, only a set of linear equations
Eq.(58) has to be solved to obtain the data for the next stage.
By applying the procedure established at [69, 47] elements
of the matrix Mα

2 , and vectors Rα
2 and V α

2 can be expressed
as

Mα
2 =

[
[M11]

α [M12]
α

[M21]
α [M22]

α

]
, Rα

2 =

Rα
10

Rα
1

Rα
2

 , V α
2 =

V α
10

V α
1

V α
2

 .
(73)
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Elements of matrix Mα
2 , and vectors Rα

2 and V α
2 from Eq.(73)

are:

[M11]
α

i j = δi jγΩ
α iα

2
cos
(

απ

2

)
,

i = 0,1,2, ...,N, j = 0,1,2, ...,N.

[M12]
α

i j = δi jγΩ
α iα

2
sin
(

απ

2

)
,

i = 0,1,2, ...,N, j = 1,2, ...,N.

[M21]
α

i j =−δi jγΩ
α iα

2
sin
(

απ

2

)
,

i = 1,2, ...,N, j = 0,1,2, ...,N.

[M22]
α

i j = δi jγΩ
α iα

2
cos
(

απ

2

)
,

i = 1,2, ...,N, j = 1,2, ...,N.

(74)

Rα
10 = 0,

Rα
1i =−γΩ

α

[
ai

iα

2
cos
(

απ

2

)
+bi

iα

2
sin
(

απ

2

)]
,

i = 1,2, ...,N,

Rα
2i =−γΩ

α

[
ai

iα

2
sin
(

απ

2

)
+bi

iα

2
cos
(

απ

2

)]
,

i = 1,2, ...,N,

(75)

V α
10 = 0,

V α
1i = γαΩ

α−1
[

ai
iα

2
cos
(

απ

2

)
+bi

iα

2
sin
(

απ

2

)]
,

i = 1,2, ...,N,

V α
2i = γαΩ

α−1
[

ai
iα

2
sin
(

απ

2

)
+bi

iα

2
cos
(

απ

2

)]
,

i = 1,2, ...,N,

(76)

where δi j is Kronecker delta.

Appendix 2

Multiple scales method

Multiple scales is the analytical perturbation method for con-
structing approximate solutions of nonlinear differential equa-
tions. This method is well established in the literature but it
is only valid for small nonlinearities and damping. There-
fore, we will use it here only for validation purposes. Eq.(46)
is well known as the forced Duffing fractional-order differ-
ential equation, which can be expressed in terms of small
scale parameter ε as in Eq.(77). Let assume for simplicity
f0 = 0, f = f1.

q̈+ εγDα
τ q+ω

2
0 q+ εθq3 = f cosΩτ. (77)

Here, we introduce new parameters as γ = εγ and θ = εθ .
The small bookkeeping parameter ε is put in front of the

fractional and nonlinear terms to have weak damping and
weak nonlinearity. Please note that the forcing term in Eq.(77)
is of the order one (also known as hard forcing) which will
help us to study secondary resonances in the system by using
the perturbation analysis of the first order. Forcing of order
ε would indicate a primary resonance that is the same as in
the Duffing equation [52].
Using the multiple scales method, we will seek the solution
of Eq.(77) in the following form:

q(T0,T1,ε) = q0(T0,T1)+ εq1(T0,T1)+ · · · . (78)

Here, T0 = τ is the fast time scale and T1 = ετ is the slow
time scale. We will analyze the system for superharmonic
resonance conditions. Firstly, let us define the time deriva-
tives as

d
dτ

= D0 + εD1 +O(ε2), (79)

d2

dτ2 = D2
0 +2εD0D1 +O(ε2), (80)

Dα = Dα
0+− εαDα−1

0+ D1 + · · · , (81)

where Dn = ∂

∂Tn
,(n = 0,1,2, . . .) and Dα−n

n+ = ∂ α−n

∂T α−n
n+

,(n =

0,1,2, . . .) are classical and Riemann-Liouville’s fractional
derivative for new time scales [58]. For the fractional deriva-
tive of the exponential function [58], restricted to the first
and second-order approximations, the following relationship
will be used:

Dα
0+ expiωτ = (iω)α expiωτ , (82)

where i is the imaginary unit. Substituting Eqs. (78), (79),
(80), (81) into Eq.(77) and then extracting coefficients of ε0

and ε1 we obtain the following equations

ε
0 : D2

0q0 +ω
2
0 q0 = f cosΩτ, (83)

