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Abstract 

Here, we investigate the free vibration behavior of a nanoplate resting on a foundation 
with viscoelastic properties using nonlocal elasticity and fractional viscoelasticity 
approach. Nanoplate is modeled using nonlocal and fractional viscoelastic constitutive 
equation and orthotropic Kirchhoff-Love plate theory. Viscoelastic foundation is 
represented by the viscoelastic model with fractional derivative operator. Governing 
equation is derived using D’Alambert’s principle and solution is assumed in terms of 
Fourier series using separation of variables method and satisfying the simply supported 
boundary conditions for nanoplate. Fractional differential equation is solved using the 
Laplace and Mellin-Fourier transforms and residue theory. Complex poles of unknown 
function are determined by finding the roots of the characteristic equation using technique 
that is available in the literature. In order to show the effect of fractional derivative 
parameters, damping coefficients and nonlocal parameter on complex roots i.e. damped 
frequency and damping ratio as well as on nanoplate’s displacement, few numerical 
examples are given. 
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1. Introduction

Recent advances in nanotechnologies increased a number of theoretical studies 
developing the corresponding mathematical models to describe mechanical behavior and 
small-scale effects of nanobjects. Materials based on nanostructures [1] are having 
improved thermal, mechanical and electrical properties compared to conventional 
materials and can be applied in different nano-electromechanical systems (NEMS), opto-
mechanical or nanoresonator devices [2], etc.  

Nonlocal theory of Eringen [3] receive an intensive application in recent time, 
especially in theoretical studies of the mechanical behavior of nanostructures such as 
carbon, boron-nitride and zinc-oxide nanotubes, graphene, gold and silver nanosheets etc. 
Models based on this theory are originally introduced for nonlocal elastic bodies in order 
to catch small-scale effects such as forces between atoms or long range interactions that 
can be significant in small size objects and structures. These effects are taken into account 
via single parameter called nonlocal or small-scale parameter. Beside this, there are other 
continuum-based theories such as strain gradient, couple-stress and their modifications or 
recently developed space fractional derivative models [4, 5] that can catch size effects as 
well. Many authors proved the suitability of nonlocal theory in modelling of the dynamic 
behavior or stability problems of nanostructures [6, 7]. For certain problems, an excellent 
agreement of the results obtained by using the nonlocal theory and molecular dynamics 
simulations was confirmed in the literature [8]. In addition, combination of nonlocal 
elasticity [6] and fractional viscoelasticity models [9] shown to be a promising subject for 
future research. Inclusions of both theories can significantly contribute in accurate 
modeling of size and dissipation effects in nanostructures [10-12]. 

In this study, we adopted the nonlocal and modified fractional Kelvin-Voigt 
viscoelastic constitutive equation to model an orthotropic nanoplate structure. 
Viscoelastic foundation is represented into the model using the force-displacement 
relationship with fractional operator. Solution of the governing equation in time domain is 
obtained using the Laplace and Mellin-Fourier transforms and residue theory. Behavior of 
complex roots of the characteristic equation is examined in the parametric study. Effects 
of fractional derivative parameters on nanoplate’s displacement in time are examined for 
few different values of fractional parameters.  

2. Preliminaries

2.1 Fractional derivative viscoelasticity 

In this study, we will consider only the Riemann-Liouville's definition of fractional 
derivative [5], which is given as 

	଴ܦ ௧
ఈ݂(ݐ) =

1
Γ(1− (ߙ

݀
ݐ݀
න

݂(߬)
ݐ) − ߬)ఈ ݀߬

௧

଴
ݐ			, ∈ [0,∞). 

where 0 < ߙ < 1. Usually, fractional derivatives are used for accurate modelling in 
rheology as well as in structural mechanics to describe vibration damping. In some cases, 
application of fractional derivative models is necessary since it was shown [9] that 
classical viscoelastic models failed to describe the mechanical properties of viscoelastic 
solids. Further, reliability of fractional derivative models is confirmed with molecular 
theories describing the viscoelastic behavior. In follow, we give a constitutive relation of 
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one dimensional isothermal viscoelastic body with so called modified fractional Kelvin-
Voigt type model [9] as 

