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Abstract 

This paper deals with stability problem of cart inverted pendulum system controlled by a 

fractional order controller. Inverted pendulum is an underactuated mechanical system 

with one control input and two degrees of freedom. Detailed mathematical model of 

pendulum is derived using the Rodriguez method. Stabilization of pendulum around its 

unstable equilibrium point is achieved by using the fractional order PD
α
 controller, in 

combination with partial feedback linearization technique. Since fractional order control 

law includes non-rational functions, an efficient method for numerical evaluation of this 

type of functions is used in this paper. The performance of the proposed method is 

demonstrated with experimental verification of the stabilization control of the cart 

pendulum system. 

Key words: inverted pendulum, fractional order PID control, asymptotic stability, 

rational approximations 

1. Introduction

Many systems in nature are inherently underactuated, with fewer actuators than the 

number of degrees of freedom. These systems have been widely studied in diverse fields, 

such as robotics, aerospace engineering, marine engineering etc. Classical benchmark 

examples of underactuated mechanical systems used in control theory are inverted 

pendulums among which, the cart pendulum [1], the Furuta pendulum [2], the Acrobot 

[3], and the Pendubot [4] are very popular. A vast range of different nonlinear control 

algorithms exists for the stabilization of these types of pendulums, including feedback 

linearization methods [5], a combined feedforward/feedback control schemes [6], variable 
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structure controls [7], etc. Some results of the D-decomposition procedure for 

underactuated systems have been given in [8,9,10]. Unlike fully actuated systems, here 

feedback linearization technique cannot be applied directly, because of the unstable zero 

dynamics. To solve this problem, additional control law must be designed to guarantee 

asymptotic stability of the system. 

On the other hand, in recent years considerable attention has been paid to fractional 

calculus and its application [11]. It is a mathematical topic with more than 300 years old 

history, but its application to physics and engineering has been recorded only in the past 

few decades. The fractional calculus is a generalization of classical, integer order calculus 

[12], and has the potential to accomplish what classical integro-differential operators 

cannot. 

In control theory fractional order controllers are used to improve the performance of 

closed loop systems. The fractional PID controllers, the CRONE controllers, the 

fractional lead-lag compensators etc., are some of the well known controllers of fractional 

type. Among them, fractional order PID controllers are the ones most frequently used and 

were first introduced in [13]. It has been shown that fractional order PID controller 

enhances the system control performances when used with integer order and fractional 

order plants. In this paper, fractional order PD control is used for stabilization of cart 

pendulum system, after the partial feedback linearization procedure has been applied in 

order to simplify the control design problem.  

Linear fractional order control laws are represented by a transfer functions which are 

not rational, which gives rise to a problem of practical implementation of the 

corresponding control algorithms. A method for rational approximation of linear 

fractional order systems used in this paper is computationally efficient, accurate, and has 

originally been proposed in [14]. It relies on the interpolation of the frequency 

characteristics of the system on a predefined set of target frequencies. 

The rest of the paper is organized as follows. First, mathematical model of cart 

pendulum system is presented. Then, a fractional order PD
α
 controller in combination 

with partial feedback linearization technique is introduced in order to stabilize the system. 

Experimental results of the proposed algorithm for the stabilization of cart pendulum 

system are given at the end to demonstrate the validity of the presented method.  

2. Dynamics of cart pendulum system (medium pendulum case)

In Figure 1 a laboratory setup of cart pendulum system is shown, while Fig. 2 depicts 

a schematic view of the same. It is a mechanical system with two degrees of freedom, 

where the cart position and the pendulum angle are denoted as x  and  , respectively. 

Control of the system is by means of force F  applied horizontally to the cart. Hence, it is 

an underactuated mechanical system because it has only one control input and two 

degrees of freedom. 

Table 1. Physical parameters of laboratory cart pendulum system 

0.75 kgM  mass of the cart 

0.127 kgm   mass of the medium pendulum 
29.81m sg  gravitational constant 
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0.3365 mL   total length of the pendulum 

0.1778 md   distance of the pendulum's pivot point to its center of mass 

2 23.1613 10  kgmJ  
moment of inertia of the pendulum with respect to its pivot 

point 

4 Ns mC  viscous damping coefficient (cart) 

0.003 NsP  viscous damping coefficient (pendulum) 

Figure 1. A laboratory setup of cart pendulum system 

Figure 2. A schematic view of cart pendulum system 

The physical parameters of the actual system used in experiment are given in Table 1. 