ε
1 : D2

0q1 +ω
2
0 q1 =−2D0D1q0 − γDα

0+q0 −θq3
0. (84)

The solution of Eq.(83) is sought in the form

q0 = A(T1)eiω0T0 +ΛeiΩT1 +A(T1)e−iω0T0 +Λe−iΩT1 , (85)

where A is a complex function in terms of slow time scale,
and Λ is defined as

Λ =
f

2(ω2
0 −Ω2)

. (86)
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Superharmonic resonance 3Ω ≈ ω0

Since we have only cubic nonlinearity in Eq.(77), we will
consider the case when 3Ω=ω0+εσ , where σ is the detun-
ing parameter. By substituting q0 from Eq.(85) into Eq.(84)
and removing the secular terms that grow in time unbounded,
i.e the coefficients of eiω0T0 , we obtain the corresponding
solvability conditions as

−2iω0A′− γA(iω0)
α −θ(3A2A+6AΛ

2 +Λ
3eiσT1) = 0,

(87)

where A′ = D1A. Then, we use the polar form A = 1
2 aeiϕ ,

where the real valued functions a and ϕ are the amplitude
and phase lag of time response, respectively. By substituting
A in Eq.(87) and separation of real and imaginary part we
obtain

ω0aϕ
′− 1

2
γaω

α
0 cos

απ

2
− 3

8
θa3 −3θaΛ

2 −θΛ
3 cosζ = 0,

(88)

ω0a′+
1
2

γaω
α
0 sin

απ

2
+θΛ

3 sinζ = 0, (89)

with ζ = σT1 −ϕ denoting the new phase angle. Then, we
utilize steady-state conditions a′ = 0, ζ ′ = 0 in Eq.(88) and
Eq.(89) which leads to the relationship between the response
amplitude and the detuning parameter in the following form

θΛ3

ω0a
cosζ = σ − 1

2
γω

α−1
0 cos

απ

2
− 3

8
θa2

ω0
−3

θΛ2

ω0
, (90)

θΛ3

ω0a
sinζ =−1

2
γω

α−1
0 sin

απ

2
. (91)

After simple algebra transformations over Eq.(90) and Eq.(91)
following polynomial equation can be obtained

σ
2 −2σK +M = 0, (92)

with K and M given as

K =
1
2

γω
α−1
0 cos

απ

2
+

3
8

θa2

ω0
−3

θΛ2

ω0
, (93)

M = K2 +

(
1
2

γω
α−1
0 sin

απ

2

)2

, (94)

from where the relationship for amplitude-frequency curves
can be obtained as

σ1,2 = K ±
√

K2 −M. (95)

One can notice that all the parameters contribute to the ap-
pearance of the superharmonic resonance of order 1/3 i.e.
we have interaction of terms of fractional-order, nonlinear,
and external excitation.

Appendix 3

Newmark method

We use Grunwald-Letnikov representation of fractional deriva-
tive and apply the Newmark-Beta method for numerical in-
tegration. We use two different meshes, coarse mesh for time
integration and fine mesh for fractional derivative approx-
imation. Grunwald-Letnikov representation of a fractional
derivative of a function q(τ) at a point of time τ is

GLDα
0,τ q(τ) = lim

h→0
h−α

n

∑
k=0

GLkq(τ − kh) (96)

where

GLk = (−1)k
(

α

k

)
(97)

Grunwald-Letnikov coefficients can also be represented in
recursive form as

GLk=0 = 1, GLk =
k−α −1

k
GLk−1 (98)

∆τ

h
= p = 5÷20 (99)

where ∆τ is time step for coarse mesh, and h is time step for
fine mesh.
Representation of fractional derivative given by Eq.(96) in
fine mesh is

q(α)
i = h−α

[
GL0 GL1 · · · GLk jp

]



qi
qi−1

...
qi−p

qi−p−1
...

qi−2p
qi−2p−1

...
qk jp



(100)

where:
p is the number of past terms of length h in a time inte-

gration step of length ∆τ ,
j are previous time steps of length ∆τ that can be ap-

proximated accurately by a backward Taylor expansion us-
ing the displacement, velocity, and acceleration at a certain
time step i,

k represents overall chunks of j time steps that must be
taken into consideration to accurately approximate the frac-
tional derivative at a given point.
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Taylor backward expansion for the last jp time steps can
be represented as in Eq.(101).

qi−1 = qi −hq̇i +
h2

2
q̈i +O(h3)

qi−2 = qi −2hq̇i +
4h2

2
q̈i +O(h3)

qi−3 = qi −3hq̇i +
9h2

2
q̈i +O(h3)

...

qi− jp = qi − jphq̇i +
j2 p2h2

2
q̈i +O(h3)

(101)

where qi, q̇i and q̈i are displacement, velocity and accelera-
tion, respectfully, at time step i.
Lets neglect higher order terms. Eq.(101) can be written in
the matrix form Eq.(102).