௫௫ݐ = ଴ܧ ൬ߝ௫௫(ݐ) + ߬ఙఈ 	଴ܦ ௧
ఈߝ௫௫(ݐ) + ߬ఙ

ఉ 	଴ܦ ௧
ఉߝ௫௫(ݐ)൰,  (1) 

where ݐ௫௫  is the stress, ߝ௫௫ is the strain, ܧ଴ is prolonged modulus of elasticity, ߬ఙ	  is 
retardation time and ܦ଴	 ௧

ఈ and ܦ଴	 ௧
ఉare operators denoting the Riemann-Liouville’s

derivative of real order ߙ and ߚ, respectively for 0 < ߚ,ߙ < 1. In addition, we give the 
definition of the model with fractional operator as 

௫௫ݐ = (ݐ)௫௫ߝஶቂܧ − ൫1ߥ + ߬ఌ
ఊభ 	଴ܦ ௧

ఊభ൯ିఊమߝ௫௫(ݐ)ቃ,  (2) 
where ܧஶ is instantaneous modulus of elasticity, ߥ = ஶܧ) − 	ஶ, ߬ఌܧ/(଴ܧ  is the relaxation 
time and  ߛଵ , ଶ are fractional parameters , where 0ߛ < ଵߛ , ଶߛ < 1. 

2.1 Nonlocal theory 

In the nonlocal elasticity theory the stress at a point ݔ is a function of the strains at all 
other points of the elastic body. Eringen [3] proposed a differential form of constitutive 
relation in the form 

(1 − ߳ଶ݈ଶ∇ଶ)ߪ௜௝ =  ,  (3)	௜௝ݐ

where ߪ௜௝ is the nonlocal stress tensor, ݐ௜௝  is the local or classical stress tensor at a point 
߳ ,ᇱ. Furtherݔ = (݁଴ߢ)/݈ denotes the nonlocal parameter that incorporates nonlocal effects 
into the constitutive equation, where ݈ is an external characteristic length, ߢ is an internal 
characteristic length and ݁଴ is a material constant that can be determined from molecular 
dynamics simulations or by using dispersive curve of the Born-Karman model of lattice 
dynamics. Based on Hooke’s law for one dimensional case, local stress ݐ௫௫  at a point ݔᇱ is 
related to the strain at that point as 

(ᇱݔ)௫௫ݐ =  (4) ,(ᇱݔ)௫௫ߝܧ

where E denotes the elastic modulus. Based on Eqs. (3) and (4) we can write nonlocal 
constitutive equation for one-dimensional elastic body as 

௫௫ߪ − ߤ ௗమఙೣೣ
ௗ௫మ

=  ௫௫,  (5)ߝܧ

where 	ߤ = (݁଴ߢ)ଶ is the nonlocal parameter and ߪ௫௫ is the nonlocal stress. In order to 
obtain constitutive relation for a nonlocal viscoelastic body we can combine elasticity and 
viscoelasticity theory [10-12]. 

2. Governing equation

Let as consider the free vibration of an orthotropic nanoplate resting on viscoelastic 
foundation (see Fig.1). Nanoplate is of the length ܽ, width ܾ, height ℎ and density ߩ.  
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Figure 1. Nanoplate resting on viscoelastic foundation 

Here, Eringen’s differential form of nonlocal elasticity constitutive equation Eq. (5) in 
combination with fractional viscoelastic constitutive equation Eq. (1) is employed to 
consider nonlocal and dissipation effects in nanoplate. Constitutive equation for two-
dimensional orthotropic body is given in the form 

(1− ଶ)൭∇	ߤ
௫௫ߪ
௬௬ߪ
௫௬ߪ

൱ =

⎣
⎢
⎢
⎢
⎢
⎡ ாబభቀଵାఛ೛ഀ஽ഀାఛ೛

ഁ஽ഁቁ

ଵିణభమణమభ

ణభమாబభቀଵାఛ೛ഀ஽ഀାఛ೛
ഁ஽ഁቁ

ଵିణభమణమభ
0

ణభమாబమቀଵାఛ೛ഀ஽ഀାఛ೛
ഁ஽ഁቁ

ଵିణభమణమభ

ாబమቀଵାఛ೛ഀ஽ഀାఛ೛
ഁ஽ഁቁ

ଵିణభమణమభ
0

0 0 ଵଶܩ ቀ1 + ߬௣ఈܦఈ + ߬௣
ఉܦఉቁ⎦

⎥
⎥
⎥
⎥
⎤

൭
௫௫ߝ
௬௬ߝ
௫௬ߛ

൱,      (6) 