Herein, the Rodriguez method [15] is proposed for modeling the dynamics of the system 

where configuration of the mechanical model can be defined by generalized coordinates 

1q  and 2q  represent by x and  , respectively. The equations of motion of the inverted 

pendulum can be expressed in a covariant form of Langrange’s equation of second kind 

as follows 

,
1 1 1

, 1,2
n n n

a q q q Q       
  

       ,  (1) 
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wherein the coefficients a  are the covariant coordinates of the basic metric tensor 

  2 2a R 
  and ,  1,2  presents Christoffel symbols of the first kind. The 

generalized forces Q  can be presented in the following expression (2), wherein 

,  ,  g v aQ Q Q    denote the generalized gravitational, viscous and control forces, respectively. 

, 1,2g v aQ Q Q Q        . (2) 

The equations of motion of our system can be rewritten in full form 

     2cos sin Cm M x md md F x           , (3) 

   cos sin Pmd x J mgd         ,  (4) 

wherein 

   11 12 22,1 1 2,  cos ,  sin ,  ,  ,a v

Ca m M a md md Q F Q x           (5) 

   21 22 2 2cos ,  ,  sin ,  g v

Pa md a J Q mgd Q          (6) 

3. Controller design of cart pendulum system

Now, a control strategy is developed to stabilize the pendulum in its unstable upright 

position. First, we show the simplification of dynamic equations of the cart pendulum 

system. For this purpose, we use nonlinear control technique known as inverse dynamic 

control. It is basically a partial feedback linearization procedure [16], which simplifies the 

control design. The first step of this procedure is to calculate   from Eq. (4) and plug it 

into Eq. (3). After rearranging, Eq. (3) now reads: 

         
2 2 2 2

2 2cos sin cos sin cos .P

P

mdm d m d g
m M x x md F

J J J


       

 
       

 
    (7) 

We can see that   has been canceled out in (7). Control force F  can be chosen as 

follows:

         
2 2 2 2

2 2cos sin cos sin cos ,P

R P

mdm d m d g
m M F x md F

J J J


       

 
       

 
  (8) 

where 
RF  is new control signal. Now, Eqs. (3)-(4) become 

Rx F , (9) (9) 

   sin cosP RJ mgd mdF        . (10) 

We can see there is no influence from the motion of pendulum to cart position in these 

equations. Now, we can linearize the system described with (9)-(10) around equilibrium 

point    x, x, , 0,0,0,0   . A controller derived from a linearized system will work for a
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nonlinear system, provided that region of attraction is not too large [16]. So, linearization 

around desired equilibrium point leads to:  

Rx F (11) 

P RJ mgd mdF       (12) 

The new goal is to choose 
RM  so that asymptotic stability for    x,x, , 0,0,0,0   can be

accomplished. This can be achieved with the following control law: 

 
R P D Dx PxF K K K x K x 



      , (13) 

wherein , , ,Px Dx P DK K K K 
 denote proportional and differential gains of the controller, and 

 is real differentiator parameter. After substituting (13) into (11)-(12), we obtain: 

 
         Dx Px P Dx K x K x K K 



        (14) 

     
D P P Dx PxJ mdK md K g mdK x mdK x



           (15) 

Taking 1   we obtain classical PD controller. Five parameters  , , , ,Px Dx P DK K K K  

can be changed in order to achieve asymptotic or relative stability of closed loop system. 

4. Experimental results

To show the practical implementation of the fractional order PD controller, we 

performed experiments for the asymptotic stabilization of the cart pendulum system given 

by (3)-(4). Some preliminary results regarding the fractional order PD control on cart 

pendulum system (long pendulum case) is given in [17]. The physical parameters of the 

actual system are specified in Section 2. The cart is driven by the force generated by the 

DC motor given by: 

m m bF c V c x   , (16) 

where 
mV  is a control input voltage, and  1.0717 N Vmc  and  4.809 Ns mbc  are 

positive motor constants. The cart pendulum system used in experiments is equipped with 

two incremental encoders for the measurement of both positions of the cart and 

pendulum. Since numerical differentiation usually introduces significant noise in velocity 

measurements, we estimate the corresponding velocities of the cart and pendulum from 

position measurements by utilizing a derivative filter given by the following fractional 

order transfer function: 