(102)



qi
qi−1
qi−2
qi−3

...
qi−( jp−1)


=



1 0 0
1 −h h2

2
1 −2h 4h2

2
1 −3h 9h2

2
...

...
...

1 −( jp − 1)h ( jp−1)2h2

2


qi

q̇i
q̈i



= [H0]

qi
q̇i
q̈i


By analogy, the displacements from the step i− jp to the i−
(2 jp−1) in matrix form in terms of displacements, velocity
and acceleration of the i− jp is given by the Eq.(103). Here
can jerk also be included, but we didn’t do this.



qi− jp
qi− jp−1
qi− jp−2
qi− jp−3

...
qi−(2 jp−1)


=



1 0 0
1 −h h2

2
1 −2h 4h2

2
1 −3h 9h2

2
...

...
...

1 −( jp − 1)h ( jp−1)2h2

2


qi− j

q̇i− j
q̈i− j



= [H]

qi− j
q̇i− j
q̈i− j


(103)

Since we omitted jerk, [H] = [H0]. Substituting Eq.(101),
Eq.(102) and Eq.(103) in Eq.(100) we obtain following ex-

pressions:

q(α)
i =h−α

[
GL0 GL1 · · · GL jp−1

]
[H0]

qi
q̇i
q̈i


+h−α

[
GL jp GL jp+1 · · · GL2 jp−1

]
[H]

qi− j
q̇i− j
q̈i− j

+ · · ·

+h−α
[

GL(k−1) jp · · · GLk jp−1
]
[H]

qi−(k−1) j
q̇i−(k−1) j
q̈i−(k−1) j


(104)

q(α)
i =

[
D01 D02 D03

]qi
q̇i
q̈i

+ [D11 D12 D13
]qi− j

q̇i− j
q̈i− j


+ · · ·+

[
D(k−1)1 D(k−1)2 D(k−1)3

]qi−(k−1) j
q̇i−(k−1) j
q̈i−(k−1) j


(105)

∆q(α)
i =

[
D01 D02 D03

]∆qi
∆q̇i
∆q̈i

+ [D11 D12 D13
]∆qi− j

∆q̇i− j
∆q̈i− j


+ · · ·+

[
D(k−1)1 D(k−1)2 D(k−1)3

]∆qi−(k−1) j
∆q̇i−(k−1) j
∆q̈i−(k−1) j


(106)

Lets consider equation of motion Eq.(48) in two consecutive
time instants.

(107)
Ω

2
∆q̈i + ω

2
0 ∆qi + θ(∆qi)

3

+γΩ
α

(
GLDα

0,τ i
qi−GLDα

0,τ i−1
qi−1

)
= f0+∆ fi

where

∆ fi = f1 cosτ i (108)

By substituting Eq.(106) in Eq.(107) we obtain

(109)

(
Ω

2 + γΩ
α D03

)
∆q̈i + γΩ

α D02∆q̇i +
(
ω

2
0 + γΩ

α D01
)

∆qi

+ θ(∆qi)
3 = f0 + ∆ fi − ∆ fcorrection

where

∆ fcorrection = γΩ
α
[

D11 D12 D13
]∆qi− j

∆q̇i− j
∆q̈i− j

+ · · ·+

γΩ
α
[

D(k−1)1 D(k−1)2 D(k−1)3
]∆qi−(k−1) j

∆q̇i−(k−1) j
∆q̈i−(k−1) j

 (110)
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Note that in case of ∆ fi = const, Eq.(109) can be solved us-
ing Runge-Kutta method (function ode45 in Matlab). If this
is not the case, Eq.(109) can be solved using Newmark-Beta
method.
For validation of the IHB solution, the Newmark-Beta method
for nonlinear systems is used and implemented according to
the procedure presented in [7, 13].