where ߪ௫௫ ௬௬ߪ, ௫௫ߝ ,௫௬ are normal and shear stressesߪ, , ௬௬ߝ ,  ଴ଶ andܧ,଴ଵܧ ,௫௬ are strainsߝ
	ଵଶ are prolonged modules of elasticity, ߬௣ܩ  is the retardation time of nanoplate, ߚ,ߙ are 
fractional parameters and ܦఈ  ఉ are operators of Riemann-Liouville’s fractionalܦ,
derivatives corresponding to modified fractional Kelvin-Voigt constitutive equation and 
ଵଶߴ   .ଶଵ are Poisson’s ratiosߴ,

Governing equation for the free transverse vibration of an orthotropic nanoplate is 
derived by using the D’Alembert’s principle and taking into account constitutive equation 
(6) using the similar methodology as in [7], which yields 

ℎߩ డమ௪
డ௧మ

+ ݍ + ଴ଵଵܦ ቀ1 + ߬௣ఈܦఈ + ߬௣
ఉܦఉቁ డ

ర௪
డ௫ర

+ ଴ଶଶܦ ቀ1 + ߬௣ఈܦఈ + ߬௣
ఉܦఉቁ డ

ర௪
డ௬ర

+ 

଴ଵଶܦ)2+ + (଴଺଺ܦ2 ቀ1 + ߬௣ఈܦఈ + ߬௣
ఉܦఉቁ డమ௪

డ௫మడ௬మ
= ߤ ቀ డమ

డ௫మ
	+ డమ

డ௬మ
ቁ ቂߩℎ డమ௪

డ௧మ
+  ቃ ,   (7)ݍ

where 

଴ଵଵܦ = ாబభ௛య

ଵଶ(ଵିణభమణమభ) ଴ଵଶܦ , = ణభమாబమ௛య

ଵଶ(ଵିణభమణమభ) , 

଴ଶଶܦ = ாబమ௛య

ଵଶ(ଵିణభమణమభ) ଴଺଺ܦ , = ீబభమ௛య

ଵଶ
 . 

In Eq. (7) ݍ denotes an external force from viscoelastic foundation acting on 
nanoplate, which is represented by the force-displacement relation similar to the 
constitutive equation (3) with fractional operator as 

ݍ = 	ஶߣ ቂ1− ൫1ߥ + ߬ఒ
ఊభܦఊభ൯ିఊమቃߥ  ,ݓ = ఒಮ	 ିఒబ	

ఒಮ	
, 

where ߣஶ	  and ߣ଴	  are instantaneous and prolonged magnitudes of compliance of the 
viscoelastic foundation , ߛଵ , ଶ are fractional parameters and ߬ఒߛ

	  is the relaxation time 
regarding to a viscoelastic foundation.  

2.1 Solution of the governing equation 
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In order to find the solution of equation (7), we will employ the method described in 
[9], where the solution is proposed in terms of Fourier series and separation of variables. 
For the simply supported nanoplate, we write the following boundary conditions  

,ݕ,ݔ)ݓ ௫,௬ୀ଴|(ݐ = ,ݕ,ݔ)ݓ ௫,௬ୀ௔,௕|(ݐ = 0, 
௫,௬ୀ଴|	ܯ = ௫,௬ୀ௔,௕|	ܯ = 0,  (8) 

and initial conditions in the form 

,ݕ,ݔ)ݓ ௧ୀ଴|(ݐ = ,2/ܽ)ݓ̇	 ,0 ܾ/2, ௧ୀ଴|(ݐ =  ଴,         (9)ݓ̇

After applying the Laplace transformation over Eq. (7), taking into account initial 
conditions (9) and rearranging some terms, we obtain the following equation 

ଶ݌ ቂ1 − ߤ ቀ డమ

డ௫మ
+ డమ

డ௬మ
ቁቃݓഥ + ఒಮ

ఘ௛
[1 − 1)ߥ + ఒ߬	݌)