 
0.02 1

s
DF s

s


 

  
 

, (17) 

wherein   represents real differentiator parameter, having in mind that 1   for 

pendulums derivative filter. In order to approximate this non-rational transfer function, a 

computationally efficient method for rational approximation of linear fractional order 

systems is used, as described in [14]. Rational transfer function of the following form: 
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 

 

1

1 1 0

1

1 1 0

n

n

n n

n n

B s b s b s b

A s a s a s a s a









  


   




(18) 

should approximate transfer function given by (17). For 
0 1b  , there are 2n  unknown 

coefficients  0 1 2 1 2, , , , , , ,n na a a a b b b   which should be determined from 2n  equations 

obtained from the condition of overlapping the Bode frequency characteristics in the 

predefined set of target frequencies  0 1 1, , , n      . For more information we refer to

[14]. In our case, for the given non-rational transfer function (17), and for the following 

values of parameter  0.9,  0.95,  1.05,  1.1,  1.15  , rational approximation (18) is obtained 

by interpolating frequency response in seven target points 

 1,  10,  20,  40,  70,  100,  1000 . For these target frequencies unknown coefficients in 

(18) are calculated and listed in Table 2. 

Table 2. Coefficients of the rational transfer function 

Results 0.9   0.95   1.05   1.1   1.15   

0b 1 1 -1 -1 -1 

0a 25.24 53.2 60.24 32.19 22.96 

1b 28.35 56.45 56.60 28.32 18.86 

1a 32.66 66.24 70.46 36.52 25.22 

2b 30.09 63.06 71.54 38.24 27.23 

2a 9.92 19.55 19.88 10.08 6.8 

3b 7.75 16.68 20.22 11.19 8.235 

3a 1.10 2.12 2.05 1.04 0.689 

4b 0. 705 1.54 1.96 1.11 0.834 

4a 0.529e-1 0.100 0.955e-1 0.47e-1 0.307e-1 

5b 0.248 0.55e-1 0.723e-1 0.418e-1 0.319e-1 

5a 0.112e-2 0.208e-2 0.194e-2 0.947e-3 0.61e-3 

6b 0.289e-3 0.647e-3 0.875e-3 0.513e-3 0.397e-3 

6a 0.856e-5 0.157e-4 0.144e-4 0.694e-5 0.442e-5 

7a 0 0 0 0 0 

Fig. 3 and 4 show experimental results of the asymptotic stabilization of the laboratory 

cart pendulum system for different values of  , i.e.  0.9;  0.95;  1.0;  1.05 ;  1.1;  1.15 . 

For better visibility results are shown on two pictures instead of one. Tests are performed 

for the following values of controller parameters: 14.14,  15.58,  66.26,Px Dx PK K K     

and 10.7DK   . Pendulum is manually brought to the initial position 

   x,x, , 0,0,165 ,0     where balancing controller catches it and stabilizes. We can see

the best response is obtained for 1.1  , so fractional order controller gives better control 

performances when compared with its integer order counterpart. 
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Figure 3. Cart position and pendulum angle for  0.9;  0.95;  1.0 

Figure 4. Cart position and pendulum angle for  1.0;  1.05 ;  1.1;  1.15   

5. Conclusions

In this paper, stability problem of cart inverted pendulum system controlled by a 

fractional order controller is investigated. Detailed mathematical model of pendulum is 

derived using the Rodriguez method. Stabilization of pendulum around its unstable 

equilibrium point is achieved by using the fractional order PD
α
 controller, in combination 

with partial feedback linearization technique. An efficient method for numerical 

evaluation of non-rational functions is used in order to implement fractional order control 

421



P. D. Mandić, M. P. Lazarević, T. B. Šekara, R. Ž. Jovanović Stailization of the cart pendulum 

system by fractional order control with experimental realization 

law. The performance of the proposed method is demonstrated with experimental 

verification of the stabilization control of the cart pendulum system. It has been shown 

that fractional order PD controller can enhance the system control performances in 

comparison with classical, integer order controller.  
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