	 )ఊభ)ିఊమ] ቂ1− ߤ ቀ డమ

డ௫మ
+ డమ

డ௬మ
ቁቃݓഥ  

+ ቀݓഥ − ߤ డమ௪ഥ
డ௫మ

ቁ + 	 ଵ
ఘ௛
ቂ1 + ൫߬݌௣	 ൯

ఈ
+ ൫߬݌௣	 ൯

ఉቃ ቂܦ଴ଵଵ
డర௪ഥ
డ௫ర

+ ଴ଵଶܦ)2 + (଴଺଺ܦ2 డర௪ഥ
డ௫మడ௬మ

+ 

଴ଶଶܦ
డర௪ഥ
డ௬ర

ቃ = ଴ݓ̇ ቀݔ)ߜ − ܽ 2⁄ , ݕ − ܾ 2⁄ ) + ߤ ఋ(௫ି௔ ଶ⁄ ,௬ି௕ ଶ⁄ )
డ௫మ

ቁ, (10) 

Here, we take that fractional order initial conditions obtained from Laplace transform 
of Riemann-Liouville’s derivative of a function are equal to zero when function is 
bounded at zero. Further, we assume the solution in the form 

,ݕ,ݔ)ഥݓ (݌ = ∑ തܶ௡௠sin(݇௡ݔ)ஶ
௡ୀଵ
௠ୀଵ

sin(݇௠ݕ),  (11) 

where ݇௡ = ߨ݊ ܽ⁄ , ݇௠ = ߨ݉ ܾ⁄  and തܶ௡௠(݌) is unknown function. 
After taking into account assumed solution Eq. (11), orthogonality conditions and 

properties of Dirac delta function we obtain the following equation 

ଶ݌ തܶ௡௠ + ఒಮ
ఘ௛

[1− 1)ߥ + ఒ߬	݌)
	 )ఊభ)ିఊమ] തܶ௡௠ + ஺̅

ఎ
ቂ1 + ൫߬݌௣	 ൯

ఈ
+ ൫߬݌௣	 ൯

ఉቃ തܶ௡௠

= ସ௪̇బ
௔௕

sin ቀ௡గ
ଶ
ቁ sinቀ௠గ

ଶ
ቁ,  (12) 

where 

ߟ = 1 + ௡ଶ݇)ߤ + ݇௠ଶ ܣ̅					,	( = ଵ
ఘ௛

଴ଵଵ݇௡ସܦ] + 2݇௡ଶ݇௠ଶ ଴ଵଶܦ) + (଴଺଺ܦ2 + ଴ଶଶ݇௠ସܦ ]. 

Finally, we obtain the solution for unknown functions ௡ܶ௠ in Laplace domain as 

തܶ௡௠(݌) = ோ
௙೙೘(௣) sinቀ௡గ

ଶ
ቁ sin ቀ௠గ

ଶ
ቁ,  (13) 

where 

ܴ = ସ௪̇బ
௔௕
	,  ௡݂௠(݌) = ଶ݌ + ఒಮ

ఘ௛
[1− 1)ߥ + ఒ߬	݌)

	 )ఊభ)ିఊమ] + ஺̅
ఎ
ቂ1 + ൫߬݌௣	 ൯

ఈ
+ ൫߬݌௣	 ൯

ఉቃ,

The solution (13) can be written in time domain by using the Mellin-Fourier inversion 
formula in the form 

௡ܶ௠(ݐ) = ଵ
ଶగ௜ ∫

തܶ௡௠(݌)݁௣௧݀݌௖ା௜ஶ
௖ି௜ஶ ,                                  (14) 

To calculate the integral one first need to determine all singular points of the complex 
function (13). Function  ௡ܶ௠ has two branch points ݌ = 0 and ݌ = ∞ and simple poles 
which are the roots of the characteristic equation  
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௡݂௠(݌) = 0,      (15) 

Integral in Eq. (14) is calculated using the same closed contour as in [9]. Applying the 
residue theory, we can write Eq. (14) in the following form  

௡ܶ௠(ݐ) = ௡ܶ௠
ୢ୰୧୤୲(ݐ) + ௡ܶ௠

୴୧ୠ୰(ݐ),  (16) 

where 

௡ܶ௠
ୢ୰୧୤୲(ݐ) = ଵ

ଶగ௜ ∫ ൣ തܶ௡௠൫ି݁ݏ௜గ൯ − തܶ௡௠൫݁ݏ௜గ൯൧݁ି௦௧݀݌
ஶ
଴ , (17) 

௡ܶ௠
୴୧ୠ୰(ݐ) = ∑ res[ തܶ௡௠(݌)݁௣ೕ௧]௝ . (18) 

In the above equations ௡ܶ
ୢ୰୧୤୲(ݐ) denotes the drift part of the solution and ௡ܶ

୴୧ୠ୰(ݐ) 
denotes the vibration part. In Eq. (18) summation is taken over all isolated singular points 
i.e. poles ݌ = ௝݌ . Poles can be determined by finding the roots of the characteristic 
equation (15), having two retardation times and four fractional parameters, which can be 
done following the procedure described in [9]. First, we put ݌ =  ௜ట in Eq. (15) as݁ݎ

ଶ݁௜ଶటݎ + ߱ஶଶ ቂ1− ൫1ߥ + ఒ߬ݎ)
	 )ఊభ݁௜ఊభట൯

ିఊమቃ +߱଴௡௠
ଶ ቂ1 + ൫߬ݎ௣	 ൯

ఈ
݁௜ఈట + ൫߬ݎ௣	 ൯

ఉ
݁௜ఉటቃ =

0, (19) 

where 

߱ஶଶ = ఒಮ
ఘ௛

,			߱଴௡௠
ଶ = ஺̅

ఎ
.

After using Euler formula and separating real and imaginary parts we can write 

ଶcos(2߰)ݎ −߱ஶଶ ܴఊభ
ିఊమߥcos൫ߛଶΦఊభ൯ + 	߱଴௡௠

ଶ ܴఈఉcos൫Φఈఉ൯+ ߱ஶଶ +߱଴௡௠
ଶ = 0,   (20)

ଶsin(2߰)ݎ +߱ஶଶ ܴఊభ
ିఊమsin൫ߛଶΦఊభ൯ + 	߱଴௡௠

ଶ ܴఈఉsin൫Φఈఉ൯ = 0,    (21)

where 

ܴఊభ
	 = ට1 + 2൫߬ݎఒ

	 ൯ఊభcos(ߛଵ߰) + ൫߬ݎఒ
	 ൯ଶఊభ,

tan൫Φఊభ൯ = ൫௥ఛഊ
	 ൯ംభୱ୧୬(ఊభట)

ଵା൫௥ఛഊ
	 ൯ംభୡ୭ୱ(ఊభట)

,

ܴఈఉ = ට൫߬ݎ௣	 ൯
ଶఈ

+ 2൫߬ݎ௣	 ൯
ఈ൫߬ݎ௣	 ൯

ఉ
cos൫߰(ߙ − ൯(ߚ + ൫߬ݎ௣	 ൯

ଶఉ
,

tan൫Φఈఉ൯ =
൫௥ఛ೛	 ൯

ഀୱ୧୬(ఈట)ା൫௥ఛ೛	 ൯
ഁୱ୧୬(ఉట)

൫௥ఛ೛	 ൯
ഀୡ୭ୱ(ఈట)ା൫௥ఛ೛	 ൯

ഁୡ୭ୱ(ఉట)
. 

are parameters obtained by making the following replacements ܴఈఉ݁௜஍ഀഁ  and ܴఊభ݁
௜஍ംభ  

for the bracket terms in Eq. (19). The system of equations (20) and (21) is rootless for 
0 < |߰| < ߨ 2⁄ ,  [9].  Considering the next replacements ܺଵ = ൫߬ݎ௣	 ൯

	
 and ܺଶ = ఒ߬ݎ)

	 )	 in 
Eqs. (20) and (21), where ܺଵ and ܺଶ can take values from 0 to ∞, we can search the 
unknown angle ߰ and parameter ݎ. Using Eqs. (20) and (21) and eliminating ݎଶ, we can 
determine the value of angle ߰ from the following transcendental equation  

tan(2߰) =
ఠಮ
మ ோംభ

షംమఔୱ୧୬൫ఊమ஍ംభ൯ାఠబ೙೘
మ ோഀഁୱ୧୬൫஍ഀഁ൯

ఠబ೙೘
మ ோഀഁୡ୭ୱ൫஍ഀഁ൯ିఠಮ

మ ோംభ
షംమఔୡ୭ୱ൫ఊమ஍ംభ൯ାఠಮ

మ ାఠబ
మ, (22) 

and the value of ݎ	 from Eq. (21) as 
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ଶݎ = −
ఠಮ
మ ோംభ

షംమఔୱ୧୬൫ఊమ஍ംభ൯ାఠబ೙೘
మ ோഀഁୱ୧୬൫஍ഀഁ൯

ୱ୧୬(ଶట) ,  (23) 

Found values of ߰ and ݎ completely determines one pair of complex roots of 
characteristic equation (15), where by changing ߰ to –߰ yields complex conjugate value 
of the root. Thus, for each pair of fixed values of ܺ௜ , ݅ = 1,2 and within the half plane 
ߨ 2⁄ < |߰| <   characteristic equation possess two complex conjugate roots ,ߨ

ଵ,ଶ(௡௠)݌ = ௜ట±݁ݎ = ߦ− ± ݅Ω	,  (24) 

Another step is calculation of the drift of the equilibrium position of our nanobeam 
system that is governed by retardation process. Using Eqs. (15) and (17) we can calculate 
௡ܶ௠
ୢ୰୧୤୲(ݐ) as 

௡ܶ௠
ୢ୰୧୤୲(ݐ) = ோమ

గ ∫ D௡௠
ିଵ sin(d௡௠) ݁ି௦௧݀݌ஶ

଴ ,  (25) 

where 

ܴଶ =
଴ݓ4̇
ܾܽ

sin ቀ
ߨ݊
2
ቁ sinቀ

ߨ݉
2
ቁ. 

D௡௠ = ඥℜଶ{∙} + ℑଶ{∙},  d௡௠ = ℑ{∙} ℜ{∙}⁄  
ℜ{∙} = Re൛ ௡݂௠൫݁ݏ±௜గ൯ൟ, ℑ{∙} = Im൛ ௡݂௠൫݁ݏ±௜గ൯ൟ 

Further, based on two complex conjugate poles ݌ଵ,ଶ(௡௠) = ߦ− ± ݅Ω calculated from 
Eq. (24) and using formula (18) we have 

௡ܶ௠
୴୧ୠ୰(ݐ) = resൣ തܶ௡௠൫݌ଵ(௡௠)൯݁௣భ(೙೘)௧൧+ resൣ തܶ௡௠൫݌ଶ(௡௠)൯݁௣మ(೙೘)௧൧ = ݐక௧sin(Ωି݁ܣ +

߮), (26) 

where 

ܣ = 2ܴଶ ቊ൤ℜ
డ௙೙൫௥௘೔ഗ൯

డ௣
൨
ଶ

+ ൤ℑ డ௙೙൫௥௘೔ഗ൯
డ௣

൨
ଶ
	ቋ
ିଵ/ଶ

, 

tan(߮) = ൤ℑ డ௙೙൫௥௘೔ഗ൯
డ௣

൨ ൤ℜ డ௙೙൫௥௘೔ഗ൯
డ௣

൨
ିଵ

, 
డ௙೙೘(௣)

డ௣
= ݌2 +߱ஶଶ ଶ߬ఒߛଵߛߥ

	 ఒ߬݌)
	 	)ఊభିଵቀ1 + ൫߬݌௣	 	൯

ఊభቁ
ିଵିఊమ

+ 	߱଴௡௠
ଶ ቀ߬ߙ௣	 ൫߬݌௣	 	൯

ఈିଵ
+

	ఌ߬ߚ ൫߬݌௣	 	൯
ఉିଵቁ.

In the above equations ℜ and ℑ denotes the real and the imaginary parts of the first 
derivative of the characteristic equation, respectively. 

3. Numerical results

From the literature, it is well known that that an orthotropic nanoplate model can 
represent graphene sheet nanostructure [7]. Dissipation of the mechanical energy in such 
structures can be described using some rheological models. We used values of parameters 
corresponding to graphene sheet nanostructure in order to investigate the effects of 
different model parameters on damped frequency and displacement. The following values 
of parameters in numerical simulations are adopted from [7]: Young’s modules ܧ଴ଵ =
2.434 [TPa], ܧ଴ଶ = 2.473 [TPa], shear modulus ܩଵଶ = 1.039 [Pa], ߩ = 6316 [kg/m3], 
Poisson’s ratios ߴଵଶ = 	 ଶଵߴ = 0.197, length of nanoplate ܽ = 9.519 [nm], width 
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ܽ = 4.844 [nm], height ℎ = 0.129 [nm], characteristic length ߢ = 1.5 [nm], nonlocal 
parameter ݁଴ = 1, and parameters of viscoelastic foundation ߣஶ = 26 [GPa] and 
ߥ = 9/10. All simulations are performed for the mode numbers ݊ = ݉ = 1. 

Figure 2. Complex roots of the characteristic equation as functions of ܺଶ for ߚ,ߙ = 0.9, 
ଶߛ = 0.98  and a) ܺଵ = 1 × 10ିଽ and b) ܺଵ = 1 × 10ି଺ 

Figure 3. Complex roots of the characteristic equation as functions of ܺଵ  for ߛଵ, ଶߛ =
ߚ ,0.9 = 0.9 and a) ܺଶ = 0.001 and b) ܺଶ = 10 

Fig. 2 a) and b) shows the behavior of complex roots, where imaginary part represents 
damped frequency and real part is damping ratio, as a function of  the parameter 
ܺଶ =  ఒ and fixed values of other parameters. One can notice that change of frequency߬ݎ
and damping ratio are small since the effect of damping parameter ܺଶ i.e. relaxation time 
߬ఒ of viscoelastic foundation in the model is weak. A decrease of fractional parameter ߛଵ 
reduces the value of damping ratio but not the frequency. In addtion, one can notice 
significant influence of damping parameter ܺଵ =  ௣, whose increase shifts the starting߬ݎ
values of damping ratio as well as frequency to the left side of complex plane. Obtained 
behavior of complex roots is similar to the behavior of the fractional operator model 
found in the literature [9]. Fig. 3 a) and b) shows the behavior of complex roots as 
function of  parameter ܺଵ and fixed values of other parameters. One can notice that 
changes of the frequency and damping ratio are large for an increase of ܺଵ, which is the 
nature of diffusion type models [9] such as modified fractional  Kelvin-Voigt. 
Characteristics of such damping models are increase of frequency above the frequency of 
elastic system due to an increase of damping parameter i.e. retardation time. However, 
usual behaviour of decresing frequency can be noticed for the higher values of fractional 
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parameter. Comparing Figs. 3 a) and b), one can clearly notice weak influnce of 
parameter  ܺଶ. Fig. 4 shows the influence of nonlocal parameter on damped frequency 
(imaginary parts of complex roots) and damping ratio (real parts of complex roots). As 
expected, frequency of the system decreases for an increase of nonlocal parameter, which 
is in line with other results from the literature. Finally, Fig. 5 shows the influence of 
fractional derivative parameters on nanoplate’s displacement. One can notice different 
time dependent behaviors of the model for changes of fractional derivative parameters. 
When calculating the displacement in time (Fig. 5 b)), drift part of the solution and the 
phase angle are neglected since they are small. 

Figure 4. Influence of nonlocal parameter ݁଴ for  ܺଵ = ܺଶ = ଵߛ ,0.1 , ଶߛ = 0.5 and 
ߚ = 0.9 on complex roots ݌ଵ = ߦ− + ݅Ω a) damped frequency and b) damping ratio. 

Figure 5. Nanoplate’s displacement of the midpoint in time for ܺଵ = ܺଶ = ଵߛ ,0.1 , ଶߛ =
0.9 a) drift part of the solution b) displacement in time. 

4. Conclusions

In this paper, we investigated the free vibration behavior of an orthotropic nanoplate 
resting on the viscoelastic foundation. Nonlocal and fractional viscoelastic constitutive 
equation is used for nanoplate to describe structural damping while viscoelastic model 
with fractional operator is used for a foundation. Governing equation is derived and 
solved using separation of variables and Laplace transform method. Solution in time 
domain is obtained using Mellin-Fourier transform and residue theory. Complex roots of 
the characteristic equation are found using the method from the literature. In the 
parametric study, effects of different parameters on complex roots i.e. damped frequency 
and ratio as well as on nanoplate’s displacement are investigated through several 
numerical examples. According to the obtained results, both complex and time domain 
analysis show to be very important for interpretation of the results and should be used in 
future analyses of similar models. 
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